PREPARATION OF BACTERIAL CELLULOSE SHEETS WITH ELECTRICAL AND MAGNETIC PROPERTIES

Paweena Wongsakul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University 2010

530010

Thesis Title:	Preparation of Bacterial Cellulose Sheets with Electrical and
	Magnetic Properties
By:	Paweena Wongsakul
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Ratana Rujiravanit
	Prof. Hiroshi Tamura

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

. .

College Director

(Assist. Prof. Pomthong Malakul Na Ayudhaya)

Thesis Committee:

Ratane Rujiravanit

(Assoc. Prof. Ratana Rujiravanit)

(Prof. Hiroshi Tamura)

Anwatterwat

(Assoc.Prof. Anuvat Sirivat)

Panya Wongpanit

(Dr. Panya Wongpanit)

ABSTRACT

5172025063: Polymer Science Program

Paweena Wongsakul: Preparation of Bacterial Cellulose Sheets with Electrical and Magnetic Properties Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and Prof. Hiroshi Tamura 99 pp.

Keywords: Bacterial cellulose/ Acetobacter xylinum/ Polyaniline/ Magnetite particles

Polyaniline (PANI) was synthesized via chemical oxidative polymerization using ammoniumpersulfate as an oxidizing agent and in the presence of bacterial cellulose (BC) during the polymerization to obtain BC sheets with electrical properties. Magnetite particles (Fe₃O₄) were synthesize by co-precipitation method, using ammonia gas as precipitating agent and again in the presence of BC to obtain BC sheets with magnetic properties. The BC sheets were produced from Acetobacter xylinum TISTR 975. The chemical and physical characterization of resultant sheets were carried out using SEM, FT-IR, TG-DTA, XRD, two point probe electrometer, and VSM. SEM micrographs revealed that PANI covered the surfaces of the BC surface. Characteristic peaks of both the BC and PANI were observed in the FT-IR spectra of the BC sheets containing PANI. The TG-DTA curves showed the thermal stability of the BC sheets with PANI was increased as compared to that of the pure BC sheet. A maximum electrical conductivity of 6.17 S/cm was observed for the BC sheet with PANI polymerized by using an aniline monomer content of 30 %wt. Saturated magnetization of BC containing Fe₃O₄ (in the absence of PANI) increased from 3.14 to18.38 emug⁻¹ with increasing the initial concentration of iron precursors from 0.05 to 0.20 M. Moreover, BC containing Fe₃O₄ both with and without the incorporating of PANI showed super-paramagnetic behavior with coersivity less than 100 Oe. This work introduced a facile method for the preparation of BC sheets with electrical and magnetic properties.

บทคัดย่อ

ปวีณา วงศ์สกุล : การเตรียมแผ่นเส้นใยเซลลูโลสที่สังเคราะห์จากเชื้อแบคทีเรียที่มี คุณสมบัติทางไฟฟ้า และทางแม่เหล็ก (Preparation of Bacterial Cellulose Sheets with Electrical and Magnetic Properties) อ. ที่ปรึกษา: รศ.คร. รัตนา รุจิรวนิช และ ศ.คร. ฮิโรชิ ทามูระ 99 หน้า

พอลิอะนิลีน (Polyaniline) และอนุภาคแม่เหล็กชนิคแม็คนิไทท์ (Magnetite particles, Fe,O,)ได้ถูกสังเคราะห์ขึ้น โดยให้องค์ประกอบคังกล่าว ติดอยู่บนแผ่นแบคทีเรียเซลลูโลส ซึ่งเป็น เส้นใยเซลลูโลสที่สังเคราะห์จากเชื่อแบคทีเรีย (Acetobacter Xylinum) เพื่อกำจัดปัญหาในเรื่องของ การขึ้นรูปของวัสดุทั้งสอง อีกทั้งทำให้ได้แบคทีเรียเซลลูโลส ที่มีทั้งคุณสมบัติทางไฟฟ้าและ คุณสมบัติทางแม่เหล็กขึ้น พอถิอะนิลีนซึ่งเป็นองค์ประกอบที่ทำให้เกิดคุณสมบัติทางไฟฟ้า ถก สังเคราะห์ขึ้นจากอะนิลีนโมโนเมอร์ โดยอาศัยปฏิกิริยา Oxidative polymerization ส่วนอนุภาค แม่เหล็กชนิดแม็คนไทท์ซึ่งเป็นองค์ประกอบที่ทำให้เกิดคุณสมบัติทางแม่เหล็ก ถูกสังเคราะห์ด้วย วิธีการตกตะกอนด้วยเบส โดยใช้ Fe²⁺ และ Fe³⁺ เป็นสารตั้งต้น ในงานวิจัยนี้ได้ศึกษาถึงลักษณะ ทางสัณฐานวิทยา โครงสร้างทางเคมี ความเสถียรทางความร้อน สมบัติทางไฟฟ้า สมบัติทาง แม่เหล็ก และการตอบสนองต่อสนามไฟฟ้าของวัสคุดังกล่าว ซึ่งจากการศึกษาลักษณะทางสัญฐาน ้ วิทยาโดยเทคนิค SEM ของแผ่นแบคทีเรียเซลลูโลสที่มีพอลิอะนิลีนอยู่ด้วยนั้น พบว่า พอลิอะนิลีน ้สามารถกลุมผิวของเส้นใยเซลลูโลสได้อย่างทั่วถึง อีกทั้งกวามหนาของชั้นพอลิอะนิลีนสูงขึ้น เมื่อ ปริมาณการใช้อะนิลีนโมโนเมอร์ในการสังเคราะห์สูงขึ้น ความเสถียรทางความร้อนสูงขึ้นเมื่อมี พอลิอะนิลีน หรือ อนุภาคแม็คนิไทท์อยู่บนแผ่นแบคที่เรียเซลลูโลส สำหรับการศึกษาสมบัติทาง ้ไฟฟ้าของนั้น พบว่า แผ่นแบคทีเรียเซลลูโลสที่มีพอลิอะนิลีนที่สังเคราะห์จากอะนิลีนโมโนเมอร์ 30% โดยน้ำหนัก มีค่าการนำไฟฟ้าสูงที่สุดที่ 6.17 s/cm และสมบัติทางแม่เหล็กโดยเทคนิค VSM พบว่า ค่า Saturated magnetization, M. ของแผ่นเส้นใยเซลลูโลสที่มีอนุภาคแม็คนิไทท์อยู่ด้วย จะมี ้ ค่าสูงขึ้นเมื่อความเข้มข้นของไอออน Fe²⁺ และ Fe³⁺ ที่ใช้ในการสังเคราะห์เพิ่มสูงขึ้น และพบอีกว่า ทุกชิ้นงานมี hysteresis loop ที่เล็กมากอีกทั้ง มีค่า coercivity; $H_{z} = \sim 59.51 - 82.26$ Oe ที่ค่า ซึ่งการ สมบัติที่กล่าวมาข้างต้นนั้น จะเห็นได้ว่างานวิจัยนี้สามารถที่จะสังเคราะห์แผ่นของเส้นใย เซลลูโลสที่สังเคราะห์จากแบคทีเรียที่มีคุณสมบัติที่น่าสนใจ ที่เหมาะต่อการนำไปประยุกค์ใช้กับ เทคโนโยถีชั้นสูงต่อไป

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor and co-advisor, who are Asssoc. Prof. Ratana Rujiravanit and Prof. Hiroshi Tamura, for their sincere assistances. They have provided the very useful guidance and the great encouragement throughout this research. I deeply thanks to Assoc. Prof. Anuvat Sirivat and Dr. Panya Wongpanit for serving on my thesis committees and giving the useful suggestion.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Excellence Center for Petroleum, Petrochemicals and Advanced Materials, Thailand. And also I would like to thank the Graduate School Chulalongkorn University for providing partial financial support (The 90th Anniversary of Chulalongkorn University Fund) to this research.

I would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where I have gained the valuable knowledge and experience in the Polymer Science programs and the author greatly appreciates all professors, lecturers and staffs who have tendered knowledge and technical support during my stay in this college.

Finally, I would like to thank my PPC friends for their friendship, helpfulness and creative suggestions. I am also greatly appreciated to my family for their love, understanding, and constant encouragement during my studies and thesis work. Without all of them, this work and my life have not been successful.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii -
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xiv

CHAPTER

.

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Conductive Polymers (CPs)	3
	2.1.1 Polyaniline	5
	2.1.2 Synthetic Methods to Prepare Polyaniline	7
	2.1.2.1 Chemical Polymerization	7
	2.1.2.2 Electrochemical Synthesis of Polyaniline	10
	2.1.2.3 Template Synthesis of Polyaniline	11
	2.1.3 Electrical Conduction in Polyaniline	11
	2.1.3.1 Factors Influencing the Electrical Conductivity	11
	2.1.4 Composite of Polyaniline	14
	2.1.4.1 Synthetic Methods	15
	2.1.4.2 Blending Methods	15
	2.1.5 Application of Conductive Polymers	16
	2.2 Magnetic Iron Oxide Nanoparticles	16
	2.2.1 Classification of Magnetic Iron Oxide Nanoparticles	16
	2.2.2 Magnetic Behavior of Iron Oxides	18
	2.2.2.1 Paramagnetism	19
	2.2.2.2 Ferrimagnetism	19

	2.2.2.3 Antiferromagnetism	19
	2.2.2.4 Ferromagnetism	20
	2.2.3 Magnetism in Nanoparticles: Superparamagnetism	21
	2.2.4 Synthesis of Magnetite Nanoparticles	22
	2.3 Bacterial Cellulose	23
	2.3.1 Introduction of Cellulose	23
	2.3.2 Principal Pathways to Cellulose	24
4	2.3.2.1 Plant Cellulose	25
1.5	2.3.2.2 Bacterial Cellulose	26
. t	2.3.3 Structure and Properties Bacterial Cellulose	27
	2.3.4 Macroscopic Morphology of Bacterial Cellulose	30
III	EXPERIMENTAL	31
	3.1 Materials	31
	3.2 Equipment	31
1	3.2.1 Fourier Transformation Infrared (FTIR) Spectroscopy	31
	3.2.2 Scanning Electron Microscope (SEM)	31
	3.2.3 Thermo Gravimetric-Dynamic Temperature Analyzer	
	(TG-DTA)	32
	(TG-DTA) 3.2.4 Electrometer	32 32
	(TG-DTA)3.2.4 Electrometer3.2.5 Custom-built Electromechanical Tester	32 32 32
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 	 32 32 32 32 32
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 3.3 Procedure 	32 32 32 32
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 3.3 Procedure 3.3.1 Production of Bacterial Cellulose 	 32 32 32 32 32 33
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 3.3 Procedure 3.3.1 Production of Bacterial Cellulose 3.3.2 Incorporating of Magnetite Particles (Fe₃O₄) into 	 32 32 32 32 32 33 34
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 3.3 Procedure 3.3.1 Production of Bacterial Cellulose 3.3.2 Incorporating of Magnetite Particles (Fe₃O₄) into Bacterial Cellulose by Co-precipitation Method 	 32 32 32 32 32 32 33 34
	 (TG-DTA) 3.2.4 Electrometer 3.2.5 Custom-built Electromechanical Tester 3.2.6 Vibrating Sample Magnetometer (VSM) 3.3 Procedure 3.3.1 Production of Bacterial Cellulose 3.3.2 Incorporating of Magnetite Particles (Fe₃O₄) into Bacterial Cellulose by Co-precipitation Method 3.3.3 Synthesis of Polyaniline into Bacterial Cellulose by 	32 32 32 32 32 33 34 35

CHAPTER		PAGE
IV	RESULTS AND DISCUSSION	
	4.1 Cultivation of Bacterial Cellulose	36
	4.2 Morphology Analysis	37
	4.3 Chemical Structure Analysis	41
	4.4 Thermal Stability Study	44
	4.5 Electrical Properties study	48
	4.5.1 Effect of Aniline Monomer	48
	4.5.2 Effect of Impregnation Time	52
	4.5.3 Effect of Relative Humidity	53
	4.5.4 Effect of Initial Concentration of Iron Precursors	53
	4.6 Magnetic Properties Studies	56
	4.7 Electromechanical Actuation Study	58
V	CONCLUSIONS	61
	REFERENCES	62
	APPENDICES	67
	Appendix A Determination of Water Content in BC sheets	67
	Appendix B Determination of Ohmic Linear Regime	68
	Appendix C Determination of Geometric Correlation	
	Factor (K) of Custom Built Two-Point Probe	70
	Appendix D Conductivity Measurement of BC Sheets	72
	Appendix E Conductivity Measurement of BC Sheets Contai	ning
	PANI in Doped and Un-Dope states	73
	Appendix F Conductivity Measurement of BC Sheets Contain	ning
	PANI with Different Impregnation Time	85

....

Appendix GConductivity Measurement of BC Sheets Containing
PANI in Different Relative Humidity88Appendix HConductivity Measurement of BC Sheets Containing
 Fe_3O_4 at Different Initial Concentration of Iron
Precursors (Fe^{2+} and Fe^{3+})91Appendix IConductivity Measurement of BC Sheets Containing
 Fe_3O_4 at Different Initial Concentration of Iron
 $Precursors (Fe^{2+} and Fe^{3+})$ 91Appendix IConductivity Measurement of BC Sheets Containing
 Fe_3O_4 at Different Initial Concentration of Iron
 $Precursors (Fe^{2+} and Fe^{3+})$ and Coated with PANI95

LIST OF TABLES

TABLE

2.1	The conductivity, environmental stability and processibility		
	of a number of doped conductive polymers	5	
2.2	Application of conductive polymers	- 16	
2.3	Physical and magnetic properties of iron oxides	17	
2.4	Bacterial cellulose producers and feature of their product	27	
2.5	Distinguishing features of microbial cellulose	29	
3.1	Amount of precursors	34	
4.1	Main functional groups of all samples	43	
4.2	Char yield content in bacterial cellulose containing Fe ₃ O ₄ at		
	different in initial concentration of iron precursors	47	
4.3	Effect of the used aniline monomer on the electrical		
	conductivity	49	
4.4	Effect of impregnation time on the electrical conductivity	52	
4.5	Effect of relative humidity on the electrical conductivity	53	
4.6	The electrical conductivity of BC sheets containing Fe ₃ O ₄		
	particles with and without the incorporating of PANI	54	
4.7	Magnetic properties of the samples in all conditions	56	
Al	Raw data of BC weight and water content in BC sheets	67	
Bl	Raw data of determination of linear regime from silicon		
	wafer by using custom built two-point probe	69	
Cl	Raw data of determination of the geometric correction factor		
	(K) from silicon wafer, as a standard material	71	
DI	Raw data of conductivity measurement of BC	72	
El	Raw data of conductivity measurement of BC sheets		
	containing PANI with 15% wt aniline monomer in doped		
	state	73	

PAGE

.

TABLE

E2	Raw data of conductivity measurement of BC sheets	
	containing PANI with 20% wt aniline monomer in doped	
	state	74
E3	Raw data of conductivity measurement of BC sheets	
	containing PANI with 25% wt aniline monomer in doped	
	state	75
E4	Raw data of conductivity measurement of BC sheets	
	containing PANI with 30 % wt aniline monomer in doped	
	state	76
E5	Raw data of conductivity measurement of BC sheets	
	containing PANI with 35% wt aniline monomer in doped	
	state	77
E6	Raw data of conductivity measurement of BC sheets	
	containing PANI with 40% wt aniline monomer in doped	
	state	78
E7	Raw data of conductivity measurement of BC sheets	
	containing PANI with 15% wt aniline monomer in un-doped	
	state	79
E8	Raw data of conductivity measurement of BC sheets	
	containing PANI with 20% wt aniline monomer in un-doped	
	state	80
E9	Raw data of conductivity measurement of BC sheets	
	containing PANI with 25% wt aniline monomer in un-doped	
	state	81
E10	Raw data of conductivity measurement of BC sheets	
	containing PANI with 30% wt aniline monomer in un-doped	
	state	82

TABLE

E11	Raw data of conductivity measurement of BC sheets	
	containing PANI with 35% wt aniline monomer in un-doped	
	state	83
E12	Raw data of conductivity measurement of BC sheets	
	containing PANI with 40% wt aniline monomer in un-doped	
	state	84
Fl	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at impregnation time 0.5 h	85
F2	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at impregnation time 3 h	86
F3	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at impregnation time 6 h	87
Gl	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at 11.3 %RH	88
G2	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at 43.2 %RH	89
G3	Raw data of conductivity measurement of bacterial cellulose	
	sheets containing polyaniline at 75.6 %RH	90
HI	Raw data of conductivity measurement of BC sheets	
	containing containing Fe ₃ O ₄ at 0.01 M initial concentration	91
H2	Raw data of conductivity measurement of BC sheets	
	containing containing Fe ₃ O ₄ at 0.05 M initial concentration	92
H3	Raw data of conductivity measurement of BC sheets	
	containing containing Fe3O4 at 0.10 M initial concentration	93
H4	Raw data of conductivity measurement of BC sheets	
	containing containing Fe3O4 at 0.20 M initial concentration	94
11	Raw data of conductivity measurement of BC sheets	
	containing Fe ₃ O ₄ at 0.01 M initial concentration and coated	
	with PANI	95

2

- I2 Raw data of conductivity measurement of BC sheets containing Fe₃O₄ at 0.05 M initial concentration and coated with PANI
- 13 Raw data of conductivity measurement of BC sheets containing Fe₃O₄ at 0.10 M initial concentration and coated with PANI
- I4 Raw data of conductivity measurement of BC sheets containing Fe₃O₄ at 0.20 M initial concentration and coated with PANI

PAGE

. .

97

LIST OF FIGURES

FIGURE

2.1	A Logarithmic conductivity ladders of some of these	
	polymers.	3
2.2	Example of intrinsically conductive polymers.	4
2.3	The general chemical structure of polyaniline.	6
2.4	The different oxidation states of polyaniline.	6
2.5	Chemical structure of un-doped and doped polyaniline.	13
2.6	Sketch of the geometric structure of polyemeraldine (a) before	
	protonation and (b)-(d) after 50% protonation; (b) formation	
	of bipolarons and (c) of polarons; (d) the polarons separate,	
	which results in a polaron lattice.	14
2.7	Crystal structures of (a) hematite and (b) magnetite.	18
2.8	(a) Alignment of individual atomic magnetic moments in	
	different types of materials, (b) Magnetic domains in a bulk	
	material.	19
2.9	Magnetization as a function of an applied magnetic field.	21
2.10	(a) Chemical structure of cellulose unit and (b) the hydrogen	
	bonds within and between cellulose molecules.	24
2.11	The pathways to from the biopolymer cellulose.	25
2.12	Plant cellulose structure.	26
2.13	Schematic models of bacterial cellulose microfibrils (right)	
	drawn in comparison with the `fringed micelles'; of plant	
	cellulose fibrils (left).	28
2.14	Scanning electron microscopy images of bacterial cellulose	
	membrane from static culture of A. xylinum (a) and bacterial	
	cell with attached cellulose ribbons (b).	28
2.15	Bacterial cellulose pellicle formed (A) in static culture and (B)	
	formed in agitated culture.	30

PAGE

FIGURE

•

	4.1	Cultivation of Acetobacter xylinum under statically	
		conditions in the forming of the white pellicle bacterial	
		cellulose.	36
	4.2	SEM micrographs of bacterial cellulose at different	
		magnification: (a) ×10,000 and (b) ×15,000.	37
. •	4.3	Representation of bacterial cellulose layers inside the	
		pellicle.	38
7	4.4	SEM micrographs (×15,000) of freeze-dried bacterial	
		cellulose incorporated with PANI synthesized by using	
		different amount of aniline monomer; (a) 0%wt, (b) 15%wt	
÷.		and (c) 30%wt.	39
	4.5	SEM micrographs (×15,000) of freeze-dried BC	
		incorporated with different initial concentration of iron	
n*		precursors; (a) 0.01 M, (b) 0.05 M and (c) 0.10 M. and	
		coated with PANI synthesized by using 30% wt aniline	
-	· ·	monomer.	40
	4.6	FTIR spectra of (a) bacterial cellulose, (b) polyaniline, and	
		(c) bacterial cellulose containing polyaniline and (d)	
		comparison all of samples.	42
	4.7	TG-DTA curves of (a) polyaniline, (b) bacterial cellulose,	
		and (c) bacterial cellulose containing polyaniline.	45
	4.8	TG-DTA curves of pure bacterial cellulose and the series of	
		bacterial cellulose containing polyaniline.	45
	4.9	TG-DTA curves of pure bacterial cellulose and the series of	
		bacterial cellulose containing magnetite particles (Fe ₃ O ₄).	47

FIGURE

	4.10	Electrical conductivity of BC containing PANI as a function	
		of % aniline monomer which was used to polymerize PANI;	
		(a) in both doped and un-doped state, (b) doped state, and (c)	
		un-doped state.	50
	4.11	Two possible ways for hydrogen bond formation between	
1		polyaniline and bacterial cellulose.	51
	4.12	Chemical structure of doped and un-doped state.	51
	4.13	Effect of initial used iron ions (Fe ²⁺ and Fe ³⁺) concentration	
		on the electrical conductivity; (a) in both with and without	
		polyaniline, (b) with polyaniline, and (c) without	
		polyaniline.	55
	4.14	Magnetic hysteresis loop of bacterial cellulose sheets	
		containing Fe ₃ O ₄ .	57
	4.15	Magnetic hysteresis loop of bacterial cellulose sheets	
		containing Fe ₃ O ₄ and polyaniline.	57
	4.16	Captured digital camera images of bending of bacterial	
		cellulose film containing polyaniline.	59
	4.17	The relationship between applied electric field and	
		deflection distance of BC film containing PANI.	60
	4.18	The relationship between applied electric field and	
		deflection angle of BC film containing PANI.	60
	B1	Linear regime of V_a and I of the silicon wafer, which was	
		used as a standard material, obtained by the custom built	
		two-point probe.	68