การแก้ปัญหาปี ค.ศ. 2000 สำหรับเครื่องมือการผลิต ในอุตสาหกรรมการผลิต ใอซี

นายสุรวุฒิ สุขเจริญสิน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา การจัดการทางวิศวกรรม ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2542

ISBN: 974-333-357-6

ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

1 2 S.A. 2545

IMPLEMENTING Y2K COMPLIANCE FOR PRODUCTION EQUIPMENT IN AN IC MANUFACTURING INDUSTRY

Mr. Surawut Sukcharoensin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Engineering Management The Regional Centre for Manufacturing Systems Engineering

Faculty of Engineering Chulalongkorn University Academic Year 1999 ISBN: 974-333-357-6

Copyright of Chulalongkorn University

Thesis Title

: Implementing Y2K Compliance for Production

Equipment in an IC Manufacturing Industry

By: Surawut Sukcharoensin

Department

Regional

Centre for Manufacturing

Systems

Engineering

Thesis Advisor: Assistant Professor Suthas Ratanakuakangwan

Thesis Co-Advisor: Assistant Professor Boonchai Sowanwanichkul

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

> Totalari Sumi Dean of Faculty of Engineering (Associate Professor Tatchai Sumitra, Dr.Ing.)

THESIS COMMITTEE

Chairman
(Associate Professor Tatchai Sumitra, Dr.Ing.)

____ Thesis Advisor

(Assistant Professor Suthas Ratanakuakangwan)

(Assistant Professor Boonchai Sowanwanichakul)

(Professor Sirichan Thongprasert, Ph.D)

สุรวุฒิ สุขเจริญสิน: การแก้ปัญหาปี ค.ศ. 2000 สำหรับเครื่องมือการผลิตในอุตสาหกรรม การผลิต ใอซี (Implementing Y2K Compliance for Production Equipment in an IC Manufacturing Industry) อ. ที่ปรึกษา: ผศ. สุทัศน์ รัตนเกื้อกังวาล, อ. ที่ปรึกษาร่วม: ผศ. บุญชัย โสวรรณวณิชกุล, 198 หน้า

วิทยานิพนธ์ฉบับนี้เป็นการวิจัย นำไปใช้ และข้อแนะนำสำหรับแผนรองรับในการแก้ ปัญหา ปี ค.ศ. 2000 ในอุตสาหกรรมการผลิตใอซี ในอุตสาหกรรมการผลิตในปัจจุบันนี้ ใช้เครื่อง อำนวย ความสะดวก ในอุตสาหกรรม และ เครื่องคอมพิวเตอร์ในการควบคุม ซึ่งมีการเก็บข้อมูล วันที่ และ คำนวณวันเวลา ด้วยปัญหาที่มีอยู่ในการเก็บ ข้อ มูลปีในเลข 2 หลัก ทำให้เครื่องคอมพิวเตอร์ หรือ แม้แต่มนุษย์เอง ตีความหมายของปีผิดลาดหลังจากปี ค.ศ. 2000 นี่ เองที่เราเรียกว่า "ปัญหาปี ค.ศ. 2000"

ผลจากปัญหานี้ อุศสาหกรรมการผลิศไอซี ซึ่งมีราคาสินค้าสูง ได้ศระหนัก และ ใช้ความ พยายามในการ แก้ปัญหาและลดผลกระทบให้มากที่สุด การเผชิญหน้า และ ป้องกันปัญหา ไม่สามารถ หลักเลี่ยงได้ ปัญหานี้เป็น ปัญหาที่ค่อนข้างง่าย เพราะเพียงเกี่ยวข้องกับสัญญาณนาฬิกา ของเครื่อง คอมพิวเตอร์เท่านั้น แต่เพราะขนาด และ ความซับซ้อนของระบบทำให้โครงการ นี้ยากในการ ทำให้ สมบูรณ์ก่อนปี ค.ศ. 2000

ในการที่จะทำให้ผลกระทบน้อยที่สุดนั้น การแก้ปัญหาบางอย่างได้เกิดขึ้นโดยอาศัย ความรู้ ทางด้านการ คำนวณวัน และความสามารถทางการบริหาร เพื่อให้บรรลุเป้าหมายก่อนปี ค.ศ. 2000 รวมไปถึงแผนรองรับเพื่อลด ผลกระทบต่อองค์กรในกรณีที่ไม่สามารถแก้ปัญหาได้หมดจริง ๆ

จากการเตรียมตัวและป้องกัน รวมกิจการร่วมมือกันในห่วงโช่การผลิต ทำให้ได้ผลลัพธ์ ความพร้อม สำหรับปี ค.ศ. 2000 100% ในเวลา 2 ปีครึ่ง จากจุดที่องค์กรไม่มีข้อมูลเกี่ยวกับสถานะ ปีค.ศ. 2000 เลย ผลจากการ ทำการวิเคราะห์เครื่องจักรเครื่องมืออย่างจริงจัง ราคาในการแก้ปัญหาในแผนก Implant นั้นลดลงอย่างมากจาก 1.2 ล้านเหรียญสหรัฐอเมริกา เป็น 8,000 เหรียญ แผนรองรับได้มีการพัฒนาขึ้นเพื่อรับมือผลกระทบที่อาจเกิดขึ้นต่อ เครื่องจักรแต่ละตัว ปัญหา ปี ค.ศ. 2000 นั้นลดลงอย่างมาก และ "พร้อมสำหรับ ปี ค.ศ. 2000" ซึ่งได้รับ ความเห็นชอบ จาก Hewlett - Packard ซึ่งเป็นลูกค้า และ ผู้ร่วมทุนขององค์กรณ์ ความต่อเนื่องทาง ธุรกิจและแผนรองรับนั้นมีความ พร้อมในสายตาของ ลูกค้าเรา

ภาควิชา <u>ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต</u>	ลายมือชื่อนิสิต
สาขาวิชา การจัดการทางวิศวกรรม	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2542	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม Booker - สึงพองาใหม่ใ

Surawut Sukcharoensin: Implementing Y2K Compliance for Production Equipment in an IC Manufacturing Industry. Thesis Advisor: Assistant Professor Suthas Ratanakuakangwan, Thesis Co-Advisor: Assistant Professor Boonchai Sowanwanichkul, 196 pp.

This thesis is the study, Implementation and recommended contingency plan of Implementing Y2k Compliance for Production Equipment in an IC Manufacturing Industry or Wafer fabrication. In the manufacturing environment nowadays is utilizing a lot factory automation and computer control systems, which containing date storage and calculation. With the existing problem of year storage in 2 digits make the computer and human to misinterpret the meaning of the date when the system clock rollover to year 2000 (00). This is so called 'Millennium Bug'.

As a result of this problem, the IC Manufacturing Industry which has high product value, aware and put its effort to solve and minimize impact as much as possible. Facing the problem and prevent it happening is inevitably. The problem itself is consider simply, since it only involve just fixing the system clock, however, the scale and complexity of the project is making it tough to complete before Millennium Crossover.

The impact to IC Manufacturing Industry is significant to organization not just operation but the long term business strategic image of the organization to comply with the international standards.

In order to ensure the impact of Year 2000 is minimize, certain remediation were made by utilizing the knowledge of Date Computation and Management skill to ensure the completion is achievable before Millennium Crossover, including the contingency plan to reduce the impact in case the organization fail to completely eliminate the problem.

From the preparation and prevention effort, as well as the coordination between supply chain, resulted in the achievement of the Year 2000 readiness of 100% for all of production equipment within two and a half year from unknown Year 2000 readiness status. As a result of equipment function analysis, the upgrade cost for Implant module were significantly reduced from US1.2 million to US 8,000. The contingency plans are developed and ready to handle the crisis that might happens for all of the individual production equipment. The exposure of Millennium Bug are significantly reduced, substantially compliant and "Y2K Ready" commented by Hewlett-Packard, our partner and customer's audition. Business continuity and Y2K contingency plans look very strong in our customer's perception.

ภาควิชา <u>ศูนย์ระคับภูมิภาคทางวิศวกรรมระบบการผลิต</u>	ลายมือชื่อนิสิต
	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2542	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENT

The author is very much appreciated for the suggestions, comments and most of all, time flexibility allowed by Assistant Professor Suthas Ratanakulkangwan, Thesis Advisor, and Assistant Professor Boonchai Sowanwanichkul, Thesis Co-advisor, to facilitate the completion of this Thesis.

Another appreciation goes to Maung Soe Lwin, Etch manager, Fab 1 Y2K Coordinator, Chartered Semiconductor Manufacturing, as well as other colleagues who shared opinions, worked side by side and provided the necessary information for this piece of work to the author.

The author also would like to express his sincere thanks to Associate Professor Tatchai Sumitra, the Chairman of the Thesis Committee, and Professor Sirichan Thongprasert, member of the Thesis Committee, for their kind suggestions toward the writing of the Thesis.

Last but not least, the author in forever indebted to Father, Mother and Grandmother for the kind supports they have given throughout the course of studies, without which the completion of this Thesis would be impossible.

Contents

Abstract (Th	nai)	iv
Abstract (Er	nglish)	V
Acknowledg	jement	vi
Contents		vii
List of Table	es	ix
List of Figur	es	xi
Chapter I	Introduction	1
	Background of Research	1
	Statement of Problem	4
	Propose of Research	6
	Expected Benefits	7
	Research Procedure	8
	Literature Survey	10
Chapter II	Theoretical Consideration	13
	Project Management & Year 2000 Software	
	Testing	13
	Define Risks	15
	Software Testing Techniques	18
	Remediation Techniques	25
	Year 2000 Support Tools	29
	Date Calculation & SEMATECH Year 2000	
	Test Scenarios	30
		-
Chapter III	Discussion of Problems	39
	Background of Business	39
	Organization	41

Contents (Continued)

-3	Customer service	- 43
	Current Situation	- 46
	Potential Risks To Business	- 47
	CSM Year 2000 Program	51
	Project Life Cycle	- 56
Chapter IV	Year 2000 Compliance Plan and Its Implementation	58
	Awareness	
	Inventory Assessment	- 73
	Implementation	
	Correction and Recovery	- 110
Chapter V	Contingency & Recovery Plan and Final Audit	- 121
	Contingency & Recovery Plan	- 121
	Final Audit & Certification	- 152
	Conclusion and Recommendation	- 153
References -		158
Appendices		159
	Appendix A: SEMATECH Mission, Vision, and Goals	160
	Appendix B : SEMITECH Year 2000 Test Scenario	162
	Appendix C: SEMITECH Year 2000 Test Response Form	178
	Appendix D : TSMC Company Information	179
	Appendix E : CSM Y2K Assess Audit by Hewlett-Packard	187
Biography		198

List of Tables

Table 1.1 : Research Schedule	9
Table 2.1 Advantages and Disadvantages of Functional and	
Structural Testing	19
Table 2.2.: Sample List of Year 2000 Support Tools Testing	29
Table 2.3 : Potential Date Calculation Problem	34
Table 3.1 : Average Wafer Selling Price Projection	42
Table 3.2 : CSM Production Capacity	42
Table 3.3 : CSM Capacity and Shipment	43
Table 4.1 : Sematech Potential Problematic Date	68
Table 4.2 : Summary of Fab 1 Equipment	73
Table 4.3 : Fab1 Equipment Y2K Status in Percentage	76
Table 4.4: Fab1 Equipment Y2K Status in Percentage with impact status	83
Table 4.5 : Implant Module Upgrade Cost Summary	84
Table 4.6: Fab1 Equipment Y2K Status base on Type and Cost of Upgrade	86
Table 4.7 : Estimate Cost of Upgrade/Service	92
Table 4.8 : Summary of Y2K Inventory Status	96
Table 4.9 : Y2K Status Progress as at October 5, 1998	98
Table 4.10 : Summary of Outstanding Equipment to be tested	
as at October 5, 1998. —	100
Table 4.11 : Equipment Database with the Testing Timeline	101
Table 4.12 : Implant Test Result Summary	106
Table 4.13 : Fab1/2/3/SMP/Etest/QRA/Facilities Equipment Y2k Readiness –	
Status as of 9/4/1999	108
Table 4.14 : Fab1/2/3/SMP/Etest/QRA/Facilities Equipment Y2k Readiness –	
Detail of History and Forecast Status as of 9/4/1999	109
Table 4.15 : Equipment Status as at Jun 1999	114
Table 4.16: Equipment that may Skip Deadline Summary	117
Table 4.17 : Delayed Equipment Status after Management Involvement	119

List of Tables (Continued)

Table 5.1: Implant Process Setup	128
Table 5.2 : Facilities Preparation Plan	131
Table 5.3 : Possible Impact and Follow Up Actions	132
Table 5.4 : Voltage Swing Tolerance	140
Table 5.5 : Emergency Power Supply Duration by Diesel Engine	142
Table 5.6 : Emergency Water Supply	142
Table 5.7 : Critical Equipment Checklist	146

List of Figures

Figure 2.1 : Relative cost Versus the Project Phase	14
Figure 2.2 : Cost-effectiveness of Testing	17
Figure 2.3 : Testers' Workbench	21
Figure 2.4: V-Testing Concept and Verification & Validation in	
Year 2000 testing	22
Figure 2.5 : V-Concept with Year 2000 Correction and Testing	
Process Flow	28
Figure 3.1 : Product Complexity, Performance and Cost Relationship	39
Figure 3.2 : CSM Product Range	40
Figure 3.3 : eFab™ Logo	44
Figure 3.4 : Worldwide Market Share	47
Figure 3.5 : Year 2000 Team Organization Chart	53
Figure 3.6 : Process Flow of the Y2K Compliant program	55
Figure 3.7 : Y2K Project Timeline	57
Figure 4.1 : CSM Y2K Phases and Detail Definition	61
Figure 4.2 : CSM Year 2000 Team Organization Chart	62
Figure 4.3 : Example of British Year 2000 Definition	64
Figure 4.4 : CSM Y2K Timeline	71
Figure 4.5 : Initial Year 2000 Timeline for First two phases	72
Figure 4.6 : Initial Y2K Checklist	75
Figure 4.7 : Definition of Y2K Ready	88
Figure 4.8 : Y2K Sticker Tag	89
Figure 4.9 : Detail Plan for last three phases	95
Figure 4.10 : Fab3 and SMP AMHS's test Scenarios	97
Figure 4.11 : Test Result of High Current Implanter (NV10-80)	102
Figure 4.12 : Test Result of Medium Current Implanter (NV10-6200)	103
Figure 4.13 : Test Result of Omnimap Probemetrix	104
Figure 4.14 : Test Result of Thermawaye (TP-320)	105

List of Figures (Continued)

Figure 4.15 : Fab1Equipment Y2k Readiness - Status as of 9/4/1999	107
Figure 4.16 : Audit Checklist (Purchase)	111
Figure 4.17 : Audit Checklist (IT)	112
Figure 4.18 : Audit Checklist (All Fabs, QRA, Facilities, R&D)	113
Figure 4.19 : Equipment Status as at Jun 1999	115
Figure 4.20 : Relationship of Delayed Equipment and Fab	
chronological order	118
Figure 5.1 : Facilities Shutdown Plan	123
Figure 5.2 : SMP Supports shutdown Plan	124
Figure 5.3 : Implant Shutdown Plan	126
Figure 5.4: Vendor' Proposed Service Solution	130
Figure 5.5 : Y2K Event Flow (Ideal Case)	134
Figure 5.6: Y2K Event Flow (Y2K Bug Recovery)	134
Figure 5.7 : Y2K Event Flow (Total Power Failure)	135
Figure 5.8 : Y2K Event Flow (Normal Power Stored)	135
Figure 5.9: Facilities Y2K SWAT organization Chart	137
Figure 5.10: Total Power Failure Response For Staff/Contractor/Vendors	144
Figure 5.11 : Fab Release Form	145
Figure 5.12 : Disaster Recovery Form	149