รายการอ้างอิง

- 1. Richard V. Carrano Improve Your Silver Casting. The Santa Fe Svm. On Jewellery Manufacturing Technology. 1997, pp.157-168.
- Ernest A. Smith. Silver and its Industrial Alloys, <u>Precious Metal and Application</u>, N.A.G. Press London, 1978, p. 17.
- 3. มอก. ๒๑ ๒๕๑๕ (UDC671.11), <u>สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม.</u> 2515.
- พิทักษ์ ศุภบัณฑิตย์กุล. อุตสาหกรรมอัญมณีไทยเติบโตด้วยการปรับกลยุทธ์การผลิต.
 <u>INDUSTRIAL TECHNOLOGY REVIEW</u> 57 (พฤษภาคม 2542) : 54 56.
- 5. Kubachewski O., Alcock C.B., and Spencer P.J., <u>Thermochemistry of Materials</u>: 6th ed., Pergamon Press, 1993, p. 149.
- 6. Dampas J.M. and Lockyer P.C. Oxygen Control in Liquid copper by the Oxycell. <u>Met</u> <u>Trans.</u>, Vol.3,1972, p.2597.
- Diaz C.M., Masson C.R.and Richardson F.D. Electrochemical Determination of Oxygen in Liquid Silver. <u>Trans. Instn. Min. Metall.(Sect. C. Minering Process. Extr.</u> <u>Metall.)</u> Vol.75,1966, pp. C183-185.
- Parene Boulet, Hugues Pham and Maurice Rolin. Etud Thermogravimetrique de la solubilite'de l'oxygene dans l'argent fondu, <u>Bulletin de la societe chimique De France</u>, NO. 4, 1970, pp.1306-10.
- Lawrence Addicks, Silver in Industry, <u>Interatioanal Textbook Press</u>, Scranton, PA, 1994, p. 398.
- J.C. Chatson . Oxygen in Silver. <u>Precious metal and Application</u>. N.A.G. Press London, 1978, P.305-309.
- Ernest A. Smith."Silver in Industrial Alloys", <u>Precious Metal and Application</u>, N.A.G.
 Press London, 1978, p 17.
- Podgurski H.H. and Davis F.N. The Solubility of Oxygen in Silver and The Thermodynamics of the Internal Oxidation of a Silver-Copper Alloy. <u>Trans TMS-AIME</u>. Vol. 230, 1964, p. 731.

.

- Diaz C.M. and Richardson F.D. Electrochemical Measurement of Oxygen in Molten Copper. <u>Trans Instn Min. Metall. (Sect. C. Minering Process. ExtrMetall.)</u>, Vol.76, 1967, pp. C196-C203.
- El-Naggar M.M.A. and Parlee N.A.d. The Free Energy of Solution of Oxygen in Liquid Copper by Solid Electrolyte Cell Technique. <u>Met Trans.</u>, Vol.1, 1970, p 2975.
- Parlee N.A.D. and Sacris E.M. Oxygen-Oxide Equilibria in Liquid Silver-copper Alloys. <u>Trans. TMS-AIME</u>, Vol. 239,1967, p 2005.
- Fruhan R.J. and Richardson F.D. The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin. <u>Trans TMS-AIME</u>, Vol. 245,1969, p.1721.
- Chitta R. Nunda and Gordon H. Geiger. The Kinetics of Deoxidation of Copper and Copper Alloys by Carbon Monoxide. <u>Met Trans.</u>, Vol. 2, 1971, p 1101.
- Karl E. Oberg, Lawrence M. Friedman, William M. Boorstein, and Robert A. Rapp. Electrochemical Deoxidation of Induction-stirred Copper Melts. <u>Met Trans.</u>, Vol. 4, 1973, p 75.
- Lupis H.P. and Elliott J.F. Oxygen-Alloying Element Interactions in Liquid Silver. Trans. TMS-AIME, Vol. 242, 1968, p 929.
- El-Naggar M.M.A. and Parlee N.A.D. The Free Energy of Solution of Oxygen in Liquid Copper by Solid Electrolyte Cell Technique. <u>Met Trans.</u>, Vol. 1, 1970, p 2975.
- Jacob K.T. and Jeffes J.H.E. Deoxidation of Liquid Copper: effect of Phosphorus on Oxygen Activity. <u>Trans. Instn. Min. Metall</u>. (Sect. C: Mineral Process. Etr. Metall.), Vol. 80, 1971, pp C181-C189.
- 22. Alan Hendry and Bell H.B. Thermodynamics of Liquid Copper-Silicon-Oxygen Alloys. <u>Trans. Instn. Min. Metall</u>. (Sect. C: Mineral Process. Etr. Metall.), Vol. 83, 1974, pp C10-C13.
- 23. Christopher Raub. Use of Silver in Jewelry. <u>The Proceeding of The Santa Fe Symp</u> on Jewelery Manufacturing Technology, 1989, pp. 241-256.
- 24. H. Royal. The Deposition of Novel Thin films of Binary Silver alloys and Oxides for Tarnish Resistance, <u>The Proceeding of 4th on Santa Fe Svmp of Jewelerv</u> <u>Manufacturing and Technology</u>,1990, p. 37.

- Lawrence Addicks, Silver in Industry, <u>Interatioanal Textbook Press</u>, Scranton, PA, 1994, p.399.
- 26. T.K. Vaiyanathan and A. Prasad. <u>Precious Metal.</u>R.O. Mc Gachie and A.G. Bradley ed., Pergamon Press, 1981, pp. 293-302.
- 27. Metal Europ, Resistance to Tarnishing of the Silver-Germanium and silver- copper-Germanium alloys, <u>The Proceeding of The Santa Fe Symp of Jewelery Manufacturing</u> <u>and Technology</u>, 1990, pp. 63-67.
- 28. Raukstraum G. and Agarwal D.P. Surface Finshing on color Measurements, <u>The</u> <u>Proceeding of The Santa Fe Symp of Jewelery Manufacturing and Technology</u>.1990, pp. 147-163.
- 29. Raukstraum G. and Agarwal D.P. Color Technology for Jewelry Alloy Application, <u>The Proceeding of The Santa Fe Symposium of Jewelery Manufacturing and</u> <u>Technology</u>.1988, pp. 229-244.

ภาคผนวก

ภาคผนวก ก หลักการวัดปริมาณออกซิเจนในน้ำโลหะโดยวิธีการทางไฟฟ้าเคมี

ความสนใจในครั้งแรกของการนำมาสู่การพัฒนาเป็นเซลล์ไฟฟ้าเคมีแบบใช้อิเล็กโครไลท์ เป็นแท่งเซรามิกนั้น เกิดจากการพบว่าการนำพาอิออนลบของออกซิเจนด้วยของแข็งในรูปของเซล ง่าย ๆ ที่สามารถเกิดปฏิกิริยาขึ้นได้ระหว่างขั้ว 2 ขั้ว โดยเริ่มจากเซลล์ดังต่อไปนี้

<NiO> + <Fe> = <FeO> + <Ni>

หรือ

 $Pt < Ni, NiO > / CaO - ZrO_2 / < Fe, FeO > Pt$

จากนั้น ได้ทดลองใช้เซลล์อื่น ๆ อีกมากมายในการวัดออกซิเจนในน้ำโลหะ การค้นพบหลักการนี้ มีสิ่งสำคัญที่สุดคือ ธรรมชาติของการนำไฟฟ้าของของแข็งจะสัมพันธ์กันกับ ความดันย่อยของ ออกซิเจนในบรรยากาศ และอุณหภูมิที่เกี่ยวข้องกับของแข็งในขณะนั้น โดยที่อุณหภูมิจะเกี่ยวพัน กับการรับจ่ายอิเล็กตรอนของระบบจนกลายเป็น Nemst 's Equation ดังนี้

$$\mathbf{E}_{aDD} = \mathbf{RT} / 4\mathbf{F} \ln(\mathbf{P} \mathbf{o}_2 / \mathbf{P} \mathbf{o}_2 (\mathbf{t}))$$

ผลการศึกษาด้านเซรามิกและด้านไฟฟ้าเกี่ยวกับการย้ายอะตอมของโลหะออกไซด์ที่อุณหภูมิสูงอยู่ เสมอ จึงได้นำออกไซด์ของแข็งมาใช้เป็นตัวกลางในการย้ายอิเล็กตรอนจาขั้วไฟฟ้าสองขั้วที่มีความ ต่างศักดิ์ไฟฟ้าที่ต่างกัน กลไกที่สำคัญคือ การเคลื่อนที่ของหลุม (Holes) และ ช่องว่าง (Valency) จนค้นพบว่า ZrO₂ Based Solid Oxide เป็นของแข็งที่นำไฟฟ้าใด้น้อยที่สุด ค่าการเบี่ยงเบนของข้อ มูลจึงน้อยที่สุด ไม่หวั่นไหวง่ายเหมือนกับ ThO₂ Based Solid Oxide จึงเหมาะกับที่จะใช้กรณีที่มี ปริมาณออกซิเจนสูง และ ThO₂ ก็จะเหมาะสมกับระบบที่มีมีออกซิเจนน้อย ในกรณีที่ทั้งสองด้าน ของเซลล์มีความแตกต่างกันมากก็ควรใช้แบบผสม การเลือกใช้นอกจากขึ้นกับปริมาณออกซิเจนที่ ต้องการวัดค่า แต่จะต้องพิจารณาไม่ให้เกิดวงจรกระแสลัดวงจร สามารถตรวจสอบกลับในหาค่า ออกซิเจนในเซลล์อ้างอิง (Ref Electrode)ได้อย่างถูกต้อง

Solid Oxide Electrolyte cell

1. ขั้วรับอิเล็กตรอน(Cathode) เกิดสมการ M + O2- = MO + 2 e

 ขั้วสร้างอิเลกตรอน หรือจ่ายอิออน(อาโนค) เกิดสมการ ½ O₂ + 2e = O²
 ค่าศักดิ์ไฟฟ้า หรือ ความสามารถในการย้ายอิเล็กตรอนของเซลล์โดยผ่านตัวนำที่มีความต้านทาน ไฟฟ้าสูงมากจะมีค่าเท่ากับค่า Gibb Free Energy ของระบบรวมสมการ

 $\frac{1}{2}O2 + < M > = < MO >$

ดังนั้น

G = zFE เมื่อ z เป็น Electron Number

ระบบใดๆ ทิ่มีอุณหภูมิสูง จะใช้เซลล์ที่ด้านทานต่อไฟฟ้าสูงมาก จะไม่มีการย้ายอิเล็กตรอน วงจร จะปิด ปฏิกิริยาในเซลล์เกิดได้ช้ามาก จนกลายเป็นสมการ

E = (RT / zF)

การพัฒนาสมการของ Nemst โดยจากรายงานของ Ramana Rayanan T.A. และ Rapp R.A.⁴⁶ เป็น การพยายามอธิบายการย้ายอิเล็กตรอนผ่านโลหะออกไซด์ดังนี้

- 1. ເซດຄ໌
 - M(Liq) + O $ZrO_2 3CaO$ Pt + Air(Cathode: ขั้วลบ)(Anode: ขั้วบาก)
- 2. สมคุลออกซิเจนในระบบ ณ คำแหน่งใค ๆ ในอิเล็กโตรไลท์จะเกิดสมคุลของออกซิเจนดังนี้ $\frac{1}{2}O_2 + 2c' = O^{2}$
- 3. ในขณะเดียวกันต้องเกิดสมดุลทางอิออนิกด้วย ดังนี้

$$1/2 \mu(O_2) + 2\eta_{(e')} = \eta_{O2}$$

 $\mu(O_2)$ = Chemical Potential of Oxygen

 η i = Electrochemical Potential of i

 $\eta_i = \mu_i + zi F \emptyset$

- zi = Valency of i
- \emptyset = Local Electrical Potential

4. กระแสที่เกิดจากการ ใหลของอิออนของความดันออกซิเจนในอิเล็กโตร ไลท์จะเป็น

Ition = $\sigma_{ion} A / zF (\partial \eta_{02} / \partial x)$

5. รวมสมการในข้อ 3 และข้อ 4 ได้ว่า

 $\frac{1}{2} d\mu(O_2) + 2d\eta_{(e')} = [2Iion E'Oion^*A] dx$

- 6. อินติเกรทข้อ 5 ที่ x = 0 ถึง L $\frac{1}{2} [d\mu(O_2)] + 2[d\eta_{(e)}] = 2 \text{lion}(t) \Omega \text{ionF}$ เมื่อ $\Omega \text{ion} = 1/A \int \{1/\sigma \text{ion}\} dx$
- 7. รวมสมการในข้อ 3 กับข้อ 5 เมื่อ $\eta_{(e^{\cdot})} = \eta_{(e^{\cdot})}$ (ภายในและภายนอกเท่ากัน) จะได้ว่า $\emptyset^{*} - \emptyset^{*} = 1/4F[\mu^{*}(O_{2}) - \mu^{*}(O_{2})(t)] - Iion(t) \Omegaion = E_{app}$
- 8. เมื่อ d μ (O₂) = RT dlnPo2 = [μ (O₂) μ (O₂)(t)] ได้ว่า RT/4F ln(Po₂ / Po₂(t)) - lion(t) Ω ion = E_{app}
- แทนค่า I ion ด้วย Iion เมื่อ Iion เป็นบวกออกซิเจนจะถูกปั้มออกจากโลหะหลอมเหลว จะต้องไม่เกิด Polarizing อื่นใดนอกจาก Concentration Polarizing ใน Metal Electrode และ Iion(t) Ωion <<< E_{pp} ตลอดเวลาจะมีการปั้มออกซิเจนอย่างคงที่ ณ ที่ Seady State ค่า I ion = 0 ดังนั้นจะได้ว่า

$\mathbf{E}_{app} = \mathbf{RT} / 4\mathbf{F} \ln(\mathbf{P} \mathbf{o}_2 / \mathbf{P} \mathbf{o}_2(t))$

ซึ่งปกคิจะต้องให้สภาวะค่าออกซิเงนเกิคสมคุลแบบ Steady State เท่านั้น หรือ เมื่อค่า eV คงที่ ก่อนจึงจะจุ่มวัดค่า cmf

ภาคผนวก ข ทฤษฎีการวัดค่าสีของโลหะประกอบเครื่องประดับ

ในโลหะเครื่องประดับที่ทำด้วยโลหะทองผสมที่ผ่านมาโดยใช้คอมพิวเตอร์ เป็นการลดข้อ สงสัย หรือความคลุมเครือ เนื่องจากไม่มีมาตรฐานของสี สำหรับโลหะผสมทั่วไป ลักษณะสีที่ ปรากฏบนผิววัสดุโด ๆ จะปรากฏออกมานั้นขึ้นอยู่กับองค์ประกอบหลัก 3 องค์ประกอบคือ

- 1. ที่มาของต้นแสงส่องสว่าง
- ตัววัตถุ ซึ่งไม่เกี่ยวกับรูปแบบของสี แต่เกี่ยวกับผิวที่สีนั้นปรากฏอยู่ การใช้กระจก สะท้อนแสงจะช่วยชดเชยการเปลี่ยนแปลงของสีที่ผิววัตถุเปลี่ยนแปลงไปจากผิวหยาบ เป็นผิวละเอียด
- 3. ผู้สังเกต และการรับรู้

<u>มาตรฐานการอธิบายระบบสี</u> มี 2 ระบบที่ใช้อยู่ในปัจจุบัน

- 1. Munshell system ใช้พิกัดแบบ 3 ค่าคือ
 - Hue คือ ชื่อสือธิบายเป็นคำๆ เช่น สีแคง สีดำ หมายถึง ...
 - Chroma บอกความเข้มของสีโดยวัดแยกออกจากแกน ขาว เทา คำ

 Value อริบายดำแหน่งของ Scale ของ ขาว เทา ดำ
 <u>หมายเหต</u> ระบบนี้ ผู้สังเกตค้องพิจารณาสีของวัตถุเทียบกับแฟ้มสีมาตรฐานที่ไกล้เคียง กันมากที่สุดแล้วเรียกสีของวัตถุนั้นตามสีที่ไกล้เคียงที่สุดนั้น

2. CIELAB System (The Committee of International on Illumination)

ระบบนี้จะใช้หลักการอธิบายเชิงคณิตศาสตร์ เป็นระบบที่นิยมมากที่สุด ในการใช้สีตรงกัน ข้ามอธิบายซึ่งเรียกว่าองค์ปรกอบของสี ได้แก่ สีเขียว – แดง สีเหลือง – น้ำเงิน และสีขาว – ดำ โดยใช้หลักการมองเห็นของตามนุษย์เป็นพื้นฐาน เพราะตาจะมีเซลล์แบบ Cone เพียงอย่างเดียว จึง เห็นความแตกต่างระหว่างสีแดง กับสีเขียวได้ แต่ไม่สามารถมองเห็นได้พร้อมกัน ความหมายของ ค่าสีในระบบนี้คือ - L = Lightness, L = 0 (Black), L = 100 (White)

a = ค่าสีแดง – เขียว ถ้าสีแดงค่า a จะเป็นค่าบวกตั้งแต่ 0 – 100
 สีเขียวค่า a จะเป็นค่าลบตั้งแต่ – 100 ถึง 0

74

b = ค่าสีเหลือง – น้ำเงิน ถ้าสีเหลืองค่าb จะเป็นค่าบวกตั้งแต่ 0 - 100
 สีน้ำเงินค่าb จะเป็นค่าลบตั้งแต่ – 100 ถึง 0
 ตัวอย่างการวัดความแตกต่างของค่าสีที่วัดได้จากวัตถุ 2 ชิ้นดังนี้

 $DE^{2} = (L2 - L1)^{2} + (a2 - a1)^{2} + (b2 - b1)^{2}$

เมื่อ L1, a1, b1 คือค่าที่วัดได้จาวัตถุชิ้นแรก และ L2, a2, b2 คือค่าที่วัดได้จากวัตถุชิ้นที่ สอง กรณีนี้สามารถนำมาประยุกศ์ใช้กับการวัดความแตกต่างของสีจากวัตถุเดียวกันแต่มีสี เปลี่ยนแปลงไปเนื่องจากการหมองของโลหะทองผสม หรือจากสาเหตุอื่น คุณภาพสีที่วัดได้ถูกต้องหรือไม่ขึ้นกับแสงที่กระท้อนจากวัตถุ และการใช้กระจกสะท้อน แสงช่วยเก็บแสงสะท้อนจากวัตถุในกรณีที่ผิวละเอียดได้กลับมาหมด ถ้าเป็นผิวหยาบจะ สามารถวัดโดยไม่ใช้กระจกช่วยได้ ถ้า DE = 1 ไม่สามารถเห็นการเปลี่ยนแปลงหรือความ แตกต่างได้ แต่ถ้า DE = 4 จะสามารถเริ่มสังเกตด้วยสายตาได้

ภาคผนวก ค

Quality Assurance Certificate of Calcium Silicon

P.S.STEEL CO.,LTD. 26/5 Mu 5, Putthabucha Road,Chomthong

Bangkok 10150

Fet 2100207,2109219-20 Fex 2159020

·* *

Date 09.06.97

. .

QUALITY ASSURANCE CERTIFICATE

PRODUCT	:	CALCIUM SILICON
LOT NO.	:	AL 700725/06.06.40

. . .

1

ANALYSIS (AS RECEIVED)

CA 31.30 % SI 61.20 % C 0.34 % AL 0.96 % SIZE 20-50 MM

ภาคมนวก ง

ศาราง ง.1 การวิเคราะหัปรีมาณธาตุผสมในเฟลด้วยกล้องจุลทรรศน์อิเล็กตรอน (SEM) ในชีนงานหล่อ

ด้วยยาง	% Si ในงานหล่ย	% Ca ในงานหล่อ	% SI (EDX)	% Ca (EDX)	ธาตุ	จุดที่ 1	จุภที่ 2	วุลที่ 3	วุคที่ 4	วุลที่ 5	9 m 8	รุคที่7	รวท	เรลย
0.10%					Si	0.207	0.167	0.047	0.178				0.599	0.14975
CaSi2	0.009	0.014	0.085	0.102	Ca	0.087	0.088	0.086	0.078				0.339	0.08475
เวลาหลอม					Cu	21.02	24.788	92.856	79.634				218.298	54.5745
0 นาท์					Ag	78.589	74.911	6.996	20. 18 8				180.684	45.171
0.20%					SI	0.495	0.738	0.869	1.835				3.935	0.98375
CaSi2	0.022	0.026	0.075	0.034	Ca	0.333	0.189	0.228	0.096				0.846	0.2115
เวลาหลอม				<	Cu	19.754	65.843	30.582	77.821				194	48.5
0 นาท					Ag	79.337	33.085	68.314	20.821				201.537	50.38425
0.20%					Si	0.077	0.078	0.078					0.233	0.07786667
CaSi2	0.008	0.03	0.123	0.113	Ca	0.112	0.112	0.274					0.498	0.166
เวลาหลอม					Cu	2.049	3.768	3.08					9.797	3.26568687
8 นาท์					Ag	96.788	95.975	96.516					289.279	98.4253333
0.30%					SI	2.372	2.788	0.66					5.82	1.94
CaSi2	0.018	0.033	0.075	0.107	Са	0.088	0.091	0.073					0.252	0.084
เวลาหลอม					Cu	71.891	73.223	67.654					212.768	70.9226667
0 นาท์					Ag	25.621	23.989	31.59					81.2	27.0688687
0.30%					SI	0.787	2.79	0.545					4.122	1.374
CaSI2	0.042	0.0089	0.057	0.309	Ca	0.111	0.095	0.104					0.31	0.10333333
เวลาหลอม					Cu	25.185	69.616	24.997					119.798	39.9326687
8 นาท์					Ag	73.796	27.483	74.324					175,583	58.5276687
0.30%		······			ଞ	0.043	0.079	0.12	0.034	0.416			0.592	0.1384
CaSI2			0.078	0.273	Ca	0.066	0.177	0.12	0.052	0.074			0.489	0.0978
เวลาหลอม					Cu	8.017	4.018	50.611	55.394	46.638			184.678	32.9358
6 นาท					Ag	91.597	95.554	49,14	44.258	52.678			333.227	68.6454
0.30%					Si	3.15	3.4	0.078					6.628	2.20933333
CaSi2	0.042	0.0069	0.24	0	Ca			0.274					0.274	0.09133333
เวลาหลอม					Cu	27.52	43.23	3.08					73.83	24.61
8 น าท					Ag	68.72	52.98	96.516					216.196	72.0653333

.

ภาคมนวก 4

ตาราง ง.2 การวเคราะหปรมาณธาตุผสม ในเพลดวยกลองๆลทรรศนอเลกตรอน (SEM) ในชนงานหลอ

ควอย่าง	% SI INAMINA	a% Ca ในงานหลือ	% SI (EDX)	% Ca (EDX)	ธาตุ	1 1 MAL	9442	จุดท 3	9an 4	9nn 5	9446	1 90117	100	เลลย
0.30%	L				SI	2.37.1	2.788	0.66				1	5.82	1.94
CaSi2	0.018	0.033	0.075	0.107	Ca	0.088	0.091	0.073					0.252	0.084
เวลาหลอม					Cu	71.89 i	73.223	67.654	•				212.768	70.9226667
0 นาท					Ag	25.621	23.989	31.59					81.2	27.06666887
0.30%					Si	0.391	0.437	0.334				1	1.162	0.38733333
CaSi2	0.019	0.017	0.068	0.2	Ca	0.054	0.053	0.056					0.163	0.05433333
เวลาหลอม					Cu	67.974	73.786	55.771					197.531	65.8436687
3 นาท่					Ag	31.454	25.625	43.597					100.676	35.0586667
0.30%					SI	0.787	2.79	0.545				1	4.122	1.374
CaSi2	0.042	0.0069	0.057	0.309	Ca	0.111	0.095	0.104					0.31	0.10333333
เวลาหลอม					Cu	25.185	69.616	24.997					119.798	39.9326687
6 unri					Ag	73.796	27.463	74.324					175.583	58.5278687
0.30%					Si	0.043	0.079	0.12	0.034	0.416		1	0.692	0.1384
CaSi2			0.078	0.273	Ca	0.066	0.177	0.12	0.052	0.074			0.489	0.0978
เวลาหลอม					Cu	8.017	4.018	50.611	55.394	46.638			164.678	32.9356
6 นาท					Ag	91.597	95.554	49.14	44.258	52.678			333.227	66.6454
0.30%					Si	1.845	2.152	3.164	2.237			1	9.398	2.3495
CaSI2	0.039	0.0064	0.064	0.092	Ca	0.079	0.076	0.076	0.084				0.315	0.07875
เวลาหลอม					Cu	44.442	62.166	82.159	64.917				253.684	63.421
9 นาท					Ag	53.589	35.576	14.602	32.773				138.54	34,135
0.30%					SI	2.838	1.403	3,556	3.208	and the second		1	11.005	2.75125
CaSi2	0.03	0.0073	0.189	0.094	Ca	0.082	0.07	0.085	0.083				0.32	0.08
เวลาหลอม					Cu	60.224	63.644	72.873	71.517				268.258	67.0645
14 นาท					Ag	36.775	34.935	23.602	25.271				120.583	30.14575
0.30%					Si	0.426	0.419	0.384					1.229	0.40968667
CaSi2			0.079	0.113	Ca	0.113	0.112	0.111					0.336	0.112
เวลาหลอม					Cu	3.915	4.707	3.478					12.1	4.03333333
19 นาท					Ag	95.495	94,591	95.968					286.054	95.3513333

ภาคผนวก ง

ตาราง ง.3 การวิเคราะห์ปริมาณธาตุผสมในเฟสด้วยกล้องจุลทรรศน์อิเล็กตรอน (SEM) ในชินงานหล่อ

ด้วยย่าง	% Si ในงานหล่ะ	% Ca ในงานหล่อ	% Si (EDX)	% Ca (EDX)	ธาตุ	าคที่ 1	ากที่ 2	าุคที่ 3	วุคที่ 4	จุดที่ 5	วุคที่ 6	ๆดที่ 7	รวม	เจลีย
0.50%	I	A	L	4	SI	2.557	3.781		······				6.318	3.159
CaSi2	0.028	0.064	0.202	0.104	Ca	0.089	0.09						0.179	0.0895
เวลาหลอม					Cu	85.559	90.239						175.798	87.899
0 นาท					Ag	11.73	5.876						17.608	8.803
0.50%					SI	3.286	3.289	2,803	2.678				12.058	3.014
CaSi2	0.019	0.046	0.065	0.257	Ca	0.09	0.09	0.099	0.104				0.383	0.09575
เวลาหลอม					Cu	86.906	87.554	79.082	77.616				331.158	82.7895
3 นาท์					Ag	9.559	9.059	17.83	19.533				55.981	13.99525
0.50%					SI	0.133	1.346	1.558					3.035	1.01186667
CaSi2	0.012	0.032	0.068	0.103	Ca	0.1	0.1	0.09					0.29	0.09868667
เวลาหลอม					Си	4.181	23.64	38.13					85.951	21.9838667
8 นาท่					Ag	95.573	74.767	60.169					230.509	76.8363333
0.50%					Si	0.038	0.069	0.053	1.28	3.093	1.618	3.517	9.666	1.33085714
CaSi2	0.008	0.027	0.068	0.105	Ca	0.534	0.105	0.29	0.145	0.085	0.167	0.095	1.421	0.203
เวลาห _{ลอ} ม					Cu	6.659	4,453	3.991	53.709	77.548	39.671	73.603	259.632	37.0902857
9 นาท์					Ag	92.795	- 95.208	95.585	44.852	19.233	58.268	22.72	428.659	61.237
0.50%					SI	0.145	0.081	0.204	0.171	0.066			0.647	0.1294
CaSi2	0.0068	0.0312	0.068	0.102	Ca	0.104	0.101	0.101	0.1	0.101			0.507	0.1014
เวลาหลอม					Cu	7.015	28.461	29.18	8.096	5.907			78.659	15.7318
14 นาท					Ag	92.619	71.249	70.445	91.5	93.944	t		419.757	83.9514
0.50%					SI	0.408							0.408	0.408
CaSi2			0.068	0.105	Ca	0.071							0.071	0.071
เวลาหลอม					Cu	7.145							7.145	7,145
19 นาท					Ag	92.201							92.201	92.201

ภาคมนวก ง

ตาราง ง.4 การวิเคราะห์ปริมาณธาตุผสมในเฟลด้วยกล้องจุลทรรดน์อิเล็กตรอน (SEM) ในชินงานหล่อ

ตัวอย่าง	% Si ในงานหล่ะ	% Ca ในงานหล่อ	% SI (EDX)	% Ca (EDX)	ธาตุ	วุคที่ 1	ๆคที่ 2	ๆคที่ 3	วุคที่ 4	าุคที่ 5	าุคที่ 6	907 7	รวม	เรลีย
0.75%					Si	5.769	3.433	4.174		4	-l		13.376	4.45868687
CaSi2	0.004	0.027			Ca	0.112	0.115	0.117					0.344	0.11486687
เวลาหลอม					Cu	82.528	58.522	55.602					194.652	64.884
8 นาท					Ag	11.248	39.666	40.019					90.931	30.3103333
1.00%					SI	5.331	3.921	4.348			·····		13.8	4.533333333
CaSi2	0.027	0.099			Ca	1.087	0.122	0.113					1.302	0.434
เวลาหลอม					Cu	83.722	81.289	80.763					225.774	75.258
0 นาท					Ag	9.712	34.573	14.547					58.832	19.6106657
1.00%					SI	5.477	4.228	3.433					13.138	4.37866867
CaSi2	0.008	0.147			Ca	0.61	0.118	1.22					1.948	0.64933333
แรลหกละม					Cu	63.764	56.902	39.473					160.139	53.3796667
8 นาท่					Ag	29.954	38.725	55.638					124.317	41.439
1.00%					Si		9.018		8.83				17.848	8.924
CaSi2			0.53	0.357	Ca		0.102		0.097				0.199	0.0995
เวลาหลอม					Cu		70.919		77.788				148.707	74.3535
14 นาท					Ag		19.751		13.195				32.946	16.473
3.00%					3	15.688	12.844						28.532	14.266
CaSI2			1.466	0.983	Ca	9.374	5.394						14.768	7.384
เวลาหลอม					Cu	69.543	73.803						143.348	71.673
32 นาท					Ag	5.395	7.915						13.31	6.655

ภาคผนวก จ

% CaSi2(เติม)	% Si ในงานหล่อ	% Ca ในงานหล่อ	% Si (EDX)	% Ca (EDX)	Hv
0	0.0023	-	-	- 1	67.3
0.1	0.009	0.014	0.065	0.102	69.66
0.2	0.022	0.026	0.075	0.034	66.83
0.3	0.028	0.062	0.075	0.107	69.09
0.5	0.028	0.064	0.202	0.104	62.22
0.75	0.015	0.117	-	-	62.3
1	0.027	0.099	-	-	65.2

ตาราง จ.1 ผลการวัดค่าความแข็งและข้อมูลปริมาณซิลิคอน และแคลเซียมในโลหะจากการวิเคราะห์ด้วย AAS , EDX (เวลา 0 นาที)

ตาราง จ.2 ผลการวัดค่าความแข็งและข้อมูลปริมาณซิลิคอน และแคลเซียมในโลหะจากการวิเคราะห์ด้วย AAS , EDX (เวลา 6 นาที)

% CaSi2(เติม)	% Si ในงานหล่อ	% Ca ในงานหล่อ	% Si (EDX)	% Ca (EDX)	Hv
0	_	-	0.199	0.092	-
0.1	0.008	0.033	-	0.184	71.99
0.2	0.008	0.03	0.123	0.113 -	71.3
0.3	0.042	0.0069	0.057	0.309	68.63
0.5	0.012	0.032	0.068	0.103	58.63
0.75	0.004	0.027	-	-	66.3
1	0.008	0.147	-	-	76.9

ตาราง จ.3	ผลการวัดค่าควา	มแข็งและข้อม	ลปริมาณซิลิคอน	และแคลเขียมในโลหะจา	เกการวิเคราะห์ด้วย AAS	EDX (0.30 % CaSi2)
						, ,

เวลา	% Si ในงานหล่อ	% Ca ในงานหล่อ	% Si (EDX)	% Ca (EDX)	Ηv
0	0.028	0.062	0.075	0.107	77.13
3	0.019	0.017	0.068	0.2	69.06
6	0.042	0.0069	0.057	0.309	68.63
9	0.039	0.0064	0.064	0.092	66.97
14	0.03	0.0073	0.189	0.094	63.76
19	-	-	0.079	0.113	-

	~ 1	G 2	19 99			
BUGU CON	FIGD1908818001	11101110~000	101 9100 000000000000000000000000000000	111621166168819141169226	20000000000000000000000000000000000000	EDY / 0 50 0/ Cacio)
PI 14 19 1.4				6 6661 - 66F 1616 11 LIGH 6 16 661 M - 1	IIIIII IA ANTIA IN MPIALI AVAG.	EDA 1 0.30 70 GAGIZ /

เวลา	% Si ในงานหล่อ	% Ca ในงานหล่อ	% Si (EDX)	% Ca (EDX)	Ηv
0	0.028	0.064	0.202	0.104	62.2
3	0.019	0.046	0.065	0.257	63.1
6	0.012	0.032	0.068	0.103	58.63
9	0.008	0.027	0.068	0.105	59.33
14	0.0068	0.0312	0.068	0.102	64.7
19	-	-	0.068	0.105	-

CaSi2	LI	al	b1	Ll	al	b1	dL	da	db	DE
0	55.086	4.854	21.832	71.953333	-1.34	5.04	16.867333	6.194	16.792	24.593573
0.1	65.592	1.398	22.08	82.88	-1.3175	6.4075	17.288	2.7155	15.6725	23.492044
0.2	52.44	4.26	20.1	71	-1.3	5.2	18.56	5.56	14.9	24.44171
0.3	62.92	1.14	19.51	71.71	-1.325	5.1675	8.79	2.465	14.3425	17.001401
0.5	65.2	2.62	19.62	71.71	-1.325	5.1675	6.51	3.945	14.4525	16.334561
0.75	56.543333	0.1033333	16.38	69.37	-0.9967	4.49	12.826667	1.1000333	11.89	17.524427
1	65.64	0.95	16.254286	78.8525	-1.1075	5.185	13.2125	2.0575	11.069286	17.358933

ตาราง ฉ. 1 ค่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเดิมแกลเซียมซิลิไซค์ปริมาณต่าง ๆ ที่เวลา 0 นาที หลังการกวน (เวลาทคสอบการหมอง 0.5 ชั่วโมง)

ตาราง ฉ. 2. ก่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแกลเซียมซิลิไซค์ปริมาณต่าง ๆ

CaSi2	L1	a1	bl	LI	al	bl	dL	da	db	DE
0	48.3	6.3	16.73	76.94	-1.29	1.29	28.64	7.59	15.44	33.410347
0.1	56.76	6.68	23.75	83.53	-1.25	6.07	26.77	7.93	17.68	33.046939
0.2	45.98	7.55	20.23	72.7	-1.55	5.48	26.72	9.1	14.75	31.848562
0.3	56.505714	5.4714286	20.951429	74.6	-1.05	4.79	18.094286	6.5214286	16.161429	25.122181
0.5	57.77	4.49	22.41	76.09	-1	4.02	18.32	5.49	18.39	26.532143
0.75	47.14	5.18	22	67.63	-1.042	5.656	20.49	6.222	16.344	26.938443
1	55.61	3.66	20.97	76.1	-0.88	4.84	20.49	4.54	16.13	26.46939

ที่เวลา 0 นาที หลังการกวน (เวลาทคสอบการหมอง 1.0 ชั่วโมง)

CaSi2	L1	al	bl	LI	al	bl	dL	da	db	DE
0	42.02	11.26	9.44	73.22	-1.2415	5.2566	31.2	12.5015	4.1834	33.870759
0.1	39.98	2.81	-4.17	73.22	-1.2415	5.2566	33.24	4.0515	9.4266	34.787541
0.2	40.48	5.54	11.61	73.22	-1.2415	5.2566	32.74	6.7815	6.3534	34.033249
0.3	48.69	11.25	17.93	73.22	-1.2415	5.2566	24.53	12.4915	12.6734	30.304679
0.5	45.41	9.31	15.18	73.22	-1.2415	5.2566	27.81	10.5515	9.9234	31.356086
0.75	40.62	7.33	12.9	67.63	-1.042	5.656	27.01	8.372	7.244	29.190855
1	40.22	10.19	14.08	67.63	-1.042	5.656	27.41	11.232	8.424	30.796586

ตาราง ฉ. 3 ค่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแกลเซียมซิลิไซค์ปริมาณต่าง ๆ ที่เวลา 0 นาที หลังการกวน (เวลาทคสอบการหมอง 2.0 ชั่วโมง)

ตาราง ฉ. 4 ค่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซด์

เวลา	L1	al	b1	L1	a1	bl	dL	da	db	DE
0	62.92	1.14	19.51	71.71	-1.325	5.1675	8.79	2.465	14.3425	17.001401
3	67.623333	-0.6183333	13.545	80.33	-1.39	5.6066	12.706667	0.7716667	7.9384	15.002435
6	66.48	-1.33	4.75	77.33	-1.27	5.28	10.85	0.06	0.53	10.863103
9	69.51	-0.87	11.99	80.33	-1.39	5.6066	10.82	0.52	6.3834	12.573408
14	70.77	-0.6	11.27	79.74	-1.1025	4.97	8.97	0.5025	6.3	10.972849

ปริมาณ 0.3 wt% เวลาต่าง ๆหลังการกวน (เวลาทคสอบการหมอง 0.5 ชั่วโมง)

ตาราง ฉ. 5 ค่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซค์

ปริมาณ 0.3 wt% เวลาต่าง ๆหลังการกวน (เวลาทคสอบการหมอง 1.0 ชั่วโมง)

เวลา	LI	a1	b1	L1	al	b1	dL	da	db	DE
0	56.505714	5.4714286	20.951429	74.6	-1.05	4.79	18.094286	6.5214286	16.161429	25.122181
3	61.49	1.6	17.22	78.93	-1.36	5.34	17.44	2.96	11.88	21.30844
6	67.91	-0.59	12.18	77.337	-1.27	5.28	9.427	0.68	6.9	11.702168
9	53.68	2.58	20.56	67.63	-1.042	5.656	13.95	-3.622	-14.904	20.732839
14	62.647143	2.58	25.711429	71.71	-1.325	5.1675	9.0628571	-3.905	-20.543929	22.791169

ศาราง ฉ. 6 ค่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทคสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซค์

ปริมาณ 0.3 wt% เวลาต่าง ๆหลังการกวน (เวลาทคสอบการหมอง 2.0 ชั่วโมง)

เวลา	LI	al	b1	L1	al	bl	dL	da	db	DE
0	48.69	11.25	17.93	73.22	-1.2415	5.2566	24.53	12.4915	12.6734	30.304679
3	46.34	9.25	12.26	71.71	-1.325	5.1675	25.37	-10.575	-7.0925	28.386107
6	47.53	5.36	17.87	70.41	-1.46	5.21	22.88	-6.82	-12.66	27.023738
9	47.57	9.12	12.79	71.71	-1.325	5.1675	24.14	-10.445	-7.6225	27.385035
14	46.18	13.61	11.81	70.41	-1.46	5.21	24.23	-15.07	-6.6	29.287502

ตาราง ฉ. 7 ก่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทดสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซด์

ເວລາ	Ll	al	b1	LI	al	bl	dL	da	db	DE
0	65.2	2.62	19.62	71.71	-1.325	5.1675	6.51	3.945	14.4525	16.334561
3	61.13	0.15	13.86	79.02	-1.39	7.63	17.89	1.54	6.23	19.006225
6	57.612	3.622	20.058	69.27	-1.61	6.16	11.658	-5.232	-13.898	18.879544
9	51.89	1.3	21.7	69.27	-1.61	6.16	17.38	-2.91	-15.54	23.495193

ปริมาณ 0.5 wt% เวลาต่าง ๆ หลังการกวน (เวลาทคสอบการหมอง ().5 ชั่วโมง)

ตาราง ฉ. 8 ค่าการเปลี่ยนแปลงของสึผิวชิ้นงานหลังการทดสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซด์

ปริมาณ 0.5 wt% เวลาค่าง ๆ หลังการกวน (เวลาทคสอบการหมอง 1.0 ชั่วโมง)

เวลา	LI	al	b1	Ll	al	b1	dL	da	db	DE
0	57.77	4.49	22.41	76.09	-1	4.02	18.32	5.49	18.39	26.532143
3	53.5	1.78	13.13	79.02	-1.39	7.63	25.52	3.17	5.5	26.297705
6	54.66	3.41	23.55	76.5	-1.15	5.7	21.84	4.56	17.85	28.572744
9	49.72	6.37	22.42	71.71	-1.325	5.1675	21.99	-7.695	-17.2525	28.990031

ตาราง ฉ. 9 ก่าการเปลี่ยนแปลงของสีผิวชิ้นงานหลังการทดสอบการหมองของเงินสเตอร์ลิงที่ผ่านการเติมแคลเซียมซิลิไซค์

ปริมาณ 0.5 wt% เวลาต่าง ๆ หลังการกวน (เวลาทคสอบการหมอง 2.0 ชั่วโมง)

เวลา	LI	al	b1	LI	al	bl	dL	da	db	DE
0	45.41	9.31	15.18	73.22	-1.2415	5.2566	27.81	10.5515	9.9234	31.356086
3	51.48	3.74	19.29	79.02	-1.39	7.63	27.54	5.13	11.66	30.343436
6	42.76	8.33	7.07	76.5	-1.15	5.7	33.74	9.48	1.37	35.073279
9	34.44	9.32	1.24	69.27	-1.61	6.16	34.83	10.93	4.92	36.834769

ภาคผนวก ช

% CaSi ₂		0 นาที			6 นาที	
	Si	Са	0	Si	Са	0
0	0.0023	-	0.02413	0.006	0.0050	
0.10	0.009	0.014	0.00128	0.008	0.0330	0.08236
0.20	0.022	0.026	0.0043	0.008	0.0300	0.00572
0.30	0.028	0.062	0.00138	0.042	0.0069	0.00114
0.50	0.028	0.064	0.00177	0.012	0.0320	0.00411
0.75	0.015	0.117	0.00134	0.004	0.0270	0.0013
1.00	0.027	0.099	0.00138	0.008	0.1470	0.00232
	L					

ตารางช.1 ผลการวิเคราะห์ปริมาณของซิลิกอน แกลเซียม และออกซิเจนในเงินสเตอร์ลิงหลังการเติมแกลเซียมซิลิไซด์

ตาราง ช.2 ผลการวิเคราะห์ปริมาณของซิลิคอน แคลเซียม และออกซิเจนในเงินสเตอร์ลิงหลังการเติมแคลเซียมซิลิไซด์

เวลา		0.3 % CaS	01 ₂	0.5 % CaSi ₂				
(นาที)	Si	Са	0	Si	Ca	0		
0	0.028	0.062	0.00138	0.0280	0.064	0.00177		
3	0.019	0.0170	0.00542	0.0190	0.046	0.001825		
6	0.042	0.0069	0.00237	0.0120	0.032	0.00349		
9	0.039	0.0064	0.00122	0.0080	0.027	0.00241		
14	0.030	0.0073	0.00189	0.0068	0.032	0.16157		

ประวัติผู้เขียน

นายพรหมมินทร์ เจริญยิ่ง เกิดวันที่ 28 สิงหาคม 2514 ภูมิลำเนาเดิม หมู่บ้าน ปงป่าหวาย อำเภอเด่นซัย จังหวัดแพร่ สำเร็จการศึกษาระดับปริญญาตรี สาขาวิศวกรรม อุตสาหการ จากมหาวิทยาลัยเชียงใหม่ ในปีการศึกษา 2536 ประสปการณ์การทำงาน เป็นวิศวกรในบริษัท ไทยฮีโน่อุตสาหกรรม จำกัด ในตำแหน่งรองผู้ช่วยผู้จัดการแผนก Modify and New Projects ประจำฝ่ายควบคุมการผลิต ระยะเวลาทำงานรวม 2 ปี เข้า ศึกษาต่อในระดับปริญญาโท สาขาวิศวกรรมโลหการ ในเทอมต้น ปีการศึกษา 2539