การประยุกต์ใช้ตัวเร่งปฏิกิริยาโคบอลต์-แมกนีเซียมออกไซด์ ในปฏิกิริยาออกซิเคชัน แบบเลือกเกิดของแอลกอฮอล์

นาย ศักดิ์ชัย กิตติเกิดกุลชัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2542

ISBN 974-333-777-6

ลิบสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

= 7 W.S. 2544

119278433

APPLICATION OF THE Co-Mg-O CATALYST ON THE SELECTIVE OXIDATION OF ALCOHOLS

Mr. Sakchai Kittikerdkulchai

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Chemical Engineering

Department of Chemical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 1999

ISBN 974-333-777-6

Thesis Title	Application of the Co-Mg-O catalyst on the selective
_	oxidation of alcohols
Ву	Mr. Sakchai Kittikerdkulchai
Department	Chemical Engineering
Thesis Advisor	Assistant Professor Tharathon Mongkhonsi, Ph.D.
Thesis Co-advisor	Professor Piyasan Praserthdam, Dr.Ing.
Accept by the Facult	y of Engineering, Chulalongkorn University in Partial ents for the Master's Degree
	11 0
	Mer de Dean of Faculty of Engineering
	(Professor Somsak Panyakeow, Dr.Eng.)
Thesis Committee	
M	went Tanthappnichston Chairman
	(Professor Wiwut Tanthapanichakoon, Ph.D.)
	Then thou Mongohon: Thesis Advisor
	(Assistant Professor Tharathon Mongkhonsi, Ph.D.)
	Py / Thesis Co-advisor
	(Professor Piyasan Praserthdam, Dr.Ing.)
	Leerong Proliment Member

(Seeroong Prichanont, Ph.D.)

ศักดิ์ชัย กิตติเกิดกุลชัย : การประยุกต์ใช้ตัวเร่งปฏิกิริยาโคบอลด์-แมกนีเซียมออกไซด์ ใน ปฏิกิริยาออกซิเคชันแบบเลือกเกิดของแอลกอฮอล์ (APPLICATION OF THE Co-Mg-O CATALYST ON THE SELECTIVE OXIDATION OF ALCOHOLS) อ. ที่ปรึกษา : ผศ. คร. ธราธร มงคลศรี, อ. ที่ปรึกษาร่วม : ศร. คร. ปิยะสาร ประเสริฐธรรม, 106 หน้า. ISBN 974-333-777-6.

จากการศึกษาสมบัติการออกซิเดชันของตัวเร่งปฏิกิริยาโดบอลต์-แมกนี้เซียมออกไซด์ (8Co/MgO)บนสารประกอบเมทานอล, เอทานอล, 1-โพรพานอล, 2-โพรพานอล และ 1-บิวทานอล โดยใช้ปฏิกิริยาออกซิเดชันเป็นปฏิกิริยาทดสอบ พบว่าสมบัติของตัวเร่งปฏิกิริยา 8Co/MgO จะขึ้น อยู่กับชนิดของสารตั้งต้นที่เข้าทำปฏิกิริยา ในกรณีของปฏิกิริยาออกซิเดชันของเมทานอลและ 1-บิว ทานอล ตัวเร่งปฏิกิริยา 8Co/MgO จะมีลักษณะเป็นตัวเร่งปฏิกิริยาที่เผาใหม้ได้ดี สำหรับปฏิกิริยาออกซิเดชันของเอทานอล, 1-โพรพานอล และ 2-โพรพานอล พบว่า ตัวเร่งปฏิกิริยา 8Co/MgO จะมีความว่องไวในการทำปฏิกิริยาและมีค่าการเลือกเกิดสูง โดยจะให้ค่าการเลือกเกิดอะซีตัลดีไฮด์และ โพรพิโอนาลดีไฮด์สูงสุดในปฏิกิริยาออกซิเดชันของเอทานอลและ1-โพรพานอล ร้อยละ 58 และ 53 ตามลำดับ ที่อุณหภูมิในการทำปฏิกิริยาและค่าการเลือกเกิดของตัวเร่งปฏิกิริยา

ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต ศาคริย กิจตากิดกรริย
สาขาวิชาวิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2542	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##4170539721: MAJOR CHEMICAL ENGINEERING

KEY WORD: OXIDATION / Co-Mg-O CATALYST / ALCOHOL

SAKCHAI KITTIKERDKULCHAI: APPLICATION OF THE Co-Mg-O CATALYST ON THE SELECTIVE OXIDATION OF ALCOHOLS.

THESIS ADVISOR: ASSIST.PROF. THARATHON MONGKHONSI, Ph.D.

THESIS CO-ADVISOR: PROF. PIYASAN PRASERTHDAM, Dr.Ing.

106 pp. ISBN 974-333-777-6.

Oxidation property of the Co-Mg-O (8wt%Co) catalyst is investigated by using the oxidation reaction of methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol as test reactions. The oxidation property of 8Co/MgO catalyst depends upon the type of reactant. For the oxidation of methanol and 1-butanol, 8Co/MgO catalyst plays role as a combustion catalyst at all the reaction temperature range. In case of ethanol, 1-propanol, and 2-propanol oxidation reaction, it is found that 8Co/MgO catalyst is an active and selective catalyst. It provides the maximum acetaldehyde and propionaldehyde yield ca. 58% and 53%, respectively, at 400°C. In addition, it is also shown that the type of support affects the catalytic activity and selectivity of supported cobalt oxide catalyst.

ภาควิชา วิศวกรรมเคมี ถายมือชื่อนิสิต ตัวลัง กิตติกัดกุลงิง สาขาวิชา วิศวกรรมเคมี ถายมือชื่ออาจารย์ที่ปรึกษา วิศวกรรมเคมี ถายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

The author would like to express his greatest gratitude to his advisor, Assistant Professor Tharathon Mongkhonsi, for his invaluable guidance throughout this study. Special thanks to Professor Dr. Piyasan Praserthdam, his co-advisor, for his kind supervision of this research. In addition, I would also grateful to Professor Dr. Wiwut Tanthapanichakoon, as the chairman, and Dr. Seeroong Prichanont, a member of thesis committee.

Many thanks for his kind suggestions and useful help to Mr. Choowong Chaisuk and many best friends in Chemical Engineering department who have provided encouragement and cooperation throughout this study.

Finally, he also would like to dedicate this thesis to his parents who have always been the source of his support and encouragement.

CONTENTS

	PAGE
ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEWS	4
2.1 Literature reviews	4
2.2 Comment on previous works	10
III THEORY	11
3.1 Reactions of alcohols	13
3.2 Redox Mechanism	16
3.3 Cobalt oxide catalyst	16
3.4 Effect of support on catalytic performance	17
3.5 Surface reducibility and basicity	18
IV EXPERIMENTAL	19
4.1 Preparation of catalysts	20
4.2 The characterization of catalyst	21
4.3 The catalytic activity measurements	22
V RESULTS AND DISCUSSION	26
5.1 Catalyst characterization	26
5.2 Oxidation reaction	35
VI CONCLUSIONS AND RECOMMENDATIONS	63
6.1 Conclusions	63
6.2 Recommendations for future studies	64
REFERENCES	65

	PAGE
APPENDICES	68
Appendix A. CALCULATION OF CATALYST	
PREPARATION	69
Appendix B. CALCULATION OF DIFFUSIONAL	
LIMITATION EFFECT	71
Appendix C. CALIBRATION CURVE	87
Appendix D. DATA OF EXPERIMENT	95
Appendix E. BLANK TEST OF OXIDATION	
REACTION	101
VITA	107

LIST OF TABLES

TABLE	
4.1 The chemicals used in this research	20
4.2 Operation condition for gas chromatograph	24
5.1 The metal composition and BET surface area of catalyst	26

LIST OF FIGURES

FIGURE	PAGE
3.1 Selectivity at 30% conversion for the reactions	
indicated as a function of D°H _{C-H reactant} - D°H _{C-H or C-C product}	12
4.1 Flow diagram of methanol, ethanol, 1-propanol, 2-propanol,	
and 1-butanol oxidation system	23
5.1 The XRD pattern of MgO catalyst	28
5.2 The XRD pattern of 8Co/MgO catalyst	28
5.3 The XRD pattern of SiO ₂ catalyst	29
5.4 The XRD pattern of 8Co/SiO ₂ catalyst	29
5.5 The XRD pattern of γ-Al ₂ O ₃ catalyst	30
5.6 The XRD pattern of 8Co/γ-Al ₂ O ₃ catalyst	30
5.7 IR spectrum of MgO catalyst	32
5.8 IR spectrum of 8Co/MgO catalyst	32
5.9 IR spectrum of SiO ₂ catalyst	33
5.10 IR spectrum of 8Co/SiO ₂ catalyst	33
5.11 IR spectrum of γ-Al ₂ O ₃ catalyst	34
5.12 IR spectrum 8Co/γ-Al ₂ O ₃ of catalyst	34
5.13 Conversion (C) of methanol and product selectivities (S) on	
8Co/MgO catalyst in the methanol oxidation	36
5.14 Conversion (C) of methanol and product selectivities (S) on	
8Co/SiO ₂ catalyst in the methanol oxidation	37
5.15 Conversion (C) of methanol and product selectivities (S) on	
8Co/γ-Al ₂ O ₃ catalyst in the methanol oxidation	39
5.16 Conversion (C) of ethanol, product selectivities (S),	
and yield (Y) of acetaldehyde on 8Co/MgO catalyst in the	
athenal avidation	42

	P	AGE
5.17	Conversion (C) of ethanol, product selectivities (S),	
	and yield (Y) of acetaldehyde on 8Co/SiO2 catalyst in the	
	ethanol oxidation	43
5.18	Conversion (C) of ethanol, product selectivities (S),	
	and yield (Y) of acetaldehyde on 8Co/γ-Al ₂ O ₃ catalyst in the	
	ethanol oxidation	44
5.19	Conversion (C) of 1-propanol, product selectivities (S),	
	and yield (Y) of propionaldehyde on 8Co/MgO catalyst in the	
	1-propanol oxidation	45
5.20	Conversion (C) of 1-propanol, product selectivities (S),	
	and yield (Y) of propionaldehyde on 8Co/SiO ₂ catalyst in the	
	1-propanol oxidation	47
5.21	Conversion (C) of 1-propanol, product selectivities (S),	
	and yield (Y) of propionaldehyde on 8Co/γ-Al ₂ O ₃ catalyst in the	
	1-propanol oxidation	50
5.22	Conversion (C) of 2-propanol and product selectivities (S) on	
	8Co/MgO catalyst in the 2-propanol oxidation	51
5.23	Conversion (C) of 2-propanol and product selectivities (S) on	
	8Co/SiO ₂ catalyst in the 2-propanol oxidation	52
5.24	Conversion (C) of 2-propanol and product selectivities (S) on	
	8Co/γ-Al ₂ O ₃ catalyst in the 2-propanol oxidation	53
5.25	Conversion (C) of 1-butanol and product selectivities (S) on	
	8Co/MgO catalyst in the 1-butanol oxidation	54
5.26	Conversion (C) of 1-butanol and product selectivities (S) on	
	8Co/SiO ₂ catalyst in the 1-butanol oxidation	56
5.27	Conversion (C) of 1-butanol and product selectivities (S) on	
	8Co/γ-Al ₂ O ₃ catalyst in the 1-butanol oxidation	57
5.28	The mechanism of the oxidation of 1-propanol to propionaldehyde	. 60
5 29	The mechanism of the oxidation of 2-propagol to propylene	61