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CHAPTER|

INTRODUCTION

1.1 Backgrounds

The intricate cellular processes resulting in energy and growth called metabolisms are the
complicated networks composing biochemical substances called metabolites and their transfor-
mational mechanisms. The better understanding about the metabolite production and degra-
dation processes leads to the helpful knowledge in many applications e.g. finding drug target
(Baths et al., 2011), metabolic flux analysis (Rantanen et al., 2008), metabolic engineering (Fin-
ley et al., 2009) and structural network analysis (van Helden et al., 2002). Now, the vast amount
of metabolic-related data, namely, genomics, proteomics and metabolomics stored on databases
like KEGG and MetaCyc (Caspi et al., 2010; Kanehisa et al., 2008) is enable us to develop a
lot of computational approaches (Pitkanen et al., 2010) bringing about the analysis of several
metabolic aspects which can be done by building many models using single or multi-omic data
based upon what questions are. A variety of biochemical network models in the form of graphs
such as metabolic networks, regulatory networks and signal transduction networks have been
suggested in an attempt to explain the systems of metabolisms in cells (Deville et al., 2003). The
closest realistic detailed metabolic models were presented by the dynamic models because the
various data including stoichiometric data and kinetic data have to be integrated, but, nowadays,
for some multiple species or whole species dynamic metabolic network model analysis, there
are no such entirely required data. The metabolic graph-based models added stoichiometric
properties are studied by solving an optimization problem at steady-state when given stoichio-
metric data and constraints of the defined biochemical reactions sets (Oberhardt et al., 2009).
Although, this method is powerful and widely used in many applications (Raman and Chandra,
2009), there are some limitations. For example, to receive the good results, it requires the ac-
curate metabolic network as the predefined system which it is time-consuming procedure if the
size of the network is large. Another example, due to alternative objective pathway definitions,
there exist some considered routes of metabolites on the metabolic network that are not under
the steady-state assumption with stoichiometrically balanced compounds (Félix and Valiente,

2007). For above reasons, the non-stoichiometric metabolic graph-based models still be an es-



sential analysis as not only the basic information for building the stoichiometric models as well
as dynamic models (Faust et al., 2011) but also as preliminary methods for investigating such
huge metabolic network models (Aittokallio and Schwikowski, 2006). One problem studied
by using these models in metabolic network reconstruction and pathway analysis is to predict
compound transformation routes when given compounds and their related reactions. In other
words, there exists the mechanigraactions to transform one compound to others or not (Zhao
etal., 2006). To depict the whole steps of the start compounds to the end compounds, a criterion
like the shortest path or the extension of shortest path concept can be combined (Rahman et al.,
2005).

1.2 Problem Statement

The main problem was defined that whether each metabolite input query received from a
pre-defined biochemical transformation graph is in the same routes. A metabolite input query
set is composed of the list of possible two end vertices as beginning and terminal metabolites

with/without every possibly intermediate metabolite.

This main problem is indirectly studied by stating the following four supervised binary
classification problems when each metabolite input query is assigned:

1) whether it is one or two consecutive steps of reaction transformation (class 1 vs. non-
class 1),

2) whether it is one step of reaction transformation and multi-step reaction transforma-
tions through a certain intermediate metabolite(class 2 vs. non-class 2),

3) whether it is multi-step reaction transformations through a certain intermediate
metabolite, and

4) whether it is not all above cases (class 4 vs. non-class 4).
Every binary class target is labeled by routine path searching method on the defined graph. Each
input feature pattern associated with its metabolite input query obtains from the proposed nu-
merical transformed properties from each calculatedr®lecular property set of its metabolite

in such query.

A procedure to treat the imbalanced binary class distribution was filsed, because the
imbalanced class distributions of the pre-training déftacathe model prediction performances

in the supervised learning approaches.
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Objectives

. To build the supervised feed-forward neural network model for the problems of predicting

atomically transferable metabolite in tRecoli metabolic pathway set.

. To dfer the four defined types of metabolite transformation as the four binary target

classes when given each metabolite input query after preparing the predefootid

graph consisting of metabolite and reaction links.

. To present the transformed and reduced features of the input data corresponding to each

metabolite query from the computed 3D molecular features using the 2D atomic data of

each metabolite.

. To propose the algorithms to handle the seriously imbalanced binary class data.

. To show the four trained predictive model performance of the predicted output values,

called our result I, and compare them W8 L approach, using various metrics in a few
aspects such as the various sub-data size splitting for improffiectieeness, the cutfo
value variation and significance test for classifying output value as binary class, as well

as the unseen data prediction and comparison.

. To explore the three adjusted output values of the predicted output values for performance

improvement, namely, our result Il which is the mean of all four our result | values from
all four models for each corresponding input data”eesult | which the output values
are set to negative classS{CL is zero, and odrresult Il which is the mean of all four

our” result | values from four models for each corresponding input data set.



CHAPTER I

LI TERATURE REVIEW

2.1 Path finding problems in metabolic network models

Metabolic network models built from organism-specific data or multi-organism data can
be used for representing elements, e.g. genes, proteins (enzymes) and metabolites, as well as
their interactions depending on the studying problems. One key question so-called the path
finding problem (Planes and Beasley, 2008) is about searching the paths or eventually getting
the systems of transformation processes in the manner that initial substrates are sequentially
transformed by each reaction step to final or desired products which is beneficial exploration for
several tasks, especially, pathway designs (McClymont and Soyer, 2013) and network studies
(Lacroix et al., 2008; Cottret and Jourdan, 2010).

Path finding methods is based on a metabolic reaction network model which mostly rep-
resents biochemically systemic processes of metabolittoanehction and their relationship
as metabolite-metabolite connections /andeaction-metabolite connections. The consecutive
related metabolites at each step of reactions are searched by the path finding methods. Gener-
ally, the term related metabolites’ refers to biochemically relevant, plausiblgpafehsible

metabolites (Planes and Beasley, 2008; Faust et al., 2011) in former works.

There are two main metabolic reaction network graph-based models known that each
other is complement, stoichiometric models and non-stoichiometric models (Hatzimanikatis
et al., 2004), though in some works (Pey et al., 2011) their advantages were combined. The
stoichiometric models generally are suitable for specific and detailed purpose of the organism-
specific system due to the computational complexity (Schuster et al., 2000; Klamt and Stelling,
2003). Though, there are some modified methods that try to avoid complexity in the large
scale stoichiometric model analysis (de Figueiredo et al., 2009; Kaleta et al., 2009), it is still a
challenge to improve the betteffectiveness. In the stoichiometric approaches (Schilling and
Palsson, 1998), they solved the objective function to find a set of steady-state zero flux metabo-
lites when given a set of considered reactions including directions, internal-external metabolites

as well as stoichiometric data and a set of constraints, while in the metabolic reaction graph-



theoretic approaches without stoichiometric properties, they used the graph theoretic methods
to query the related metabolites of successive reactions according to the graph-theoretic ques-
tions such as the shortest step between a source metabolite or a group of metabolites and a target
metabolite or a group of metabolites in the considered network (Pitkanen et al., 2005) which

can be an organism system or whole organism-merged system.

Without any criteria to identifying related metabolites, the graph-theoretic methods
yielded abundant results of related metabolites routesifi€il et al., 2000) in consequence
of combinatorial possibility of related metabolites and meaningless short steps of processes be-
cause of absurd related routes passing through some metabolites such as kind (#lpoiton
carrier and cofactor (Arita, 2004). These metabolites are called pool, currency or side metabo-
lites (Huss and Holme, 2007) which they are found in almost every metabolic reaction. Defining
them exactly and removing them from the network causes some missing reactions from the sys-
tem by result of the context dependent properties of these metabolites (Ma and Zeng, 2003).
Later, two core ideas for identifying related metabolites have b&eneal which they depend
on additional data used for avoiding misleading links. The first one have used atomic data repre-
sented as atom graph of metabolite and defined mapping methods, for instance, (sub)graph iso-
morphic approaches and common (sub)graph matching (Raymond and Willett, 2002; Akutsu,
2004; Crabtree and Mehta, 2009; Hattori et al., 2010; Heinonen et al., 2011) so as to identify
how each metabolite can be related by the others via some defined measurements i.e. simi-
larity (Raymond et al., 2002; Le et al., 2004). Another idea has used degree connectivity of
metabolite nodes called weight in a graph model as searching criteria for obtaining the routes
with minimum weight (Croes et al., 2005) thanks to the fact that pool metabolites often contain
high weight and they must be avoided by searching procedure. After that, the works based
on combining two above ideas have been proposed for finding linear related routes (Blum and
Kohlbacher, 2008b) and also branched routes (Pitkanen et al., 2009). Apart from that, RPAIR
database (Kotera et al., 2004) build on atomic data is one of KEGG databases storing a list of
metabolite pairs as atomically transferable information associated with a set of reactions have
been applied by some path finding methods coupled with degree connectivity scheme for linear
related pathway searching approach (Faust et al., 2009) and also branched pathways searching
approach (Heath et al., 2010). In various path searching conditions, many concepts have been
presented which provide ftierent pathway discovery results, example, the (k)shortest path as
minimum (k)steps (Arita, 2000; Blum and Kohlbacher, 2008a), the lightest path as the smallest

sum of degree connectivity (Faust et al., 2009, 2010), at least one atom conserved or at least a



number of atoms conserved (Mithani et al., 2009; Heath et al., 2011).

At this point, the combined ideas together witliteient searching path conditions are
able to reduce unreasonable connection and yield the quite related linear and branched path-
ways. In spite of the usefulness of extracted atomic graph properties in path finding conditions,
atomic mapping definitions will be useless if there are incomplete or no atomic data in some
metabolites as well as their RPAIR data is unavailable. Counting only on the usages of degree
connectivity data in the way of the smallest weight metabolite chosen at each searching step,
in some reaction whose metabolites are all high or all low degree connectivity, it is not always
successful (Croes et al., 2006). Because of the context-specific nature, when given a metabolite
pair in one reaction it is dlicult to clearly identify each metabolite is the importantly trans-
formable metabolite in that context of a reaction. However, atomically transferable information
still be the valuable properties since it reflects the real mechanism that change one metabolite

to another metabolite in the one step biochemical process such as a reaction.

2.2 Supervised learning techniques in bioinformatics applications

In the tasks of metabolic reaction prediction, when a novel metabolite with its atomic data
has elucidated, the possible biochemical transforming mechanism is predicted by the expert
system (Li et al., 2004; Hou et al., 2004) with the well-organized rules from the known mech-
anisms. Lately, support vector machine (SVM), one of supervised learning approaches, was
applied for learning and predicting possible substrates and possible products of well-classified
enzyme mechanism (Mu et al., 2011) by feeding the calculated atomic and molecular properties
from its optimized 3D atomic structure. In recent times, the prediction of potential enzymatic
reactions in metabolic pathways was studied. The chemical fingerprints of compound pairs was
converted into feature vectors as input data patterns with binary target class for the SVM binary
classifiers to construct model in order to identify that whether the first compound is changed to

the second compound in some enzymatic reactions (Kotera et al., 2013).

The supervised learning paradigm is able to extract the knowledge from the represen-
tative data as the trained model and use that trained model to predict the new data. Another
popular supervised learning approach is the bio-inspired method in the type of artificial intel-
ligent algorithm called artificial neural networks (ANNs). The simple organization of ANNs
is composed of an input layer, a hidden layer (neurons) and an output layer. The input layer

is fully linked by each weight as the synapse to each neuron. It is widely used in many ar-



eas of applications including bioinformatics tasks e.g. protein structure and function prediction
(Wood and Hirst, 2005), gene finding (Browne et al., 2004), gene expression data analysis (Xu
et al., 2002) as well as parameter estimation for the small metabolic dynamic model (Almeida
and Voit, 2003) due to the powerful ability to design input-output schemes as well as the ar-
chitectures. Nevertheless, many factors such as suitable number of neurons and epoch must be

considered so as to receive dteetive model (Zhang, 2000).

2.3 Imbalanced class distribution solving for supervised learning methods

The imbalanced data training usually faces in in real world data with traditional super-
vised learning that always makes the predictive model trained by unequal class proportion data
bias toward the big class data (Sun et al., 2009). Fortunately, many methodsfieseel to
manage and fix this bias (Guo et al., 2008; He and Garcia, 2009). These methods can be catego-
rized into two main approaches. First one, they are aim to manage data such as fixing unequal
class proportion data into the approximately equal class proportion data (Chawla et al., 2002;
Bunkhumpornpatetal., 2012; Liu et al., 2006) or selegjpgerating the most informative data
sets as training data sets (Ertekin et al., 2007; Barua et al., 2011). Second one, they are aim to fix
the algorithms to make them handle imbalanced data situafiectizely (Fu et al., 2002; Hong
et al., 2007; Liu and Yu, 2007; Adam et al., 2010; Batuwita and Palade, 2010). Furthermore,
there are training techniques which creates a groups of trained models for prediction rather than
a single predictive model such as ensemble schemes with sampling techniques (Liu et al., 2006;
Estabrooks et al., 2004; Kraipeerapun and Fung, 2009) and multi-binary classification methods
(Jeatrakul and Wong, 2012), sometimes one or both above aims are also applied (Yan et al.,
2003; Chen et al., 2010; Thanathamathee and Lursinsap, 2013). Apart from managing data,
fixing traditional classification algorithms and building series of classifiers, other methods were
proposed to solve imbalance data classification, for instarfierjray a new metric (Batuwita

and Palade, 2009) or feature selection technique(Zheng et al., 2004).

2.4 Dissertation Outline

In this paper, the problem of identifying the relevant metabolites in biochemical transfor-
mation routes was considered in a new perspective as a supervised learning problem. First, bio-
chemical transformation was defined from the combined reactions and their involved metabo-
lites (Section 3.1). Second, the problem of identifying the relevant metabolites in biochemical

transformation routes was changed into four defined questions suitable for model training by



the feed-forward neural network method, then a defined metabolite query set obtained from the
defined graph in the first step used as input query set to seelfy@sinswer set according

to each defined question using conventional graph path searching algorithm (Sections 3.2.1 and
3.4). Third, input feature data set, the transformed molecular properties calculated from 3D
atomic structures, was prepared by using a defined metabolite query set and the associated an-
swer set for each defined question was target classes for each defined question (Sections 3.2.2
and 3.4). Fourth, the data division method was applied to split the prepared data into adequate
size. Since imbalanced data problem occurred, the proposed methoéferad to handle this
problem. So, they were trained by the feed-forward neural network and selected the sub-models
with effective performance. After that, sub-models were combined in the predictive model for
each defined question (Sections 3.2.3, 3.3 and 4.1). Fifth, various performance evaluations
were done in many output score types of each predictive model corresponding to each defined
guestion for the following comparison with the strength of chemical linkage approaches: the
pre-training sub-data size varying, the ctit-ecore value variation and significance test, the
unseen data prediction and comparison in a sub-model aspect, a conventional pathway aspect,
and a compound aspect (Section 4.2). Finally, the whole works were discussed and concluded

(Sections 5 to 6). The work flow diagram was briefly presented by Figure 2.1.
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Figure 2.1: The work flow diagram illustration. 1) The definedmir model is converted into the input-

target data set which can be trained and built predictive models; 2) According to the large data set from
step 1, a data set is divided. Next, the class imbalanced sub-data is handled by our proposed methods.
Later, each approximately balanced sub-data is trained and performance of models with chosen parame-
ters are evaluated; 3) Thé&ective sub models are integrated. After that, more performance metrics are
evaluated and analysed with comparing methods.




CHAPTER Il

METHODS

The defined terms for metabolite transformation, the defined problem as supervised clas-
sification problems, the proposed method to handle the seriously unequal proportions of class

distribution a in data set, and the data preparation for experiments are described.

3.1 Preliminary Terms And Conditions

Let u andv be two metabolites.

A metabolite pair,(u,v): (u,V) is calledtransformable metabolite pair if u andv are in at least
one plausible metabolite path. Otherwise, they are caitestransformable metabolite pair.
Denote thatorward andbackward direction are omitted from consideration, sa, ¢) and {, u)

indicate the same transformation.

A transformation process, R;: it is a process concerning a metabolite pairy] such thau can
be changed into in one step, or vice versa. In this work, it is defined that there exists at least

one reactiom € R, that can make such biochemical transformation happens.

One step transformable metabolite pair: (u,V) is calledone step transformable metabolite pair
if 1) u andv are in the same transformation process, in this case, a reacti®t $tu is a

substrate and is a product, or vice versa; and 8andv appear on the reference map.

Multi-step transformable metabolite pair: (u,V) is calledmulti-step transformable metabolite
pair if 1) uandv are two-end metabolites of at least one plausible metabolite path with length

more than 2;and 2) andv appear on the reference map.

In the supervised data set preparation(see Section 3.4), etaigolite pair was ex-
tracted froma metabolite set of all reactions in the whole consideredsference maps from
Lemer et al. (2004).
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Let b, t, andn be the beginning, terminal, and intermediate metabolites, respectively.

Metabolite Transformation Network, K : a simple fully-connected undirected graphs= (V,E).
Denote that 1)V = V' UV” is a non-empty finite metabolite set whevé andV’” are two
metabolite lists that one appears and another does not appe&ference maps, respectively;
and 2) two edge setk; andE” whereE = E’ UE", represenbne step transfor mable metabolite

pair andother pairs, respectively.

A plausible metabolite path, P: givenK, a plausible metabolite path, P= (b, ...,n,...,t), is a sim-
ple path such that I)is one intermediate metabolite locating®between two-end metabolites
b andt; and 2) every edgec E’, otherwise, it ismon-plausible path. Denote that 1 plausible
metabolite path with length one has no and it is so-calledne step transformable metabolite

pair; and 2)P can be considered eithiarward andbackward path.

A metabolite input query set, H: givenb, t, andn, determine whethdb is transformable tm
andnis transformable to. Everymetabolite query, h; € H such thah; = (b,n,t) or h; = (b,t) is

obtained from a giveK.
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3.2 Encoding Relevant Metabolites in Paths Problem as Supervised Classification Prob-

lems

The representation as a graph allows us to observe in many sides when the graph problem
is well-defined. In this paper, the problem of plausible metabolite path is transformed into su-
pervised binary classification problems of predicting whether the given beginning and terminal
metabolites, sometimes including an intermediate metabolite, are in some plausible metabolite
path. The associated features of each metabolite query, beginning, intermediate and terminal

metabolites, are also proposed as in the following sections.

3.2.1 A Metabolite Input Query Set and Binary Class Target Formation

From the defined grapK and some statements in previous section, a metabolite input
queryseH ={h;|j =1,2,..., 1} is given. Each input quetly reflects to several questions from the
graphK. Here, with respect to the path frdmio t including the determination aflocating this

path, the binary targets for the following four basic transformation questions can be assigned:

Question 1:1) if (b,n,t) is considered, whetheb,h) and f,t) are bothone step transformable
metabolite pair; or 2) if (b,t) is considered, whetheb,{) is one step transformable metabolite

pair.

Question 2: whether b,n) is one step transformable metabolite pair but (n,t) is multi-step

transformable metabolite pair, or vice versa.

Question 3: whether b,n) and f,t) are bothmulti-step transformable metabolite pair.

Question 4:whether b,n,t) does not meet any above conditions in questions 1, 2, or 3.

For each binary target set, the class with a large data set is cadlgdity data class
and the other class is callednority data class. Hence, each question and its answer can be
interpreted as each input feature data set and its class target in a two-class pattern recognition
problem. Many algorithms with supervised learning methods can be applied for constructing

classifiers that canfieciently guess the class of each new data pattern.
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Figure 3.1: The input-target formation presentation. a) Aasetxample reactions and their involved

compounds; b) An example of all possible links in a reaction R1; c¢) The complete graph showing all
possible links from the example set in a); d) Forward and backward transformation routes in the form
of two direct graphs from the example set in a); e€) Each example of each class compound query set
acquired from the defined complete graph in c), when each each class compound query set reflects to

each defined questiapfor g = 1,2,3,4; f) The proposed process to transform eaclm@D features

in a metabolite query to an input feature pattern ready for being trained by neural network method(see

Transformed feature procedure in details).
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3.2.2 Input Feature Calculation and Transformation

Considering each metabolite input query, each molecular property of each metabolite was
calculated. These molecular properties (Mu et al., 2011) consists of the surface, shape, energy
and charge distribution of aC38compound molecule. Ldg = [ f,,,..., fo]T be a vector storing
properties of a beginning metabolltesimilarly, letf; andf, be a terminal metaboliteand an
intermediate metabolite if n exists, respectively. The aim is to create an input patiexs the

srepresentative properties fraim f, andf, if n exists (sed ransformed f eatureprocedure).

For each metabolite query in the training and the testing data, the number of features may
be equal to 8% 3 for 3-tuple M®, M" m®) and 81x 2 for 2-tuple M®,m®). This number
of features is too large for computation and it must be reduced. The following process was

proposed to reduce the number of features.
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Let fy, fo, andf; be sets of features fon®, m", andm®, respectively.

Transformed feature procedure

Case 1:2-tuple (®, m®)
.
f f
1 LetFoo=| | ™| .| "],
ft,l ft,s
2. Compute the covariance mat@xfrom F®D,

3. Letu be the eigenvector & whose eigenvalue is maximum.

4. Compute new feature vectg®? = u"F®Y for 2-tuple m®, mv).

Case 2:3-tuple ®, m", m®)

1. Compute new feature vectq®®” = uTF® for 2-tuple ®, m")

as in Case 1 procedure.

2. Compute new feature vectgf™ = u"F™ for 2-tuple (™, m®)

as in Case 1 procedure.

(b,n) (b,n)
3. LetQbno | | & ] [qs

t t
g™ g™

4. Compute the covariance mat@xfrom Q®n,

5. Letu be the eigenvector & whose eigenvalue is maximum.

6. Compute new feature vecta™ = uTQ®"Y for 3-tuple

(m(b) , m(n) , m(t)) .

Feature vectoa®™ is used as an input patttern of the training and the testing data.
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3.2.3 Artificial Neural Network

In the general concept of the supervised learning technique (Bishop, C.M., 2006), a train-
ing data set along with class tardet {(a;,cj)lj = 1.2,...,1} , wherea; € R™ andc; € R", is
used for building a particular model in order to predict the value of each classociated with

each new input patter

The feed-forward neural network with a hidden layer is one among suitable model for
supervised classifying data patterns (Haykin, 1998). A chosen architecture consists of three
layers in fully connected structures, hamely, input layer, hidden layer and output layer. In the
forward direction from one layer to another, excepting input layer which delivers a training
data set for a network system, each layer does a linear combination of its served inputs in
each neuron where cfigients and bias are gathered as adjustable parameters, after that its
outputs are yielded by taking afféirentiable function in each neuron. In each round of training,
parameters are adjusted to reduce tikecknces between class target set and class output set in

the form of an error function.

Given an input pattern vectos = [ay,...,a;,...,ay]" and its class target vectar =

[C1,...,Cks e Cr] T, thek™™ element in its output vectar= [0y, ..., 0, ...,0,] T can be shown as
_ f(Z)(Z f(l)(zj)+

such that; = Elvvﬁil)a; +wit) wherew's) as well asny are biases anal as well asa? are
codficients. [I)_enote that‘fz)(-) is an activation function of th&" neuron in the output layer
producing outpuby , similarly, f(l)( 2 which is a function of thg™ hidden neuron in the hidden
layer. Apart from that andm are the number of hidden neurons in the hidden layer and the

size of input features in the input layer, respectively.

In each round of network training, an error function to measure the learning perfor-

mance is

wheren andl are the number of neurons in the output layer and the number of input patterns,
respectively. The aim is to find a value set of parameters that produces the acceptable minimum

error& which can be obtained by using one of various numerical optimization techniques. All
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paameters gathered as weight veotomitialized aswy is iteratively updated by scaled con-
jugate gradient (SCG) algorithm (Moller, 1993) developed from the conjugate gradient (CG)
method and Levenberg-Marquardt algorithm in order to decreasegaurdil reach the desired
small value using the information of the partial derivatives with respect to weights. The SCG
weight-update rule is given by,.1 = w, + Aw such thatAw = «,p, where a learning rate pa-
rametelx and a conjugate gradient directiprare systemically adapted by some rules. Denote
thatpg is a steepest descent direction at an initial round. The benefit of SCG technique is the
effective convergence resulting from no computation of line search procedure in calcdlating

unlike the original CG method.

In practical situation, when a training data set along with class tdrgetvery big, it
will take a long time to yield an appropriate trained network model. Therefore, to reduce the
time of training such one big network, is partitioned by key feature concept irgadisjoint
sub-data setr;... Ut U..Tg = I'. Each sub-data set is trained by sub-networkin parallel
fashion (Plaimas et al., 2005). The final output results from all sub-networks are determined
by defined criteria. By this way, the complexity of data and training time would be reduced.
Shortly, the key feature is one feature of data set used as an identifier for dividing a data set into
several small groups which helps to build supervised classification sub-models, simultaneously.
First, the range of all values in a data set is found. Second, the data set is equally divided by the
range into n intervals. After that, an important interval which contains the maximum number
of values considered from the entire data set is discovered. Next, for each feature of the whole
data set, the numbers of values that are members of an important interval are counted, then, the

minimum one is defined as a key feature.
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3.3 Class Imbalance Data Treatment

From previous sections, the path inference problems can be expressed as the four defined
guestions of the supervised binary classification problems. Once an input pattern set associated
with its metabolite input quer was prepared, the class targi@’[e {0,1}, where ej,cﬁq)) er@
anda; € A, corresponding to binary answer of a defined quedijioras assigned. Hence, the
four training data sets along with class targl@f@, forg=1,2,3 and 4, were available for train-
ing each neural network model resulting in the four classifiers, one for each defined question-
answer. However, each class occurrence in each training data set is not equal frequency. In fact,
they are very imbalanced. Without a procedure to deal with these class imbalance problems, the
performances of the trained neural network models aridient, especially, in the minority
class prediction (Visa, 2005). Thereby, to improve the performance of such trained models, the
proposed algorithm was designed for handling the highly class-imbalanced training data based
on combination of local under samplings and local over sampling manners including a defined
nearest neighbor rule for generating added minority data applied on a particular situation. Some

protocols were adapted from the recent methods (Thanathamathee and Lursinsap, 2013).

In brief, there are the following four main processes. First, each class data set is clus-
tered into small sub-data. Second, for each sub-data, the standard deviations before and after
combining sub-data with additional data from resampling method are computed. Third, the
border data point sets for each pair of the minority-majority sub-data are found out. Finally, the
new data are generated for both classes with approximately equal distribution using each border
data point set and the correspondinfietience of previous and current standard deviations. The

following is the explanation of each process.
3.3.1 Clustering each class data set into small sub-data

Based on a chance that each class data set complexly locates in the data space, this entire
class data set would be hard to be separated. An unsupervised clustering method helps to
partition each class data set into many sub-groups, so, the imbalanced situations between the
paired sub-groups of the binary class are easily managed by the next procedures. Similar to the
recent work (Thanathamathee and Lursinsap, 2013), the self-organizing map (SOM) method

was applied.
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X : a minority data point +: a majority data point
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a new data set G

a majority data setP a majority data set P

Figure 3.2: The illustration of 2D binary class imbalance datgenerating additional data procedures
before clustering each class data set into sub-data sets. Synthesized data are depicted as purple points.
1) The concept of algorithm Generating Synthetic Inner-Class Data is depicted when nearest minority
neighbork = 3. 2) The result after using algorithm 1 is shown.

3.3.2 Combining each sub-data with additional data from resampling method and cal-

culating the standard deviation of previous and current sub-data

Bootstrap method was implemented for estimating the natural standard deviation of each
sub-cluster by repetitively sampling data with replacement. Subsequently,fibeedce of
two standard deviations from bootstrap method and the initial standard deviation was used
as information to position the new synthetic data for lessening the imbalanced data situations
(Thanathamathee and Lursinsap, 2013). But, in this paper, not only Bootstrap strategy but also

two proposed procedures to handle extremely imbalanced data were proposed.

First process, the new generated data are added to minority class data (Algeetbm
ating Synthetic Inner-Class Data) before the process 3.3.1. This procedure considers the whole
binary class data. For each data pajrib the minority data set, no more than nkwninority
data points are generated by findikgnearest minority data points in the form of Euclidean

distance and locating them along each line betweeand each ok nearest data points with a
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Figure 3.3: The illustration of 2D binary class imbalanceddatgenerating additional data procedures
before finding the two side border data sets. Synthesized data are depicted/léghdarieen points. 1)

The concept of resampling technique called Boostrapping within the last step of creating a nearly bal-
anced training data set process is depicted. 2) Two closet data sets after applying algodightify2ng
Boundary Data are represented.

distance no longer than the minimum length (see Algorithm 1 and Figure 3.2). This concept is
supposed to help increasing amount of the data points and also to expand the possibly occupied

data space of the minority class data before the clustering process.

Second process, unlike the recent method (Thanathamathee and Lursinsap, 2013), boot-
strap method was also used in slightlyfdient ways before finding the rim data of each
minority-majority sub-cluster pair on the next process. Bootstrap method was performed in
order to both create the new additional data and calculate ffezatice of the previous and the
current standard deviations which was used in the last procedure. This process considers each
of minority—majority sub-clusters. For each sub-data with $jzeitially, the standard devi-
ation is calculated. Next, data are sampled with replacemerttimes. Then, sampled data
are averaged as a new additional data to the sub-data. These are repeatedly done until reaching
the desired amount of additional data. After that, the current standard deviation is calculated

(see Figure 3.3). Because the severely imbalanced data as well as the sub-cluster division yield
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the tiny size in the terms of space and quantity of particular sub-clusters, in some cases, a bor-
der data set is possibly represented by that whole sub-cluster. The above procedure tries to
carefully enlarge such sub-clusters by embedding each new additional data set. Thus, these
combined sub-data are used for finding the border data sets. The new additional data could be
one member of the border data sets which are expected to increase the chance of the built model

to predict the new incoming dataffectively.

3.3.3 Finding border data point sets for each pair of the minority-majority sub-data

Every minority-majority sub-data pair contains two border data sets on each side. These
border data sets are identified by using Haufidtistance concept which relied on Euclidean
distance (see Algorithm 2 and Figure 3.3) similar to the previous work (Thanathamathee and
Lursinsap, 2013). Each data point in one border side is the nearest point for at least one pointin
the whole opposite side. This method helps to discard unnecessary data and retain only crucial

data in building separating model.

3.3.4 Generating new data for both classes with nearly equal distribution

At this point, the nearly balanced training data in binary class distribution are prepared by
synthesizing new data from the border data sets. The size of entirely balanced both class data
should be adequately available for providing information fioscently build each predictive
model. Hence, first added synthetic data set is based on a rough criterion that the number
of small class data in each class should not be less than the dimension of data. Later, new
more synthetic data is added in order to obtain the nearly balanced training data set ready for
training supervised neural network models (see algorithm 4). The synthetic data are generated.
Each border data point is added by the standard deviatitereince of its sub-cluster scaled by
random values fromH1,0) U (0, 1] (see algorithm 3-4).

Therefore, the feed-forward neural network models withféi@antly certain number of
epochs were trained by feeding the approximately balanced training data from the new synthetic

data including the border data sets. Afterwards, the performances of models were measured.
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Creating a nearly balanced training data set process

1. Generate synthetic inner-class data of minority class imgusgorithm Generating Syn-

thetic Inner-Class Data.
2. Identify clusters in each class by using self-organizing mapping method.

3. For any two clusters from fierent classes, find their boundary data by using Algorithm
Identifying Boundary Data which the concept of Hausd®distance between two sets is

applied as in Thanathamathee and Lursinsap (2013).

4. Adjust imbalanced class ratio to the nearly balanced class ratio by generating new syn-
thetic boundary data of each cluster using Algorit@enerating Synthetic Boundary
Data and AlgorithmAdjusting Number of Boundary Data.

Algorithm 1: Generating Synthetic Inner-Class Data

1. Letd denote a considered data point in a minority data clsan be referred as
q®Y in case 1 oa®™ in case 2 in Section 3.2.2

2. For each data poird do
3 LetK be a set ok original nearest data points df
4, Let£ be minimum values dfd — p|| wherep € K.
5 For each data point € K do
6 If 12l > ¢ then
7 Generate a new data point

d =d+ (50— d))-
8. else
9. Generate a new data point

d =22

10. EndIf
11. EndFor
12. EndFor

|ld —pl| is the Euclidean distance betwekandp.
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Let c® andc® be two close clusters from classksindB, respectively. The following

algorithm is for identifying the boundary data of two close clust&tsandc®).

Algorithm 2: Identifying Boundary Data

1. LetB8® = ¢ bea set of boundary data faf?.

2. LetB® = ¢ be a set of boundary data fof).

3. For each data poird € c® do

4. Find all data pointp € c® whose||d — p|| is minimum
and put them ir8®),

5. EndFor

6. For each data point € ¢® do

7. Find all data pointsl € ¢® whosel|d — p|| is minimum
and put them iBA.,

8. EndFor

Before the last step, the concept of well-known resamplingriggie called Bootstrap-
ping was adapted to estimate the natural standard deviation of data distribution of each cluster.
Let @9 and (™ be the original standard deviation and the natural standard deviation of
training data of a cluster, respectively. A set of synthetic data is generated within the suitable

space calculated by using thefdrence o9 ando("),

Suppose clasa is a considered class.

Algorithm 3: Generating Synthetic Boundary Data

Letg; € {—1,1} be a random sign value for each featire
Leta; € (0,1] be a random constant for each feature
Let DW = ¢ be the set new boundary data points.
For eachd € 8™ do

Generate a new boundary data paihsuch that

d' =d+abi Iai(org) - a'i(nat)l.

DW= DA y{d}).

6. EndFor

P w N DR

o
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Let N® and N® be two sets of all identified boundary data points in clagsasdB, respec-

tively.

Suppose is the dimensions of feature space.

Algorithm 4: Adjusting Number of Boundary Data

1. If IN® < |N®)| then
2. 1t N® <pthen
3. Use AlgorithmGenerating Synthetic Boundary Data to

generate additional data pointsAd®) until N® > 7.

4. EndIf
5 If IN®<|N®)|then
6. Use AlgorithmGenerating Synthetic Boundary Data to
generate additional data pointsAd® until [NV
equalgN®).
7. EndIf
8. else
9. If N® <5 then
Use AlgorithmGenerating Synthetic Boundary Data to
generate additional data pointsAd® until A > .
10. EndIf
11, If IN®| <IN then
12. Use AlgorithmGenerating Synthetic Boundary Data to
generate additional data pointsAd® until N4
equalgN®).
13. EndIf

14. EndIf
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34 Data Preparation

A set of 55E.coli reference pathways were obtained from aMAZE database (Lemer et al.,
2004). All metabolites associated with all reactions in this reference pathway set were listed.
There are 166 reactions and their associated 215 metabolites. Based on the available 2D chem-
ical structures in LIGAND database from KEGG database (Goto et al., 2002) downloaded in
July, 14, 2010, the available 208 metabolites and their involved reactions were used to construct
a defined graplK as described in Sections 3.1 and 3.2.1 and obta@jedm- 1) metabolite
input queries wheren= 208. So, there are 4,456,296 metabolite input queries which they are
too huge. Instead of a big metabolite input query set acquired from a gradh, ...,K s from
sdisjoint sets of metabolitég,, ..., Vs were constructed wherss a number of connected com-
ponents discovered by constructing a combined graph &.adlli reference pathways. Then,

f:lCQ’" -(IVil — 1) metabolite input queries were obtained in order to prepare input feature pat-
terns. The whole 13 connected components were found out from combirteddiOreference
pathways and obtained each metabolite input qheryH wherej =1,2,...,| andl = 44,048.
Note that 5 reference pathways, namely, Phospholipid biosynthesis, Proline degradation, Proto
heme and heme O biosynthesis, Pyruvate oxidation pathway including Siroheme biosynthesis,

were excluded since some metabolites in such pathways have no 2D structure information.

Transformable or convertible properties were checked for every possible metabolite pair
as defined in Section 3.1. In order to detect the transformable property for each metabolite
pair (b,t), p possible simple paths with length no more than a certain Jaluere searched by
applying bread-first search graph traversal routine (Cormen et al., 2001) to discover each new
path. Later, information about intermediate vertices gained fpgmossible simple paths was
used for assigning 4 binary class targets to their relevant metabolite input queries according to

4 questions in Section 3.2.1.

To prepare each input feature pattexne A as explained in Section 3.2.2, molecular
features introduced by (Mu et al., 2011) including their calculation protocols were used as
the following. For each metabolite, 81 molecular properties were calculated by using JOELIib
2004 (JOELib, 2004), CDK 1.4.6 (Steinbeck et al., 2003) and MOPAC 2009 (Stewart, 2009).
Before computing all properties, its optimized 3D chemical structure was computed by using
MOPAC 2009 with a PM3 parameter set which the 3D structure originated from a 2D structure
with added explicit hydrogen atoms that was prepared by MolConvertor 5.5.1 (Marvin, 2011).
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After calculating all properties of all metabolites, all of them were checked that whether some
properties of some metabolites were able to be properly computed, if they«ane NaN, then

each of them is set to a constant distinct value comparing with all distinct values in its property.

3.5 Performance Evaluation

After a balanced binary class training dataBet {(x,ck)|k = 1,...,Ig}, prepared by the
method in Section 3.3, was trained by the feed-forward neural networks, each clas®oaiput
related to its testing dat@ such that §;,c;) € T was predicted by these trained models where
i=1,..,l7. Letci =1 be a positive(minority) class argl= 0 be a negative(majority) class.
According to confusion matrix, two aspects of the correct prediction between a class@utput
and its corresponding class targetvere evaluated as true positivé® and true negativé N,
whereas two aspects of the misprediction were measured as false pbsitaed false nega-
tive FN. Then, some traditional metrics in Figure 3.4, namely, accuracy, sensitivity (recall),
specificity, precision(positive predictive value), F-measure for positive and negative classes,
G-means and Matthews correlation &agent were calculated in order to assess more charac-
teristics of model performance. In addition, area under the cAti€ was also computed by

plotting ROC curve whera-axis is 1-specificity ang-axis is sensitivity.

TP+TN

TP+TN+FP+FN
+TN+FP+EN_

TP+FN

Accuracy:Acc =

(@
(b)
()

SensitivityRecall TP rate: TPR =
. i
TN+FP
PrecisiofiPositive predictive valuePPV = (d)
@ Whereﬁ =1 (t)
B2PPV +TPR’ N

NPV-TNR TN
Negative class F- ) = (1+p%)———=——— whereg = 1 andNPV = t
egative class F-measurg) = (1+8 )/SZNPV+TNR whereg =1 an TNIEN ®

G-mean:Gm= VTPR-TNR ()

TP-TN)—(FP-FN
Matthews correlation cdicient: MCC = ( )~ ) (9)
VTP+FP)(TP+FN)(TN+FP)(TN+FN)

Specificity TN rate: TNR =

Positive class F-measurEﬁP =(1+p9

Figure 3.4: Evaluation Metrics.

In comparative study (see Section 4.2), the statistical significance was analyzed by the
pairedt-test (Walpole et al., 2011) of the paired value sets from two comparing methods such
that each set was computed by the same performance evaluation. Each evaluation was calcu-

lated from the combined results of all sub-models. The pditedt is based on assumption
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that differences of pair are close to normally distributed. The null hypothesis iSaetice

of mean between the paired results from two methods equivalent to zero which it is given as
Ho : u1 —uo = 0, while the alternative hypothesis is such medfedence not equivalent to zero
which it is written asH; : u; —u> # 0. Denote thaj; — o is the population mean fierence.

Letd; = x3; — Xo be a diference of two values calculated by the same performance metric from
method 1 and method 2 wheires theit" trial(or theit” fold testing data) and; € D. There are

ID| = n trials for each considered method. The test statistic is given as follbwsl_/(sd/ \/n)
whered and sy are the mean and the standard deviation of tiieince seb, respectively.
Critical regions are found by constructing thdistribution withv = n— 1 degree of freedom.

The test process does not rejelgtwhen—t, ., <t <t,2, where the significant level is= 0.05,

otherwise, it implies thalt; is accepted.



CHAPTER IV

EXPERIMENTS AND RESULTS

This section exhibits the experimental results from applying the proposed methodology.
First, the ANNs supervised learning model results of the predictive ¢gjJass non-clasgy
models were shown. Second, performance results of these predictive model output values,
both original output scores and adjusted output scores were compared with those of another
method in many points such as thetdient number of the parallel trained sub-models, the
different output cut-® values for classifying the input data as clgss non-clasgj, and various
aspects of new unseen data performance reseltpérformance measurement according to

each particular sub-model, pathway and compound.
4.1 Training Neural Network Models and Evaluating Model Performance

From the previous section, the four input-target data E€tssuch that QJ,CEQ)) er@,
a; € A andq = 1,2,3,4 were ready for the next procedure that produced the balanced training
data set. Before handling an imbalanced training data set problem, although the number of
metabolite input queries were reduced by preparing them from dfaph,Ky , the size of a
data set] = 44,048, still be not easy to yield arffective feed-forward neural network model
with suitable parameters in reasonable time. Therefore, using a key feature as mentioned in
Section 3.2.3A was finally divided intay disjoint input pattern sub-sefs;, ..., A;,...Ag. On ac-
count of model performance evaluation, eacihpivas randomly partitioned into= 3 disjoint
sub-groups according to thefold cross validationy? ; AY = A;, with preserving the pro-
portion of clasgg and non-classg for g = 1,2,3,4 as nearly the same as before dividing them.
Later, each sub-data group marked&é@ became an input pattern part in the testing data sets
T such thatrj e A¥) and a’j,c@) e T, The rest two sub-data groups were combined as an
input part of each pre-training sub-data s& such thai; € 37, ., A and @;,c?) e 79,
Afterwards, all pre-training sub-data seﬁg),...,ri@,...,rg*) were applied for creating its corre-
sponding balanced training data %‘P,...,Bi(q),...,ng) as detailed in Section 3.3. An example
of the total 6 sub-data visualization before and after fixing imbalanced data using the proposed

method are shown in Figures 4.1 to 4.6.



clizz 1 ve non-class 1 class 2 ve. non-clasz 2 cliss 3 ve, non-class 3 clas 4 v, non-clies 4

sy

A LY
"MW Hh 2 i a 8 H B o oy e
- Bieln

L

Gmmam

F ) ! J . ]
n R P T il . 1 g = L7 L .
[ B B BRI DMyt oa W oA Fy

I : |

I Fi AL 4 AW
DAY A TR M TITA WM
Tawirwr

AL
HaAN NN s
Feurs:

{1.15) (1.16)

{1.13)

Figure 4.1; Parallel coordinate plots of sub-data 1 in class g vs. non-class g where g = 1,2,3,4 ((1.1)-(1.4Y). Each line represents each of input feature pattern, while
the values in each feature were normalized in [ -1, 1]. Red and cyan lines belong to the pre-training data with minority class and majority class, respectively. Blue and
green lines belong to the nearly balanced training data with minority class and majority class, respectively. The Fold 1 ({1.53-(1.83), fold 2 ({1.93-(1.12)}), and fold 3
{{1.13)-(1.16)) nearly balanced training data were created by the fold 1, fold 2, and fold 3 imbalanced pre-traiming data, respectively, using the proposed method.

6z



class 2 ve. non-clasz 2 cliss 3 ve non-class 3 claes 4 v, non-cliss 4

clizz 1 ve non-class 1

sy

il S R R 1 TR pal TR L
e e T T R R N T
Yontis o

(2.11

J an .,[_-_ gl
8 5N B oht M ody A 1 W M oA T h e

™

; L 5 L A8 Rl

TR EE LLENMEEE L ]
e

GE L EELNE EE TN .
i

N
Fawrs:

; | A [hi
N AN E R ]
Pamrar Femre
(2.14) (2.15) (2.16)

Ll L. 110N R = .
1T 8 11 % 3 2 0388 dV 48 5 % 9T Td M
Tawirwr

{2.13)

Figure 4.2: Parallel coordinate plots of sub-data 2 in class g vs. non-class g where g = 1,2,3,4 ((2.1)-(2.4Y). Each line represents each of input feature pattern, while
the values in each feature were normalized in [ -1, 1]. Red and cyan lines belong to the pre-training data with minority class and majority class, respectively. Blue and
green lines belong to the nearly balanced training data with minority class and majority class, respectively. The fold 1 ({2.5)-(2.8)), fold 2 ({2.9)-(2.12)), and fold 3
{{2.13)-(2.16)) nearly balanced training data were created by the fold 1, fold 2, and fold 3 imbalanced pre-traiming data, respectively, using the proposed method.
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Figure 4.5: Parallel coordinate plots of sub-data 5 in class g vs. non-class g where g = 1,2,3,4 ((5.1)-(5.4)). Each line represents each of input feature pattern, while
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{{5.13)-(5.16)) nearly balanced training data were created by the fold 1, fold 2, and fold 3 imbalanced pre-traiming data, respectively, using the proposed method.
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Any of supervised learning methods can ta@ to train a sub-modeM g for i =
1,2,..,gandg= 1,2 3,4. In this work, the feed-forward neural network with scaled conjugate
gradient technique was used to build each predictive sub-nidggl. The activation func-
tion of both a hidden layer and an output layer is sigmoid function. Conventional parameters
not only in the feed-forward neural network training procedure but also in Kotiersetf-
organizing map(SOM) procedure, for instance, a number of epochs and a learning rfate etc
were identically set for every pre-training sub—dataé‘@tand their corresponding sub-model
Mq. However, there are some concerned factors that considerably impact performance of
each sub-modeM . One is numbers of neurons_(y-) and K.,y.), in 2D SOM method
(Section 3.3.1) for clustering majority(negative) and minority(positive) class data points, re-
spectively. Another is the number of neurossin a hidden layer of each feed-forward neural
network. Moreover, a neighbor threshokd s varied which may help improving performance

of sub-models (Section 3.3).

There are no clues how to select these three concerned parameters. Based on above
sub-data splitting methods as well as the following scheme of training and selecting predic-
tive model, theg-|g| sub-models were parallel trained. Then, each sub-model with suitable
concerned parameter values was picked out as the predictive sub-khgglethat yielded ac-
ceptable (maybe not optimum) performances in practical time. Initially, for each pre-training
sub-data se*ri(q) , a neighbor threshol# was set as 0, the numbers of neurons in 2D self-
organizing map bothx(_,y_) and ,,y,) were both set as (100) for the big size ofri“‘) or
(7,7) for the small-medium size of?. Note that the size of eaaf’ was about 2500 16,000
input patterns. The feed-forward neural network models were trained with various number of
hidden neurons as following: s=1,2,4,8,16,32 and 64. If there exists a trained model with
syielding all performance values being greater thatb@or all 3 diferent training and testing
sub-data sets, then, the process of seeking the appropriate paranxetgrsx(,y.,k,s), was
stopped, else the valueslgf(x_,y_) and ,,y,) were simultaneously selected guided by prior
performance results hoping that they would produce the better performance than the previous
round of selecting parameter values. The new valuds O£ ,y_) and ,,y,) were varied for
no more than 5 rounds due to the practicable time of performing the whole experiments in this
work. In the case of no appropriate parameter values, one trained mode avith round that
returned the better performance values among all of them was selected. These metrics (Section
3.5) for selecting sub-models are as the following:

1) Accuracy Acc) measures the whole correctness which is the fraction of the truly pre-



dicted minority and majority class samples in all predicted samples,

2) True positive rateTPR) measures the minority class sample correctness which is the

fraction of the truly predicted minority class samples in all minority class samples,

3) True negative rateT(NR) calculates in the same way as true positive rate, but it mea-

sures the majority class sample correctness,

4) Gmis Geometric mean of PRandTNR, and

5) Area under the ROC curv@&lJ C) represents a single value from ROC graph to show
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performance of each classifier which if it is more thah, @hen the model is better than ran-

domly guessing.

Table 4.1:Acc, TPR, TNR andGm performances at an output cuf@alue= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from théRI cross validation for
separating class 1 and non-class 1

Sub-data Acc TPR TNR Gm AUC
o 1 0.950+ 0.012 1.000+ 0.000 0.950+0.012 0.975:0.006 0.978-0.004
§ 2 0.857+ 0.060 0.959+ 0.001 0.856+ 0.061 0.906+ 0.032 0.910+0.043
2 3 0.780+ 0.024 0.839- 0.048 0.779:0.025 0.808:0.010 0.854+ 0.021
3 4 0.735+ 0.041 0.885+ 0.015 0.732:0.042 0.804:0.022 0.808+ 0.018
g 5 0.931+ 0.025 0.986+ 0.025 0.931+0.025 0.958:0.025 0.955+ 0.025
6 0.945+ 0.041 0.967 0.058 0.945+0.041 0.955:0.025 0.975+0.018
Overall 0.888+0.015 0.902+0.017 0.887 0.015 0.894+ 0.003 0.912+0.022
T 5 1 0.978+ 0.004 1.000+ 0.000 0.953t0.006 0.976t0.003 0.975+ 0.004
e o 2 0.947+ 0.047 0.987% 0.015 0.908+ 0.078 0.946: 0.047 0.944+ 0.048
R 3 0.880+ 0.019 0.943+ 0.024 0.809+ 0.048 0.873:0.022 0.903+ 0.028
gg 4 0.855+0.028 0.961+ 0.023 0.732-0.037 0.839:0.031 0.854+ 0.021
2E 5 0.979+ 0.031 0.989+ 0.019 0.969+ 0.044 0.979:0.031 0.97% 0.034
6 0.988+ 0.006 0.999+ 0.001 0.974+ 0.014 0.986t 0.007 0.983+ 0.008
Overall 0.910+ 0010 0.967+ 0.012 0.848+0.025 0.905t0.011 0.93% 0.019
- 1 0.948+ 0.016 0.767% 0.088 0.949+0.016 0.852:0.043 0.861+ 0.038
o 2 0.846+ 0.042 0.489+ 0.100 0.851+0.044 0.642:0.051 0.719+ 0.048
S 3 0.767+ 0.030 0.604+ 0.072 0.770:0.030 0.681+0.044 0.708+ 0.068
-g 4 0.728+ 0.031 0.672-0.099 0.7290.034 0.698: 0.037 0.720+ 0.055
& 5 0.923+ 0.021 0.689+ 0.119 0.925+-0.022 0.796:0.064 0.797% 0.053
6 0.945+ 0.041 0.633+ 0.153 0.945-0.042 0.770:0.098 0.836+ 0.037
Overall 0.883+0.013 0.633+0.051 0.884-0.013 0.748-0.036 0.797% 0.065
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Table 4.2: Acc, TPR, TNR andGm performances at an output cutealue= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from théRl cross validation for
separating class 2 and non-class 2

Sub-data Acc TPR TNR Gm AUC
o 1 0.947+0.015 1.000: 0.000 0.9474 0.015 0.973:0.008 0.975+0.006
§ 2 0.917+ 0.035 0.966+ 0.006 0.912+0.039 0.938:0.022 0.93% 0.028
2 3 0.878+ 0.028 0.939+ 0.038 0.875-0.028 0.906: 0.032 0.935+0.014
3 4 0.926+ 0.036 0.972+ 0.010 0.923+ 0.038 0.947 0.023 0.953+ 0.020
g 5 0.919+ 0.028 0.950+ 0.028 0.917A 0.031 0.933:0.009 0.943+ 0.009
6 0.948+ 0.025 0.995+ 0.009 0.948+0.025 0.971+0.013 0.979 0.010
Overall 0.929+ 0011 0.959+ 0.007 0.928-0.011 0.944+ 0.005 0.954+ 0.006
5 1 0.980+ 0.016 1.000+ 0.000 0.959+ 0.034 0.979:0.017 0.978+0.015
e @ 2 0.975+ 0.018 0.993+ 0.000 0.954+0.040 0.973:0.021 0.96% 0.022
EE 3 0.924+ 0.048 0.965+ 0.032 0.876+0.062 0.920t 0.048 0.934+ 0.026
g:g 4 0.962+ 0.027 0.987% 0.011 0.932-0.046 0.959- 0.029 0.959+ 0.024
28 5 0.922+ 0.021 0.982+ 0.007 0.85% 0.050 0.917 0.024 0.919+0.023
6 0.959+ 0.020 0.996t 0.004 0.922+ 0.036 0.958t 0.021 0.958+ 0.020
Overall 0.948+ 0.011 0.982+ 0.007 0.908t 0.015 0.945+0.011 0.958+ 0.005
- 1 0.939+ 0.014 0.821+0.044 0.939+0.014 0.878:0.020 0.927% 0.018
o 2 0.853+ 0.035 0.714+ 0.043 0.869+ 0.043 0.787 0.010 0.84G+ 0.006
S 3 0.856+ 0.021 0.774+ 0.042 0.860+ 0.024 0.816:0.013 0.888+ 0.019
-g 4 0.896+ 0.022 0.737% 0.017 0.905+0.023 0.816t 0.007 0.875+0.035
i 5 0.912+ 0.014 0.900+ 0.028 0.913-0.016 0.906+0.008 0.919+ 0.005
6 0.946+ 0.022 0.892+ 0.099 0.946+0.022 0.918:0.042 0.95% 0.013
Overall 0.915+ 0008 0.785+ 0.010 0.919+0.008 0.849+0.004 0.898+0.011

Table 4.3:Acc, TPR, TNR andGm performances at an output cuffealue= 0.5 includingAUC per-
formance of they = 6 sub-models with selected parameter values from th&&RI cross validation for
separating class 3 and non-class 3

Sub-data Acc TPR TNR Gm AUC
3 1 0.968+ 0.008 0.989+ 0.010 0.968+ 0.008 0.978+ 0.007 0.984+ 0.007
§ 2 0.947+ 0.002 0.947% 0.037 0.947 0.008 0.947 0.014 0.95% 0.009
2 3 0.920+ 0.024 0.935+ 0.016 0.918+0.025 0.927 0.021 0.933+ 0.021
3 4 0.911+ 0.037 0.945+ 0.033 0.906+ 0.038 0.925:0.034 0.936+ 0.026
g 5 0.942+ 0.003 0.982+ 0.008 0.939+ 0.003 0.960t 0.005 0.966+ 0.002
6 0.970+ 0.005 0.983+0.015 0.970+0.005 0.976:0.008 0.984+ 0.003
Overall 0.950+ 0.007 0.951+ 0.017 0.950+ 0.007 0.950t 0.012 0.962+ 0.009
© 3 1 0.973+ 0.014 0.999+ 0.002 0.946+0.030 0.972£0.016 0.971+0.018
g @ 2 0.985+ 0.007 0.987 0.011 0.983+ 0.005 0.985t 0.007 0.982+ 0.007
s i 3 0.968+ 0.013 0.978- 0.007 0.956+0.021 0.967 0.014 0.965+ 0.015
—gg 4 0.967+ 0.021 0.982+0.012 0.951+0.030 0.966t0.021 0.966+ 0.020
z2£ 5 0.979+ 0.012 0.995+ 0.005 0.961+0.020 0.978:0.013 0.97% 0.010
6 0.969+ 0.011 0.997% 0.004 0.937% 0.022 0.967 0.012 0.966+ 0.014
Overall 0.971+ 0012 0.984+ 0.007 0.95% 0.018 0.970:0.012 0.970+0.012
- 1 0.963+ 0.007 0.901+ 0.067 0.964 0.008 0.932:0.031 0.973+0.010
o 2 0.869+ 0.013 0.70% 0.066 0.898+0.011 0.796:0.038 0.888+ 0.031
3 3 0.877+ 0.014 0.804+ 0.018 0.886+0.016 0.844+0.012 0.898+0.014
g 4 0.842+ 0.036 0.725+ 0.045 0.859+ 0.040 0.789 0.032 0.858+ 0.020
& 5 0.907+ 0.015 0.809+ 0.017 0.914+0.016 0.860:0.014 0.913+0.018
6 0.968+ 0.001 0.899+ 0.035 0.968+ 0.001 0.933t0.018 0.961+ 0.021
Overall 0.925+ 0.005 0.777+0.006 0.934+0.005 0.852+0.005 0.922+ 0.005
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Table 4.4: Acc, TPR, TNR andGm performances at an output cutealue= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from théRl cross validation for
separating class 4 and non-class 4

Sub-data Acc TPR TNR Gm AUC
o 1 0.964+ 0.006 0.990+ 0.010 0.963+0.005 0.976:0.008 0.983+ 0.000
§ 2 0.963+ 0.007 0.959+ 0.004 0.965+0.009 0.962+ 0.006 0.978+ 0.011
2 3 0.973+ 0.004 0.985:0.001 0.970+0.005 0.978:0.002 0.986+ 0.002
3 4 0.974+ 0.009 0.990+ 0.002 0.970+0.011 0.980t 0.006 0.988+ 0.006
g 5 0.975+ 0.009 0.986+ 0.003 0.974-0.010 0.980: 0.006 0.99G+ 0.004
6 0.966+ 0.021 0.996+ 0.003 0.965+ 0.022 0.980: 0.012 0.983+ 0.009
Overall 0.968+ 0.006 0.983+0.001 0.967 0.007 0.975:0.003 0.985+ 0.002
5 1 0.965+ 0.006 0.995+ 0.007 0.933: 0.011 0.963t0.006 0.962+0.010
e @ 2 0.985+ 0.008 0.989+ 0.002 0.981+0.014 0.985:0.008 0.984+ 0.009
EE 3 0.995+ 0.003 0.995+ 0.002 0.995+ 0.004 0.995+ 0.003 0.994+ 0.003
g:g 4 0.996+ 0.001 0.998+ 0.001 0.994+ 0.002 0.996+ 0.001 0.995+ 0.002
28 5 0.996+ 0.003 0.999+ 0.001 0.992+ 0.006 0.995: 0.003 0.994+ 0.004
6 0.987+ 0.004 0.998t 0.002 0.974+ 0.007 0.986+ 0.004 0.984+ 0.004
Overall 0.992+ 0.002 0.996+ 0.001 0.987 0.004 0.991+ 0.002 0.991+ 0.003
- 1 0.960+ 0.006 0.925+ 0.059 0.961+ 0.007 0.942:0.028 0.974+0.012
o 2 0.931+ 0.004 0.909+ 0.012 0.940+ 0.001 0.924+ 0.007 0.955+ 0.006
S 3 0.928+ 0.002 0.899+ 0.011 0.934+ 0.005 0.916+0.004 0.954+ 0.007
-f‘g 4 0.916+ 0.016 0.870+ 0.036 0.9274 0.012 0.898: 0.023 0.94% 0.021
i 5 0.949+ 0.009 0.912:0.003 0.954+0.010 0.933:0.006 0.966+ 0.007
6 0.962+ 0.016 0.930+ 0.020 0.963:-0.016 0.946: 0.015 0.973+0.011
Overall 0.948+ 0006 0.898+0.002 0.952-0.006 0.925+0.004 0.961+0.001

In each trial of diferent training and testing sub-data sets, thselected sub-models
M1q)s----Mig)s----M(gq fOr classq were combined. Since a sigmoid function of an output
layer yields each output value in the range from O to 1, the selectedicutlae was (b for
categorizing output values into clagss. non-clasg. Each performance evaluation result was
averaged as presented by Tables 4.1 to 4.4. The selected)slasson-clasg| predictive sub-
models forq = 1,2,3,4 show the satisfied average performance values including its standard

deviation from 3 trails in almost sub-data as well as the overall values.

Considering Tables 4.1 to 4.4, every overall performance value of the nearly balanced
data sets is better than such overall values of the testing data set, while almost each of overall
performance values of the pre-training data sets still be competitive with each of such values of
the nearly balanced data sets. Each nearly balanced data set is composed of the border data from
its pre-training data set and also the new synthetic data according to the proposed approaches.
The calculated molecular properties including the pre-process for reducing and transforming the
input features provide the pre-training data set with their class targets. The methods produce
the nearly balanced data set from the pre-training data set which isthotldito learn by each

neural network sub-model with adequate parameter values.
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Generally, with the appropriate parameter values, ghe 6 nearly balanced sub-data
sets are quite suitable for training neural network models as predictive models for the defined
questions 1 to 4. When the performance values of unseen data like the testing sub-data sets
were determined, the combined model built for the broadest question i.e. class 4 vs. non-class 4,
yielded the superior performance values. Moreover, its class distribution is slightly imbalanced
data situation (Table 4.9). This question is about whether input compounds are not roughly
related in some routes unlike the kinds of clas2 a&r 3. In sequence, the models of more
specific questions like class 3 vs. non-class 3 and class 2 vs. non-class 2 produced the good
performance values (Tables 4.8 and 4.7). Meanwhile, the models built for the most specific
guestion which asking about whether ¢ga® step relation of transformable compounds such
as class 1 vs. non-class 1 yielded the lefsative performance values among four defined
guestion models. Also, its class distribution is the most critically imbalanced data situation
(Table 4.6).

The chosen parameter sets along with each binary class data ratios of the pre-training
and the testing sub-data sets including the nearly balanced training sub-data sets are shown by
Tables 4.6 t0 4.9.

In each sub-data set for each question in sub-model building tasks, the more the seriously
imbalanced binary class sub-data sets exist, the harder the imbalanced data handling is. More-
over, the &ective models were yielded by the suitable parameter values. Based on the four
pairs of Tables, namely, Tables 4.6 and 4.1, Tables 4.7 and 4.2, Tables 4.8 and 4.3 and Tables
4.9 and 4.4, the clagpvs. non-clasg) ratio of each sub-data set can be observed bésiies
making them to each corresponding nearly balanced sub-data set along with their performance
values. Additionally, when setting adequate numbers of SOM neurons for coarsely clustering
data in practical time as well as starting with no need to apply generating more minority data

process, the first initial assigned parametery_, x,,y, andk gave the satisfied results.

Furthermore, the models using original imbalanced data before becoming the nearly bal-
anced data were also trained by the proposed processeg} Setected models corresponding
to g sub-space for each binary class were combined in each fold data set. Each performance
evaluation result from all 3-fold data sets, both training and testing data, was averaged and pre-
sented by Table 4.5 including its standard deviation. There were two predictive sub-model types

for each question model. One was built by the imbalanced trainingdatdereas another was
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Table 4.5: Acc, TPR, TNR andGm performance at output cutfo= 0.5 includingAUC performance
of theg = 6 combined sub-models with selected parameter values from-tfedd3cross validation for
separating each model output set into binary classes.

Model

Acc

TPR

TNR

Gm

AUC

0.997+ 0.000
0.888+ 0.015
0.910+ 0.010

0.589+ 0.064
0.902: 0.017
0.967+ 0.012

1.000+ 0.000
0.887+ 0.015
0.848+ 0.025

0.766+ 0.043
0.894+ 0.003
0.905+ 0.011

0.797 0.039
0.912+ 0.022
0.93% 0.019

0.991+ 0.000
0.883+ 0.013

0.170+ 0.048
0.633+ 0.051

0.997+ 0.001
0.884+ 0.013

0.409+ 0.059
0.748+ 0.036

0.636t 0.022
0.797% 0.065

0.993+ 0.003
0.929+ 0.011
0.948+ 0.011

0.813+ 0.074
0.959¢ 0.007
0.982+ 0.007

0.999+ 0.001
0.928+ 0.011
0.908+ 0.015

0.900+ 0.041
0.944+ 0.005
0.945+ 0.011

0.932: 0.012
0.954+ 0.006
0.958¢t 0.005

0.972+ 0.001
0.915+ 0.008

0.484+ 0.031
0.785+ 0.010

0.987+ 0.001
0.919+ 0.008

0.691+ 0.022
0.849+ 0.004

0.869t 0.015
0.898t 0.011

0.992+ 0.001
0.950+ 0.007
0.971+ 0.012

0.883+ 0.022
0.951+ 0.017
0.984+ 0.007

0.999+ 0.000
0.950+ 0.007
0.957+ 0.018

0.939+ 0.012
0.950: 0.012
0.970+ 0.012

0.947 0.009
0.962+ 0.009
0.97G: 0.012

0.969+ 0.001
0.925+ 0.005

0.692+ 0.017
0.777+ 0.006

0.985+ 0.000
0.934+ 0.005

0.825+ 0.010
0.852+ 0.005

0.915+ 0.006
0.922+ 0.005

0.994+ 0.001
0.968+ 0.006
0.992+ 0.002

0.940+ 0.011
0.983t 0.001
0.996+ 0.001

0.999+ 0.001
0.967+ 0.007
0.987+ 0.004

0.969+ 0.005
0.975t 0.003
0.991+ 0.002

0.971 0.010
0.985t 0.002
0.992+ 0.003

To
Th

0.982+ 0.001
0.948+ 0.006

0.883+ 0.014
0.898+ 0.002

0.992+ 0.001
0.952+ 0.006

0.936t 0.007
0.925+ 0.004

0.964+ 0.012
0.961+ 0.001

Two predictive sub-model types denoted by subsaigitd n which were trained by the imbalanced training dagtand the nearly

balanced training data sé, respectively.r, B and the unseen testing dafa, were applied to both types of selected sub-models

to measure the performance. Each bold performance value of each binary class is the highest one comparing among the training
data or the testing data.

constructed by the nearly balanced training dBtaThe output values were in the range from

0 to 1 due to a sigmoid function, so the selected diitralue was (b for categorizing output
values into two classes for each question model. Considering Table 4.5, generally, the com-
bined sub-models trained B yielded the clearly improved PR, Gm andAUC values of the
unseen testing datd,. The highAcc and TNR values including the lowl PR values reflect
misrepresentation of separating function trained by the imbalanced data. Except in the question
4 combined sub-models, their performance value$ ¢dok slightly different because of the

least imbalanced ratio among 4 defined question models. Only sub-space training seem to be

enough to yield ffective sub-models.
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Table 4.6: The selected parameter values and distribution ratios of class 1 and non-class 1.

Sub- ifold 2D SOM neurons Clusters FFNN Pre-training data set Testing data set Nearly balanced
daa hidden training data set
(xy-) (X, Ys) c. Cy units Total Ratio of class 1 Total Ratio of class 1 Total Ratio of class 1
to non-class 1 to non-class 1 to non-class 1
1 60 41 1 5,485 0.20: 99.80 2,743 0.22:99.78 1,856 52.05: 47.95
1 2 (10,10) (10,10) 68 39 10 1 5,486 0.22:99.78 2,742 0.18:99.82 2,276 51.32:48.68
3 63 36 1 5,485 0.20:99.80 2,743 0.22:99.78 2,514 56.96 : 43.04
1 22 36 1 1,739 1.44:98.56 870 1.38:98.62 2,588 47.30:52.70
2 2 @7 @7 31 21 10 1 1,740 1.44:98.56 869 1.38:98.62 1,514 52.05: 47.95
3 23 27 8 1,739 1.38:98.62 870 1.49:98.51 1,903 46.24 : 53.76
1 46 42 1 4,858 1.32:98.68 2,428 1.32:98.68 6,053 54.57 :45.43
3 2 (7,7) 7,7) 48 35 10 1 4,857 1.32:98.68 2,429 1.32:98.68 5,429 52.22:47.78
3 47 43 2 4,857 1.32:98.68 2,429 1.32:98.68 6,557 52.11: 47.89
1 49 32 1 3,461 2.02:97.98 1,729 1.97:98.03 4,210 54.44 : 45.56
4 2 (7.7) 7.7) 49 29 3 1 3,460 1.99:98.01 1,730 2.02:97.98 4,414  51.93:48.07
3 49 30 1 3,459 1.99:98.01 1,731 2.02:97.98 4,202 55.02:44.98
1 35 21 2 2,948 0.78:99.22 1,473 0.81:99.19 1,592 51.63:48.37
5 2 (7,7) 7,7) 36 20 10 1 2,946 0.78:99.22 1,475 0.81:99.19 1,574 51.97 : 48.03
3 24 24 64 2,948 0.81:99.19 1,473 0.75:99.25 1,787  42.08:57.92
1 27 16 1 10,878 0.10: 99.90 5,436 0.09:99.91 1,206 56.38 : 43.62
6 2 (7.7) 7.7) 26 19 5 16 10,876 0.10: 99.90 5,438 0.09:99.91 1,090 51.74 : 48.26
3 31 19 2 10,874 0.09:99.91 5,440 0.11:99.89 1,004 52.59:47.41
Table 4.7: The selected parameter values and distributimsrat class 2 and non-class 2.
Sub- .y, 2D SOM neurons Clusters FFNN Pre-training data set Testing data set Nearly balanced
iMfold k . L
daa hidden training data set
0Cy-)  (Xe,Ys) [ units Total Ratio of class 2 Total Ratio of class 2 Total Ratio of class 2
to non-class 2 to non-class 2 to non-class 2
1 71 16 2 5,485 0.47 : 99.53 2,743 0.47: 99.53 1,657 50.27 : 49.73
1 2 (10,10) (10,10) 70 16 0 4 5,486 0.47:99.53 2,742 0.47:99.53 1,688 50.59: 49.41
3 65 15 2 5,485 0.47 : 99.53 2,743 0.47 : 99.53 1,418 51.34 : 48.66
1 58 57 64 1,739 10.18: 89.82 870 10.23:89.77 2,560 51.25:48.75
2 2 (10,10) (10,10) 58 44 0 4 1,740 10.17 : 89.83 869 10.24: 89.76 3,196 54.82:45.18
3 61 53 8 1,739 10.24: 89.76 870 10.11: 89.89 3,225 59.44 : 40.56
1 100 69 4 4,858 5.48:94.52 2,428 5.48: 94.52 7,770 55.39: 44.61
3 2 (10,10) (10,10) 99 63 0 8 4,857 5.48:94.52 2,429 5.48:94.52 7,916 54.83:45.17
3 99 63 2 4,857 5.48:94.52 2,429 5.48:94.52 7,350 51.37 : 48.63
1 96 53 4 3,461 5.20:94.80 1,729 5.21:94.79 6,056 54.16 : 45.84
4 2 (10,10) (10,10) 97 59 0 2 3,460 5.20: 94.80 1,730 5.20:94.80 5,834 54.51: 45.49
3 98 61 16 3,459 5.20: 94.80 1,731 5.20:94.80 5,710 52.75:47.25
1 63 41 1 2,948 4.99:95.01 1,473 4.96 : 95.04 2,508 52.15:47.85
5 2 (10,10) (10,10) 61 42 0 2 2,946 4.96: 95.04 1,475 5.02:94.98 2,234 51.30: 48.70
3 67 37 1 2,948 4.99 : 95.01 1,473 4.96 : 95.04 2,466 51.34 : 48.66
1 71 25 1 10,878 0.57:99.43 5,436 0.55:99.45 2,352 50.77 : 49.23
6 2 (10,10) (10,10) 68 21 0 4 10,876 0.56 : 99.44 5,438 0.57:99.43 2,040 50.49 : 49.51
3 72 25 2 10,874 0.56:99.44 5,440 0.57:99.43 2,172 50.00 : 50.00
Table 4.8: The selected parameter values and distributimsrat class 3 and non-class 3.
Sub- ithfold 2D SOM neurons Clusters FFNN Pre-training data set Testing data set Nearly balanced
daa o hidden training data set
(Cys) (X ys) C. C: units Total Ratio of class 3 Total Ratio of class 3 Total Ratio of class 3
to non-class 3 to non-class 3 to non-class 3
1 68 19 1 5,485 1.11:98.89 2743 1.09:98.91 1690 53.02: 46.98
1 2 (10,10) (10,10) 68 20 O 4 5,486 1.09:98.91 2742 1.13:98.87 1822 50.71: 49.29
3 70 20 2 5,485 1.11:98.89 2743 1.09:98.91 1864 50.54 : 49.46
1 60 48 16 1,739 15.30: 84.70 870 15.29:84.71 2960 50.95 : 49.05
2 2 (10,10) (10,10) 55 54 0 32 1,740 15.29:84.71 869 15.30: 84.70 3458 58.76 : 41.24
3 56 62 8 1,739 15.30: 84.70 870 15.29:84.71 3823  45.30:54.70
1 99 84 8 4,858 11.53:88.47 2428 11.53:88.47 9996 54.20: 45.80
3 2 (10,10) (10,10) 99 78 0 16 4,857 11.53:88.47 2429 11.53:88.47 10659 54.80 : 45.20
3 98 82 8 4,857 11.53:88.47 2429 11.53:88.47 9560 52.97: 47.03
1 95 76 8 3,461 12.28 : 87.72 1729 12.26 : 87.74 9779 53.16 : 46.84
4 2 (10,10) (10,10) 99 76 0 32 3,460 12.28:87.72 1730 12.25:87.75 10099 53.08 : 46.92
3 98 76 8 3,459 12.26 : 87.74 1731 12.31: 87.69 10282 53.74 : 46.26
1 60 43 16 2,948 6.78:93.22 1473 6.72:93.28 3037 55.22:44.78
5 2 (10,10) (10,10) 64 45 0 4 2,946 6.75:93.25 1475 6.78:93.22 2823 52.60: 47.40
3 65 47 8 2,948 6.75:93.25 1473 6.79:93.21 2845 53.46 : 46.54
1 63 24 2 10,878 0.91:99.09 5436 0.90:99.10 2080 53.65: 46.35
6 2 (10,10) (10,10) 68 23 0 4 10,876 0.91:99.09 5438 0.90:99.10 1978 51.26: 48.74
3 68 18 1 10,874 0.90:99.10 5440 0.92:99.08 2162 52.45: 47.55
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Table 4.9: The selected parameter values and distribution ratios of class 4 and non-class 4.

Sub- 4, 2D SOM neurons Clusters FFNN Pre-training data set Testing data set Nearly balanced
i"fold k . L
daa hidden training data set
[CEA R C. Cy units Total Ratio of non- Total Ratio of non- Total Ratio of non-
class 4 to class 4 class 4 to class 4 class 4 to class 4
1 72 27 2 5,485 1.79:98.21 2,743 1.79:98.21 2,505 52.10: 47.90
1 2 (10,10) (10,10) 64 28 0 2 5,486 1.79:98.21 2,742 1.79:98.21 2,325 52.69:47.31
3 71 23 2 5,485 1.79:98.21 2,743 1.79:98.21 2,452 54.24 : 45.76
1 52 63 16 1,739 26.91:73.09 870 26.90: 73.10 3,991 49.11: 50.89
2 2 (10,10) (10,10) 50 62 0 8 1,740 26.90: 73.10 869 26.93:73.07 4,026 49.03: 50.97
3 58 64 4 1,739 26.91: 73.09 870 26.90: 73.10 4,123 48.56 : 51.44
1 99 89 64 4,858 18.32: 81.68 2,428 18.33: 81.67 12,154 55.83:44.17
3 2 (10,10) (10,10) 9 91 0 32 4,857 18.32:81.68 2,429 18.32:81.68 12,055 56.32:43.68
3 98 95 32 4,857 18.32: 81.68 2,429 18.32: 81.68 11,837 55.88:44.12
1 94 87 32 3,461 19.50 : 80.50 1,729 19.43: 80.57 11,352 56.29:43.71
4 2 (10,10) (10,10) 97 91 O 64 3,460 19.48: 80.52 1,730 19.48: 80.52 11,137 55.36 : 44.64
3 96 92 64 3,459 19.46 : 80.54 1,731 19.53:80.47 12,211 56.78 : 43.22
1 63 58 32 2,948 12.55: 87.45 1,473 12.49:87.51 3,485 58.79:41.21
5 2 (10,10) (10,10) 50 54 0 32 2,946 12.49: 87.51 1,475 12.61:87.39 3,455 56.87 : 43.13
3 60 52 32 2,948 12.55: 87.45 1,473 12.49:87.51 2,494 52.21:47.79
1 65 30 16 10,878 1.58:98.42 5,436 1.55:98.45 2,916 52.26: 47.74
6 2 (10,10) (10,10) 64 26 O 4 10,876 1.57:98.43 5,438 1.56:98.44 2,788 52.51:47.49
3 70 31 4 10,874 1.55:98.45 5,440 1.60:98.40 2,964 52.23:47.77
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4.2 Comparative Study

To point out pros and cons of this metho&& L value (Zhou and Nakhleh, 2011), the
conserved chemical content between two aligned compounds as stated by information from
KEGG RPAIR database (Kotera et al., 2004) divided by the maximum chemical content of
these two compounds, was calculated for each metabolite input query. To illl&Thtealue
calculation, two biochemical reactions R1 and R2 (in Figure 3.1a) are demonstrated as the
following equations: R1IA+ B=2C+D and R2)C=2E+F. A metabolite input queri = {A,C}
is a compoundd and a compoun@ situated on each side of the first reaction. The originally
definedSCL for h; = {A,C} when ignoring product and substrate information in the reaction is

as follows:
|ICnt(A) N Cnt(C)|
max(Cnt(A)[,|Cnt(C)|)’

SCliacy =

whereCnt(:) is chemical content e.gCnt(A) is calculated by counting non-hydrogen atoms
of A. For SCL of a metabolite input querly; = {A,E,C} , originally definedSCL is simply

extended as follows:

|ICnt(A) N Cnt(E) N Cnt(C)|
max(Cnt(A)|,|Cnt(E)|,|Cnt(C)|)’

SCLaEC) =

After calculating eaclsCL value for each metabolite input query, the comparison between the
SCL method and the proposed method can be arranged. In addition, due to-tpequess of

the originalSCL value calculation, in the case of no information from KEGG RPAIR database,
the SCL is set to zero. In this work, SIMCOMP (Hattori et al., 2010) was used for computing

alignment of chemical contents.

For comparative tasks (Sections 4.2.1 to 4.2.3), besides the output values yielded from
the proposed method called our result I, the adjusted output values calfecesult | is one
method which adds the2structural compound alignment pre-proces$61L method as the
post-process applied to the output values. Apart from that, the mean of our result | from four
models is denoted as our result [I which each mean value associated with its input pattern is the
average of 4 output values from all 4 predictive models. The mean 6éfresult | from four
models is stated as duresult Il in a similar way. The improved performance result Il from

result | are expected.

The paired-test at 5% significant level (Section 3.5) was explored (Section 4.2.2) for the
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Table 4.10: AUC performance of the combined 3-fold testing data of the total sub-models when the
number of sub-modelsg, in the data splitting step is 6,8 and 9 for separating dgesd non-clasg for
g=1,234.

q No.of sub-models SCL ourresult| ourresultll odresult] oufresult Il

6 0.7952 0.8980 0.8376 0.9209

1 8 09548 0.7759 0.9065 0.8055 0.9256
9 0.7860 0.9067 0.8136 0.9264
6 0.8975 0.9480 0.9115 0.9553

2 8 09113  0.8945 0.9474 0.9060 0.9544
9 0.8947 0.9467 0.9065 0.9542
6 0.9226 0.9496 0.9281 0.9496

3 8 08764  0.9249 0.9473 0.9276 0.9475
9 0.9226 0.9461 0.9262 0.9470
6 0.9614 0.9685 0.9625 0.9729

4 8 09147  0.9637 0.9675 0.9647 0.9716
9 0.9634 0.9666 0.9650 0.9714

Each boldAUC value of each clasg and non-classf model is the highest one.

paired performance value sets from two comparing methods. Each set is computed by the same
performance evaluation metric. The 5% significance test at severaticugloes was done.
Before doing the pairetitest, the fect of the various numbers of sub-models was observed
(Section 4.2.1). Later, the unseen data prediction was analyzed (Section 4.2.3) in terms of sub-
model and pathway viewpoints by using non-ctitvalue metric likeAUC (Section 4.2.3.1) as

well as compound and pathway viewpoints by using correctness measurement at a chosen cut-
off value (section 4.2.3.2 and 4.2.3.3). Additionally, they were visualized in forms of pathway

maps (Section 4.2.3.4).

4.2.1 Sub-pre-training data size impact

At first, the pre-training data were separated igte 6 sub-data according to a sub-data
division step in the proposed method (Section 3.2.3). Then, overall acceptable predictive sub-
models for questions 1 to 4 were trained and selected. To incréasdveness of predictive
class models, some of sub-data were recursively dividedjigt8 andg = 9 sub-data. The var-
ious score outcomes as above mentioned inclugidh scores were compared BYyJC values
(Table 4.10). The very slightly fferent performance betwegn= 6, 8 and 9 in each type of
scores indicates that= 6 pre-training sub-data is enough to receive overall acceptable pre-
dictive sub-models for questions 1 to 4. Increasing numbers of pre-training sub-data is slightly

increasing performance for overall predictive class 1 sub-models, but other class models are not
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Figure 4.7: Precision-Recall graphs of the combined 3-fold testing data of the total sub-models when the
numbers of sub-modelg, in the data splitting step are 6,8 and 9 for separating ¢Jas®l non-clasg
forq=1,23,4.

in the same trends. Because the more sub-data may make the looseness of global information
in training each predictive class model, but, in class 1 sub-models, they may reduce the com-
plex of separation hyper-planes according to the neural network model building. However, the
more amounts of sub-data certainly sacrifices more time in training and selecting satisfactory
sub-models. Besides, the precision-recall graphs were plots in Figure 4.7 which each area un-
der its curve also showed the resemble resultala€ values in Table 4.10. BotAUC values

and precision-recall graphs from uesult J1l mostly improve those from our resulfll. In

the next experimentg,= 6 sub-models were selected in building each predictive cjassdel

whereq = 1,2,3,4 and measured performance characteristics in many viewpoints.



46

42.2 Cut—off value variation and significance test

Both SCL values and output values, called the combined model result I, from an output
layer of the combined neural network sub-models are in the range from 0 to 1, therefore various
cut-of values were set from.05 to Q95 increasing by @5 to separating botBCL scores and
output scores into two classes. Apart from that, the same varioudtcusloes were applied
to the mean output scores, called the combined model result Il, as well. Then, to measure and
compare the performance 8€CL values, our output values and &utput values in two forms
of the combined model result | and Il, each performance evaluation metric as in Figure 3.4 was
computed at each cutfovalue for diferent testing data and pre-training data from all 3 trails.
The average performance values ware plotted as in Figures 4.8 to 4.11. Clearly, considering the
whole performance results, the average output values denoted as the combined model result |
from both our method and dtimethod (see (a) in Figures 4.8 to 4.11) as well as the average
mean output values denoted as the combined model result Il from both our method %nd our
method (see (b) in Figures 4.8 to 4.11) are comparative at almost ever{f aattees. When
focusing on only a cutfd value that yielded the highest performance value from each metric,
the averag&CL values seems to mostly loss other two comparing values (Figures 4.9 to 4.11)
excepting the performance values of the predictive models for question 1 (Figure 4.8). Next,
the cut-df values with the highest performance values between the combined model result | and
Il (Figures 4.9 to 4.11) were considered. The highest performance values of each metric in the
combined model result Il mainly belongs to our method o emethod whereas such highest
values only some of them belongs to our method of ougthod in the combined model result
I. In contrast, the half of highest performance values in the combined model result | and Il of
the predictive models for question 1 (figure 4.8) belongS@h method while the half of them
look inconclusive from the plotted graphs. Additionally, most of the performance outcomes in
Figures 4.8 to 4.11 indicate that the models rather little over fit to the pre-training data sets than

the testing data sets.

The next plots aim to show each performance at the selectedicuatoes with signifi-
cance test from diirent values, comparativel$gCL values as well as the overall output values
of each predictive class sub-model when the assodidtiedd testing sub-data was applied. The
default cut-¢f value was 0.4 for evaluating performancesS@fL values (Zhou and Nakhleh,
2011). Hence, to comparatively measure the performanS€tfvalues, our output values and

our” output values in two forms of the combined model result | and II, each performance evalu-
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ation metric (as in Figure 3.4) was computed for all 3 folds of the testing data. Furthermore, the
small, medium and high cudbff values were set as 0.3, 0.5 and 0.8, respectively, to separating
both SCL scores and output scores into two classes. The additional metrics apart from those 5
metrics for selecting sub-models are as follows:

1) Precision PPV) measures the fraction of truly predicted minority class samples in all
samples that are predicted as minority class samples,

2) Positive class Fmeasuref 1P)is harmonic mean of precision and recall,

3) Negative class FmeasureE1N) is harmonic mean of NR noting that negative pre-
dictive value NPV) whereNPV measures the fraction of truly predicted majority class samples
in all samples that are predicted as majority class samples, and

4) Matthews correlation cdigcient (MCC) measures the superiority of binary class clas-
sification which the high truly predicted both majority and minority class samples and the low
wrongly predicted both majority and minority class samples produc®MB€ values close to
ideal value, 1.
Later, to compare each performance value from twitedgnt method results at each €aff
value, the paired-test with 5% significant level was performed for every possible pair in the
same score type i.e. | or ll. The average performance values ware plotted (Figures 4.12 to
4.15). In addition, the average performance values are shown with their standard deviation if
each of them significantly overcomes its compared performance value from another method
result. Because of an assumption that thfeedénces of each paired value in the process of the
paired t-test must be normally distributed, Kolmogorov-Smirnov test for the normal distribu-
tion test (Gibbons and Chakraborti, 2003) was also performed in every comparing result pair
of each performance metric. The null hypothesis is defined as fferatices of each paired
value follow the standard normal distribution whereas the alternative hypothesis is defined as
such diterences do not follow the standard normal distribution. There are three pair types (six
pairs in total) for each performance evaluation e.g. regiilof SCL method vs. our method,
result JIl of SCL method vs. odrmethod and resulfll of our method vs. odrmethod. Every
result pair of all performance evaluation failed to reject null hypothesis which implied that the

differences of every result pair are normally distributed at 1% significant level.
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Figure 4.8: Performance evaluation of class 1 vs. non-class 1 prediction model &t vatue =
0.05,0.1,0.15,...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets, respec-
tively, while blue, magenta and green represent each average performance value resulting from applying
the 3-fold pre-trainingesting data sets t8CL methods, our methods and &umethods, respectively.
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Figure 4.9: Performance evaluation of class 2 vs. non-class 2 prediction model at vatue =
0.05,0.1,0.15,...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets, respec-
tively, while blue, magenta and green represent each average performance value resulting from applying
the 3-fold pre-trainingesting data sets t8CL methods, our methods and &umethods, respectively.
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Figure 4.10: Performance evaluation of class 3 vs. non-class 3 prediction model &t vatue
=0.05,0.1,0.15,...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets,
respectively, while blue, magenta and green represent each average performance value resulting from
applying the 3-fold pre-trainintesting data sets t8CL methods, our methods and 8unethods, re-
spectively.
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Figure 4.11: Performance evaluation of class 4 vs. non-class 4 prediction model &t vatue
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spectively.
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Figure 4.12: Performance evaluation of fivéfelient scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cuf@alue= 0.4 of every clasg| vs. non-clasg model,q=1,2,3,4, was

plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.ln each axis, all five average values were comparatively scaled into values betweenOto 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pdaéstsignificance

test are shown. Denote thiatfand® are a significantly better performance results in the types of scores,

| or 1, from the following paired methodSCL method vs. our metho&CL method vs. odt method,

and our method vs. otimethod, respectively.
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Figure 4.13: Performance evaluation of fivéfelient scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cuf@alue= 0.3 of every clasg| vs. non-clasg model,q=1,2,3,4, was

plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values betweenOto 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the paestsignificance

test are shown. Denote thatrand® are a significantly better performance results in the types of scores,

I or Il, from the following paired methodSCL method vs. our metho&CL method vs. odr method,

and our method vs. ofimethod, respectively.
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Figure 4.14: Performance evaluation of fivéfelient scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cuff@alue= 0.5 of every classg| vs. non-clasg model,q=1,2,3,4, was

plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values between0to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the paestsignificance

test are shown. Denote thatfand® are a significantly better performance results in the types of scores,

| or 11, from the following paired methodSCL method vs. our metho&CL method vs. odr method,

and our method vs. ofimethod, respectively.
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Figure 4.15: Performance evaluation of fivéfelient scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cuf@alue= 0.8 of every clasg| vs. non-clasg model,q=1,2,3,4, was

plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.ln each axis, all five average values were comparatively scaled into values between0to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pa&stsignificance

test are shown. Denote thiatfand® are a significantly better performance results in the types of scores,

| or 1, from the following paired methodSCL method vs. our metho&CL method vs. odt method,
and our method vs. otimethod, respectively.
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Comparing performance values at cdf-ealue= 0.4 (Figure 4.12), the mostly common
significant performance results come from ‘omethod in both | and Il (line d-e) for all 4
predictive models. These suggest that the combination of the proposed method and irrelevant
compound filtering usingCL = 0 or the existent compound pairs in RPAIR database works
well for predicting various defined degrees of relevant compounds (Section 3.2.1). In addition,
the general performance values of models that the balanced training data originated from the
pre-training data with the less degrees of the imbalanced situation tend to be high. Moreover,
the small, medium and high cuff values were set as 0.3, 0.5 and 0.8, respectively, therefore,
the same representation of the performance values was shown (Figures 4.13 to 4.15). The
typical results are also similar to Figure 4.12 except the class 1 vs. non-class 1 model. The
outcomes of cut4b variation and significance test point out that céitxariation obviously
affects the general performance results of all compared methods in the class 1 vs. non-class 1
model which it contains the highest degrees of imbalanced pre-training data. However, in the
cases of the lesser degrees of imbalanced pre-training data, the predictive model performance

can be improved by the proposed methods. Especiall§,raathod in both | and II.
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42.3 Unseen data prediction and comparison

In this experiment, the four models from combining each of six selected sub-models
corresponding to each clagsnodel forg= 1,2, 3,4 were used in the tasks of predicting unseen
data patterns prepared by the 7-pathway examples. Each unseen input pattern was predicted
by three models derived by the previous 3-fold cross validation procedure, then a max output
value was a predicted output value. Theses followirtgcoli pathways were selected from 7
different pathway functions:

1) purine metabolism involved in a process of nucleotides,

2) valine leucine and isoleucine biosynthesis involved in a process of proteins,

3) streptomycin biosynthesis involved in a process of secondary metabolites,

4) methane metabolism involved in a process of energy metabolism,

5) nicotinate and nicotinamide metabolism involved in a process of cofactors
and vitamins,

6) phospholipid biosynthesis involved in a process of lipids, and

7) pyruvate oxidation pathway involved in a process of carbohydrates.
These pathways were downloaded from KEGG Pathway as the same version of KEGG Ligand
database used for preparing relevant compound features except the last two pathways came
from aMAZE database as the same database we used in model building (see Section 3.4). Their
relationship according to our four defined questions was extracted into a data pattern set with

four target sets.
4.2.3.1 AUC performance: sub-model vs. pathway perspective

A data pattern set with four targets was divided into 6 sub-data according to a key feature
calculated in a sub-data division step (Section 3.2.3). First one, the output scores associated with
each unseen data pattern were predicted by each sub-model of classes 1 to 4. Then, based on the
results of the previous sectioAlJ C performance evaluation of all 6 sub-data was calculated by
applying scores from otimethod Il. Another one, the output scores yielded by each sub model
of classq was gathered and re-divided according to each pathway example they are associated
with. Then,AUC values of scores from ofimethod Il was computed. Afterwards, bos/C

values were compared withJC values ofSCL method.

Focusing on every clasgmodel in Figure 4.16AUC results of scores from otimethod

Il in the 39-4" and the 8-6" sub-models are clearly better and slightly better than results
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of scores fromSCL method, respectively, whileAUC results of scores fron$CL method

in the -2 sub-models obviously outperform results of another methad.C values of
scores fronSCL method in purine metabolism, streptomycin biosynthesis, and nicotinate and
nicotinamide metabolism are greater than results of scores frofmuethod Il. However, for

the most partsAUC results of scores from otimethod Il in the rest four pathway examples are
higher tharAUC values of scores frorBCL method. In the sub-model view, the large parts of
overall sub-models yield output scores from’oonethod Il with the betteAUC performances.

In the pathway perspective, both methods seem to complement each other witlfahentli
efficient AUC performances. Interestingly, some drawbacksSGiL score is inffective in
some compounds involved lipid pathways and a pyruvate oxidation pathway like acetyl-CoA
and acetate (Zhou and Nakhleh, 2011), but, the gréi€ results of scores from otimethod

Il in these two cases were found.
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Figure 4.16: AUC performance comparison between the combine model result |l bynetlmod and
those results b$CL method for all 4 defined question models. Note that the new unseen input data were
derived from the 7-pathway examples (see Section 4.2.3)
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Figure 4.17: Distribution amount of pathways according toahelite types of 5&coli pathways from
aMAZE (Lemer et al., 2004) that their involed reaction and metabolite sets were used in model training
processes (Section 3.4).
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42.3.2 Correctness performancecompound perspective

In the form of correctness measurement, accursamymeasures how good the method
correctly predict in both binary classes in a data pattern set is. However, in the imbalanced
binary class data, the majority class accuratenégstaAcc. Then, G-mearGm would be
suitable to represent the reasonable correctness of each binary classes since it is the geometric
mean ofTPR andTNR (Figure 3.4). In this task, the 172 input-target sets were prepared due
to all available 2D compound structures from the 7-pathway examples. For each set, every
metabolite query in such set has one distinct compound in common. After that, to measure how
accurate they are in the compound viewpoint, correctness performance denGtbédsed on
Gm, TPR and TNR were dfered as the following: a) if that set contains binary targéis,
performance was calculated @of the output scores at cutie:0.5 from our method Qg ),
those from out method | Cyy#), @and those fronSCL method Cscy) in comparison; and b)
if that set contains only either a positive or a negative target, eitR& or TNR performance

was calculated &8 of the output scores at cutfe0.5, namelyCqyr, Cour#, andCscy .

Cour» Court, @andCsc Of the 172 input-target sets were calculated for all four defined
guestions. Eaclk performance value is in [@]. To visualize and simplify alC results (see
figure 4.18),C values were categorized into four levels as the followingCX [0,0.25] are
the low values denoted as white color;2k (0.25,0.50] are the medium-low values denoted
as green yellow color; 3 € (0.50,0.75] are the medium-high values denoted as brown color;

and 4)C € (0.75,1] are the high values denoted as blue color.

In Figure 4.18,Coyr, Cour#, andCsc Of the 121 input-target sets for all four defined
guestions has been shown. The @s¢sults of the 51 input-target sets are omitted because none
of them are the higlC values. For the 121 input-target sets which each of them is associated
with a compound, they are displayed afeatient colors as the following:

1) some of them are dark green color labeled as the positive seen metabolites if they are
involved in the training data and they also appear on the reference maps,

2) some of them are italic and light green color labeled as the negative seen metabolites
if they are involved in the training data and they do not appear on the reference maps,

3) some of them are dark red color labeled as the positive unseen metabolites if they are
not involved in the training data and they also appear on the reference maps, and

4) some of them are italic and light red color labeled as the egative unseen metabolites if
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they are not involved in the training data and they do not appear on the reference maps.

Additionally, 66 in 121 distinct common compounds in each set are the seen metabolites. Apart
from that, for each input-target set associated with a compound, such compounds participated

in one or more than one of 7-pathway examples (see Section 4.2.3) were also identified.

The groups ofC results can be analyzed acrosffatient defined questions and com-
pared methods. First, almost all Gfresults of input-target set id 1-26 associated with each
compound have hig@® values across all defined questions and compared methods. More than
half of them are the input-target sets of the negative seen metabolites. S€coglilts of
input-target set id 27-41 associated with each compound were explored. In question 1 model,
it was found that set id 27-32 yielded results from three methods with @igalues whereas
set id 33-41 yielded results from our and bunethods with highC values. In question 2-4
models, they were found that a third of them, id 27-32, which are the positive unseen metabo-
lites have the higlCsc. values as well as around a third of them, id 33-36, which are the
positive seen metabolites have the high, andC,,+ values. Focusing on set id 27-32, most
of them are from example pathways concerning nucleotides, secondary metabolites and en-
ergy metabolisms which are known as the rare trained data in the training processes (Figure
4.17). Almost all of set id 33-41 are the positive seen metabolites that they failed to achieve
highCsc. values across four defined guestions. When considering each compound involved in
set id 27-41, the most compounds are phospholipidsGilycerone phosphate, 1,2-Diacyl-sn-
glycerol, CDP-diacylglycerol, Phosphatidylglycerophosphate, Phosphatidylserine. Such com-
pounds with long chain shapes and their route characteristics of lipid transformations cause
no high SCL scores (Zhou and Nakhleh, 2011). The second groups are compounds carry-
ing formyl or acetyl groups for attaching to other compounds by its roeesAcetyl-CoA,
Methanol, Formaldehyde(Methanal), and Formate. An input-target set associated with Glycine
yields high correctness in questions 1 and 4 models since Glycine is an amino acid with simple
structure and also the positive seen metabolites as the trained data. It is involved in many pairs in
class 1 like a hub of transformation, so this may be a reason that yielde@ halues in ques-
tion 1 and 4 models. The rest of them are myo-Inositol, 1D-myo-Inositol 3-phosphate, Urate,
Nicotinamide and Oxalureate which all positive unseen metabolites excepting Nicotinamide.
Because they are not obvious to discuss about their Gighvalues via only visualization of
resemble structures or their route characteristics, these may be implied that the trained neural

network models canfiectively predict these kinds of them. Third, the most of input-target set
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id 42-60 associated with each compound are from as Valine Leucine and Isoleucine biosyn-
thesis which is protein pathways and such pathways are the main parts in the trained data (see
Figure 4.17). In question 1 model, &l},,+ values are high while a half @sc, values are high.

In other question model€,+ values are still high in a large group of sets. Fou@hesults of
input-target set id 61-74 associated with each compound were investigated. In question 1 and
3 models, the higl€sc. values are the main results, but in question 2 and 4 models, the high
Cour# values are the main results. Same as input-target set id 42-60, the most of compounds
are from Valine Leucine and Isoleucine biosynthesis. The last@a#gsults of input-target set

id 75-121 were considered, only in question 1 model can yield mainly high correctness from
SCL method. Nearly all sets are associated with compounds from Purine metabolism which is

nucleotide pathways and such pathways are not participated in the trained data (Figure 4.17).

In conclusion from the compound perspective, filtering irrelevant 2D structure pair of
compounds as otimethod can improve the output values from the proposed method because it
helps to eliminate noise results in some casgsset id 42-60. Apart from that, almost all cases
of high Cy,r values are also hig8,,,+ values. Besides, input-target sets that yielded either high
Cour Values orCy,+ values in at least one question model are mainly associated with the seen

metabolites involved in the trained data.
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Figure 4.18: The correctness performar€egvaluation of four defined models in compound perspec-
tives. Each class model, the output scores were obtain&Chymethod, our method |, and dumethod

I. From 174 compounds obtained by the 7-pathway examples, there are 172 available 2D compound
structures. These are 121 results with at least one@igalue of 172 input-target sets such that every
metabolite query in a set contains one compound in common. The right side shows pathway example
id (see Section 4.2.3) which each compound is participdfedalues were categorized into four levels

as the following: 1)C € [0,0.25] denoted as white color; ZJ € (0.25,0.50] denoted as green yellow

color; 3)C € (0.50,0.75] denoted as brown color; and @)e (0.75,1] denoted as blue color. Each set
involved each compound is displayed aetient colors as the following: 1) dark green color labelled as
positive seen metabolites; 2) italic and light green color labelled as negative seen metabolites; 3) dark red
color labelled as positive unseen metabolites; and 4) italic and light red color labelled as negative unseen
metabolites. Note that the details of seerseen metabolites alticomputation are in Section 4.2.3.2.
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42.3.3 Correctness performancepathway perspective

In this task, the metabolite queries prepared from the 7-pathway examples were gathered
into each input-target set associated with each pathway example (see Section 4.2.3). In one
input-target set, every metabolite query contains at least a metabolite that is participated in such
considered pathway. Then, the output results of each set for all four defined question were eval-
uated the correctness performanCein three compared method as Section 4.2.3.2. In addition,
the way to define class target becomes an issue in comparison. In the definitiomutdioot
lite transformation network (Section 3.1), every existing compound pairs in the reference maps
can be transformable in one step when there exist at least a reaction to change one to another.
This was defined because of the following two reasons. First, each metabolite acting as a main
or side compound did not be defined in networks since the results of trained model would ex-
press and define them. Second, base8©h method, it also prefers this definition, so it would
be a reason for comparison. Howev@rperformance when the transformation obtained from
original reference maps like xml files from KEGG pathway database was also shown. In Table
4.11, the four defined class targets obtained from both metabolite transformation network and
original reference map yielded the same trends of correctness perfornr@aricesach of the
7-pathway examples. Both Purine metabolism and Streptomycin biosynthesis are the kind of
the rare data in the training data set,Gg; values are maximum in all four questions com-
paring toCq,y andCgy,+ values. However, Methane metabolism is also the kind of the rare
data in the training data set, but maximum values are mainly obtaineddggnvalues. Apart
from that maximunC,,, values still be found in main results of Pyruvate oxidation pathway
which is carbohydrate pathways. These kinds of pathways are not tiny parts of the training data
set. All maximum values across four defined questions are obtainedGggmvalues in an
input-target set of Phospholipid biosynthesis which is lipid pathways although lipid pathways
are small parts of the training data set. All maxim@g),« values were also shown from results
of Nicotinate and Nicotinamide metabolism which is also the kind of very small data in the
training data set. The output results of valine Leucine and Isoleucine biosynthesis yielded the

maximumC values fromour” or SCL method in diferent defined questions.

In brief, the correctness performance at a chosen fiutatue in both pathway and com-
pound perspectives indicate that the trained data mustfbeisnt to cover considered kinds of
pathways such that the required accurate prediction was achieved by the trained model (Tables
4.11to 4.12).
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Table 4.11: TheC performance evaluation of four defined cases in pathway perspectives. Each class
model, the output scores were obtainedSyL method, our method I, and dumethod I. There are

7 input sets with 2 target sets according to 7 metabolite query sets of the 7-pathway examples. The
two target sets for comparison were obtained by definition called metabolite transformation network and
original reference maps (see Section 4.2.3.3).

Metabolite transformation network iai
The 7-pathway examples &.coli C Original reference maps

Class 1] Class 2] Class 3| Class 4| Class 1] Class 2] Class 3] Class 4

CscL | 0.731 | 0.590 | 0.518 | 0.538 | 0.773 | 0.656 | 0.581 | 0.594
Purine Metabolism Cour | 0.227 | 0.237 | 0.336 | 0.275 | 0.328 | 0.244 | 0.336 | 0.272
Cou# | 0.194 | 0.225 | 0.336 | 0.267 | 0.328 | 0.241 | 0.342 | 0.274
CscL | 0.773 | 0.722 | 0.673 | 0.691 | 0.774 | 0.718 | 0.676 | 0.691
Valine Leucine and Isoleucine BiosynthesjsCo, | 0.644 | 0.588 | 0.757 | 0.761 | 0.659 | 0.591 | 0.757 | 0.761
Cou# | 0.692 | 0.618 | 0.820 | 0.803 | 0.708 | 0.621 | 0.821 | 0.803
CscL | 0.838 | 0.634 | 0.548 | 0.657 | 0.838 | 0.634 | 0.548 | 0.657
Streptomycin Biosynthesis Cour | 0.449 | 0.477 | 0.247 | 0.363 | 0.449 | 0.477 | 0.247 | 0.363
Cou# | 0.464 | 0517 | 0.253 | 0.371 | 0.464 | 0.517 | 0.253 | 0.371
CscL | 0509 | 0.322 | 0.378 | 0.391 | 0.623 | 0.000 | 0.000 | 0.329
Methane Metabolism Cour 0.680 | 0.441 | 0.251 | 0.516 | 0.745 | 0.457 | 0.573 | 0.704
Cou# | 0.557 | 0.397 | 0.268 | 0.428 | 0.683 | 0.424 | 0.433 | 0.593
CscL | 0.652 | 0.374 | 0.265 | 0.325 | 0.652 | 0.374 | 0.265 | 0.325
Nicotinate and Nicotinamide Metabolism | Cqyr 0.636 | 0.489 | 0.430 | 0.483 | 0.636 | 0.489 | 0.430 | 0.483
Cou# | 0.704 | 0.500 | 0.466 | 0.505 | 0.704 | 0.500 | 0.466 | 0.505
CscL | 0.739 | 0.614 | 0.632 | 0.650 | 0.739 | 0.614 | 0.632 | 0.650
Phospholipid Biosynthesis Cour | 0.812 | 0.867 | 0.862 | 0.885 | 0.812 | 0.867 | 0.862 | 0.885
Cou# | 0.877 | 0.883 | 0.882 | 0.911 | 0.877 | 0.883 | 0.882 | 0.911
CscL | 0.750 | 0.483 | 0.432 | 0.561 | 0.750 | 0.483 | 0.432 | 0.561
Pyruvate oxidation Pathway Cour | 0.722 | 0.781 | 0.896 | 0.771 | 0.722 | 0.781 | 0.896 | 0.771
Cou# | 0.827 | 0.763 | 0.859 | 0.727 | 0.827 | 0.763 | 0.859 | 0.727

Denote that bold values represent the maximum value in easftladel of each input-target set involved in each 7-pathway example.
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Table 4.12: Pie charts represent amount of the ggeseen compounds participated in each metabolite
guery set in theC performance evaluation of all four defined cases in the pathway perspectives. Each
class model, the output scores were obtained by SCL method, our method |, &ndeshod I. There

are 7 input sets according to 7 metabolite query sets such that each input set was evaluated by the 2 target
sets of the 7-pathway examples. The two target sets for comparison were obtained by definition called
metabolite transformation network and original reference maps (see Section 4.2.3.3).

No. of .
No. of Metabolite -
The 7-pathway examples off compounds . - Original reference
. : - metabolite transformation
E.coli with available . maps
queries network
structures
Purine Metabolism 96 433200 ” “
Valine Leucine and Isoleucine Biosynthg-
sis 46 46,575 ” ’
Streptomycin Biosynthesis 18 2,601 “ '
Methane Metabolism 19 3,078 ’ ‘
{

Nicotinate and Nicotinamide Metabolisr{ 28 10,206 , ‘
Phospholipid Biosynthesis 16 1,800 ) ‘
Pyruvate oxidation Pathway 10 405 J '

Denote that dark green, light green, dark red and light recesgmt amount of the positive seen metabo-
lites, the negative seen metabolites, the positive unseen metabolites and the negative unseen metabolites,
respectively (see Section 4.2.3.2 and Figure 4.18).
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4.2.3.4 Traditional map visualization: comparison with original reference maps and

metabolite transformation network

The comparison with references of 7-pathway examples in the form of two types of pos-
itive target maps as analyzing in Section 4.11 are visualized (Figures 4.19 to 4.25). These maps
were demonstrated to depict how good both compared methods in the positive class 1 predic-
tion are, in other words, one or two steps of compound transformation. All thick links are the
combined routes that are minority(positive) target class 1 and also the results of predicted links
from SCL method and odfrmethod | at cut-&f value= 0.5 in comparison. The vitualization
of class 1C results are nearly same trend AdC performance in the pathway perspective.
Both compared methods can predict both same affidrdit links. In a case of valine leucine
and isoleucine biosynthesis such that protein routes are mainly trained data. All target links
(FN =0) of class 1 data patterns Gumethod | at cut-ff value= 0.5 can be recovered as shown
in Figure 4.20.
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(a) A traditional compound-reaction map acording to definittalled metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
training.
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(b) A compound-compound map with only appearing metabolitea geference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.
Figure 4.19: Comparison of classvé non-class 1 true positiva(P) samples at cutfdvalue= 0.5 in
the illustration as a traditional map, (a) and (b),E&€oli purine metabolism. Denote that the green,
blue and orange links are true positivé) links predicted by botlSCL method and odirmethod I, only
our* method I, and on\BCL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively. In addition, the false negative links are grey.
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(a) A traditional compound-reaction map acording to definitalled metabolite transformation network including information from

a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
training.
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(b) A compound-compound map with only appearing metabolitea geference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.20: Comparison of classsd4non-class 1 true positiva(P) samples at cutfdvalue= 0.5 in the

illustration as a traditional map, (a) and (b),Btoli valine leucine and isoleucine biosynthesis. Denote

that the green, blue and orange links are true posii?e(inks predicted by botlSCL method and otir

method I, only ouf method I, and ony8CL method, respectively. The yellow links are drawn to fulfill

a conventional compound and reaction maps. The light yellow circles and the rectangles are compounds

and reactions, respectively.
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(a) A traditional compound-reaction map acording to definitalled metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
training.
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dTDP-6-deoxy-L-mannose

(b) A compound-compound map with only appearing metabolitea eference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.21: Comparison of classyd4non-class 1 true positiva(P) samples at cutfdvalue= 0.5 in the
illustration as a traditional map, (a) and (b),EBtoli streptomycin biosynthesis. Denote that the green,

blue and orange links are true positiVé) links predicted by botlSCL method and odirmethod I, only

our” method I, and on\8CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively. In addition, the false negative links are grey.
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(a) A traditional compound-reaction map acording to definittalled metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
training.
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(b) A compound-compound map with only appearing metabolitea reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.22: Comparison of classvé non-class 1 true positiva(P) samples at cutfbvalue= 0.5 in

the illustration as a traditional map, (a) and (b),Eo€oli methane metabolism. Denote that the green,

blue and orange links are true positiVé) links predicted by botlSCL method and odirmethod I, only

our method I, and on\8CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively.
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(a) A traditional compound-reaction map acording to definitalled metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
training.
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(b) A compound-compound map with only appearing metabolitea reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.23: Comparison of classsdnon-class 1 true positiva(P) samples at cutfdvalue= 0.5 in the
illustration as a traditional map, (a) and (b),Bfcoli nicotinate and nicotinamide metabolism. Denote
that the green, blue and orange links are true posiiRe(inks predicted by botlSCL method and odir
method I, only ouf method I, and ony8CL method, respectively. The yellow links are drawn to fulfill

a conventional compound and reaction maps. The light yellow circles and the rectangles are compounds

and reactions, respectively.
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(a) A traditional compound-reaction map acording to definitialled metabolite transformation network including information from
a referecnce map which is a file from aMAZE database as same version as used in model training.
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(b) A compound-compound map with only appearing metabolitea reference map acording to only information from a referecnce
file from aMAZE database as same version as used in model training.

Figure 4.24: Comparison of classsd4non-class 1 true positiva8(P) samples at cutfdvalue= 0.5 in the
illustration as a traditional map, (a) and (b),Etoli phospholipid biosynthesis. Denote that the green,

blue and orange links are true positiVé) links predicted by botlSCL method and odirmethod I, only

our method I, and on\8CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively.
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(a) A traditional compound-reaction map acording to definitalled metabolite transformation network including information from
a referecnce map which is a file from aMAZE database as same version as used in model training.

Pytuvate

Acetate

Acetyl phosphate

Acetyl=CoA

(b) A compound-compound map with only appearing metabolitea eference map acording to only information from a referecnce
file from aMAZE database as same version as used in model training.

Figure 4.25: Comparison of classsd4non-class 1 true positiva(P) samples at cutfdvalue= 0.5 in the
illustration as a traditional map, (a) and (b),Etoli pyruvate oxidation pathway. Denote that the green,
blue and orange links are true positiVé) links predicted by botlSCL method and odirmethod I, only
our* method I, and on\BCL method, respectively. The yellow links are drawn to fulfill a conventional

compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,

respectively. The dark yellow compounds have no structure data. In addition, the false negative links are
grey.



CHAPTER YV

DISCUSSION

5.1 Atomically convertibility of each considered metabolite input query in biochemical

transformation routes from a predefined graph

When two compounds given as a beginning metabolite and a terminal metabolite or three
compounds given as a beginning metabolite, an intermediate metabolite and a terminal metabo-
lite, the following basic questions which can be answered by information obtained from the
reconstructed biochemical transformation networks like metabolic networks. Whether there is
a route that transforms a beginning metabolite via an intermediate metabolite (if it is given) to a
terminal metabolite, where a route or a path can be simply defined as the sequences of feasible
biochemical transformation steps or reactions. To discover a path, it concerns about whether
there exists possible biochemical transformation steps for the interested compounds. In real
life, many factors are involved in systematic and dynamic ways to transform one compound to
another. But, to construct such ideal relationship of a metabolic system, it requires a vast of

data with the big tasks.

To study some specific questions as the above mentioned question or discovering knowl-
edge from metabolic networks, partial data with some necessary factors to construct question-
specific network can be enough to achieve satisfied answer. One of such network is a metabolic
reaction network model which is a graph-based model that a set of interested metabolites are
connected by the relation of them in the feasible biochemical transformation steps as a network.
The algorithm used in graph theory problems such as shortest path with some conditions caused
by the predefined question is widely applied to give required information from the model. Thus,
the correctness of answers depends on the accurately defined transformation steps or each rela-
tion between two metabolites as well as some defined conditions to help in the elimination of
irrelevant relations. The accurately defined transformation steps are stored by many databases
according the objective of each database. However, in some specific data or objective, informa-
tion from databases still be lacking for reconstructing a specific graph model to answer specific

guestion.
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5.2 The four defined supervised classification problems and their corresponding binary

answers

In this work, instead of anotherftierent alternative or a new graph algorithm with some
conditions to answer an above mentioned question, a graph model was predefined and recon-
structed (see Sections 3.1 and 3.4), then this graph is ready to convert to the supervised classi-
fication problem which is solved by supervised learning methods like the feed-forward neural
network model to make the predictive model that can be predict the unseen data. In the experi-
ment, a graph was built up from a finite set of pathways fiewoli based on the collected data

from reliable database including the well-defined transformation steps.

An above mentioned question was divided into four specifically defined questions ac-
cording to degrees and types of metabolite relation (see Section 3.2.1 and Figure 3.1). The
most specific question, question 1 for the class 1 vs. non-class 1 model is about whether it is the
one or two steps of consecutive reactions. Another more specific question, question 2 for the
class 2 vs. non-class 2 model is about whether metabolites in a query are related in any paths
but only one of the interested compound pairs defined from metabolites in a query exists one
step of the biochemical transformation. The little more specific question of metabolite relation,
qguestion 3 for the class 3 vs. non-class 3 model is about whether metabolites in a query are
related in any paths but none of the interested compound pairs defined from metabolites in a
guery exists one step of the biochemical transformation. The less specific metabolite relation
guestion, question 4 which it implies the combination of classes 1 to 3 vs. otherwise. Later, the
routine graph algorithm based on the bread-first search algorithm with necessary conditions to
properly discover paths in this graph was used in order to search each answer of each metabolite
qguery in prepared query sets from a graph for all four defined questions. An answer stands for
a target class (clagpor non-clasgy) of each question predictive model. A metabolite query
stands for a set of a beginning, an intermediate (if it is assigned), and a target metabolites used
for preparing an input feature pattern. From each whole input data set and their target class set,
some of them were used for building each predictive model referred to the pre-training data sets
and the some of them were used for evaluating the correctness of the built predictive models re-
ferred to the testing data sets. Chemical properties e.g. molecular properties of each metabolite
in a metabolite query from its calculated optimized 3D structure by using 2D coordinate were
indirectly used as an input feature pattern, because the calculated molecular properties for each

metabolite query were transformed by numerical methods to represent new characteristics as an
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input feature pattern with the lesser number of properties. Henceforth, the pre-training data sets

could be used for the model building.

5.3 The algorithm to handle the seriously imbalanced binary class data before construct-

ing four feed-forward neural network predictive models

Unfortunately, the nature of the metabolite transformation network graph including the
defined metabolite query sets results in the unequal proportion of the binary class data. When
observing each binary class data distribution and the size before dividing the pre-training and
the testing data sets for each model building, they are huge and very unbalancing. The too
big training data set may cause time-consuming in training the feed-forward neural network
models. It would take a long time until reaching the the sum square error threshold or desired
number of epochs. So, the whole data was divided by using a key feature into more adequate
size and easy to be trained by the neural network method with suitable parameter values in
practical time as each the predictive sub-model which they was finally combined. Besides, the
sub-models can be trained at the same time. In an imbalanced data situation, it is commonly
known that impacts the typical sum square error in the weight updating procedure of the feed-
forward neural network. Therefore, the nearly balanced training data sets created by using the

pre-training data sets with the proposed methods were alternatively trained.

The proposed methods rely on two main criteria for managing and fixing the imbal-
anced data for each predictive model building. First, sub-groups of each binary class data was
discovered by clustering methods in order to help to handle the complex data space that the
binary class data could be hard to be separated by activation function of each hidden unit in
the feed-forward neural network algorithm. Second, due to the high unbalancing ratio of data,
the minority class data are very small comparing with the majority class data. Hence, there are
three procedures to handle the imbalanced data and turn it into the nearly balanced data. First
procedure (if it is necessary) before doing each class data clustering process, at mogatew
positioned between each minority data and edeminority neighbor data are created by the
proposed rules in order to oversample the minority data as well as expand the minority class
data space, appropriately. Second procedure, additional created data from resampling method
are combined to each sub-data group before finding two border data sets of each sub-cluster
pair with each one belonging toftBrent binary class. This procedure aims to not only find the

standard deviation fierence of before and after adding the created data as the suitably expand-
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ing breadth for more data generation in the next step but also provide the possibility that the
created data become one point in border data sets which infers that such new point locates new
possible space beneficial to model building for unseen data prediction. Third procedure, two
border data sets are found for each pair of minority and majority sub-data groups in a term of
under sampling. Then, they are used as initial data for synthetizing more data into the nearly

balance data with dficient size in a term of over sampling.

To explore the general ability of the new characteristics as input feature patterns with the
defined targets trained by the feed-forward neural network methods in all four defined problems,
all trained sub-models with adequate parameter values were sought out in the limited rounds
of sub-model building with the acceptable evaluation values from some metrics applied to the
testing data sets, the nearly balanced training data sets, and also the pre-training data set so that

each metric result value can be comparatively explored.

In searching appropriate parameter values, even though the experiments to ofisetye e
of difference of them in detail were not formed, it may be useful to discuss some issues. First,
the numbers of neurons in 2D SOM method should be enough to roughly cluster each binary
class data, because ifBaient numbers of neurons lead to bad capturing local groups resulting
in unsuccessful predictive model built by the nearly balanced training data sets. However, too
many numbers of neuron in 2D SOM methods cause SOM process to slowly reach the desired
stopping criteria and also make the lack of information in minority sub-data with very tiny size.
Additionally, the big occurring clusters according to the class distribution nature of that sub-
data bring about the large minority-majority sub-data pairs with the large humbers of border
data sets which produce the huge size of the corresponding nearly balanced training data set.
Second, the new generated data according td tiearest minority data in each minority data
would be unnecessary if the data space is not too complicat¢drarat too less informative to
cluster each binary class into sub-groups using 2D SOM method. Besides, the obtaining sub-
groups still provide needed information in a term of suitable extended minority data space in
order to dfectively generate the corresponding nearly balanced training data set for successful
sub-model building. The last one, the numbers of hidden neurons in each feed-forward neural
network model were systemically varied. Since thfedence in high dimensional sub-data
location and space, the feed-forward neural network models with various humbers of hidden

neurons were simultaneously performed.
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54 The experimental outcomes and comparison

The comparative study is to compare the strength of chemical linl&gle)(values with

our output values as various score types i.e/auf result J Il in classifying binary class data.

Our? output values are the output values from each our predictive model, but the pre-process of
SCL which the obviously irrelevant metabolite queries are set to zero. Also, the corresponding
output values are filtered to zero for fair comparison. Apart from that, there are two types of the
score results, namely, the model result | which all output values from every selected sub-model
built for that single question are combined and the model result Il which four output values
associated with one input pattern are average from all four predictive combined sub-model.
The results of these in detail are in the previous section. In this section, the crucial general

findings were discussed.

First, the appropriate numbers of sub-models building in the sub-data division step de-
pends on training time and the desired performance of the built sub-models for each particular
defined question. If it is too big, then it would take a long time and the chance of the missing
global information. But, if it is too small, then some sub-data with so complicated space would
take too long time to yield good performance. In this work, the total 6 pre-training sub-data

were appropriate.

Second, at the small(0.3), medium(0.5) and large(0.8) including default(0.4)forgho
ues, their performance results in all eight evaluation metrics were observed and théepair
significance test at.05 degree of significance was also performed. In all d¢iitralues, the
common performance results of the models fronyauf score J Il tend to reverse the degree
of the imbalanced data situation except those of the models §@mscores. The least to the
most specific questions for asking route-relevance of each metabolite query are the questions
4,3,2, and 1 with the least to the most degrees of the imbalanced sub-data setsfferbatdi
cut-off values &ect the performance results. The vefieetive general performance results of
four models were received by duscore | Il at cut-off values= 0.3 and 04. The most ffec-
tive SCL scores appeared at cuitoalue= 0.5, but they did not significantly outperformed in
every metric. These above results tell us that the proposed input feature patterns in a form of
the sub-space data can be classified by the supervised feed-forward neural network techniques.
The more improved output scores is digcore which combined the good point®EL calcu-

lation such that ouf score are set to zero sameSGL score if an input pattern query contains
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no common compound alignments. In addition, wesult | and 1l showed the comparable

performance noting that the significance test for the result pairs of them was not computed.

Third, from the déficient performance results of ofirscore | and II, more two tasks of
comparison were done. One is non-ctitamlue measuremenAUC values of our” score |I
were calculated and compared with thoseS@fL. scores for predicting the new data from the
7-pathway examples for the four defined questions in the form of each pathway evaluation and
each sub-model evaluation. The results showed that to predict the answers of questions about
route relevance of a metabolite input query set according to the sub-model perspective as the
proposed method or the traditional pathway perspective, bothmethod Il andSCL method
contain its dfferent advantages. However, the proposed method is more flexible, theoretically,
since the size of sub-data for training sub-model in a defined question can be tuned to increase

a chance of yielding the satisfied performance results.

Another one is the correctness measurement at a choseff salte. First experiment,
each metabolite input query set which one set is associated with each distinct compound from
the 7-pathway examples was prepar€ivalues of our score | and ofirscore | were calcu-
lated and compared with those 8CL scores. This experiment explored the correctness of
the compared methods in comparison for predicting each metabolite input query set when one
particular compound exists in every query of a whole set, in other words, the correctness in the
compound perspective was measured. This tells us that which one of the compared methods
is adequate for predicting an interested question about relevant route associated with a certain
compound. The results depict that some compounds can be accurately predicted the related
general paths by one of the compared methods in tfierdnt questions about route-relevance.
There are compounds that their hiGhvalues in the various questions can be received by our
# method I, but in the large numbers of compounds, their results suggest that theamre
I and SCL scores are competitive when predicting metabolite queries of the seen compounds
that are involved in the trained data. In the rare pattern input cases of the trained data, unsuc-
cessful prediction of the unseen data with the same rare cases were shown*ayethod.
However, they were unsuccessBEL prediction in some sets like lipid routes and compounds
carrying formyfacetyl groups, ouf method can gectively predicted them. Besides, results of
our# method seem to improve results of our method excepting in some small amount of sets.
Another experiment, the 7 metabolite input query sets and their input data sets were prepared as

same as the non-cutfovalue measurement, so this is the correctness evaluation in the pathway
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perspective. But, there are two target types that were prepared by original reference maps and
definition called metabolite transformation network for comparison. Generally, for both target

types, some pathways can be predicted with I@gksults from diferent compared methods.

From both experiments with the correctness measurement at a chosef valtie as
well as the non-cut4b value measurement, the necessary training data patterns should exist for

building supervised models with the desired abilities.
5.5 Using the four predictive models in unseen data prediction

Various experiments were represented in Section 4.2, however, they were illustrated in
each binary class prediction. So, our result | and eesult | earned by trained models of the
nearly balanced training data were depicted in a form of thel£onfusion matrices as the
combined four class prediction (appendix A) in the 7-pathways examples. Besidess the 4
confusion matrices of the 7 additional other pathways (Table A.15) concerning metabolism of
terpenoids and polyketides, metabolism of other amino acids, biosynthesis of other secondary
metabolites, and xenobiotics biodegradation and metabolism were also provided. All of them
were considered as the unseen data in the pathway/tgfessthat never involved in the trained
data. Each value at position j) in confusion matrix is amount of data patterns with their
target class such that a modej yields maximum output value and predict them as class
Denote that there are two types of targets obtained by definition, metabolite transformation
network, and original reference maps from KEGG pathway database as the same version as
the trained data. Confusion matrices show overall results of model prediction, since amount
of true positive patterns of all patterns in a set across four models are directly displayed. In
each testing data where their metabolite queries associated with a single pathway, the small
size of the testing data seems to have identical two types of targets and predicted outcomes.
In addition, the amount of positive target class 2 is more than those of positive target class
3. Confusion matrices of ofiresult | were always improved from those of our result | when
considering misclassified fraction of patterns (confusion value). Because adding information of
irrelevant 2D structures alignment of metabolite input queries can reduce misclassified amount
in positive class 4. Focusing on overall confusion matrices of the 7 additional other pathways,
the combined predictive models captured some simple in-route relations in a case of one or
two consecutive steps (positive class 1). These indicate that, in a case of the rare trained pattern

types such as the pathway tyfre¢es that never involved in the trained data, the simplest unseen



82

paterns of in-route relations were able to detected by the trained models. Moreover, the large
amount of correctly classified majority class like positive class 4 came frofiresult |. The

positive data patterns in classes 2 and 3 were hardly accurately predicted due to complication
of unseen in-route relation and the rare trained pattern types. In conclusion, these confusion
matrices tell us that decreasing misclassified outcomes still be further challenged. First, the
process of the nearly balanced training data preparation should be further developed to make
the dfective class separation of neural network models. Second, other features, especially, 2D
structure similarity still be necessary and should be added. Otherwise features should be further

considered, since the large amount of features would take a long time in model training process.

5.6 Combined four predictive models versus each predictive binary class model in un-

seen data prediction

In combined four predictive models from four binary predictive models, there are more
than one class models that predicted positive outcomes for one pattern. This situation occurred
in not small amount of patterns when predicting only one class for one pattern (combined four
predictive models). These should be explored in many viewpoints. First view point is the
shortest path criteria in assigning one of four defined class targets when given one considered
metabolite query. The shortest path conceptis widely used in the previous works of path search-
ing in metabolic pathways, since it is easy to cope with a simple graph model of metabolic
networks and the existing graph algorithms. Furthermore, every metabolite query from a con-
sidered metabolite transformation network can be categorized into one class based on our four
defined classes. However, the total routes in the form of metabolite transformation networks are
beyond just the combination of multiple shortest steps into a network (Figure 5.1). One weak
point of shortest path concept in the proposed definitions and other previous works is the lack
of information about alternative routes which may be necessary, especially, in the new path-
way design for metabolic engineering applications. So, some previous work based on graph
algorithms tried to extend shortest path conditions by gathering shortest paths not exceeding a
setting stefweight (Faust et al., 2011). Therefore, the extension of metabolite query can be de-
signed for further handling this issue. Anyway, ttiieetive binary class models can preliminary
offer class target in each binary class prediction for each predicted pattern. Second view point
is the combining four binary class models into one multi-class predictive model. The simplest
output combining scheme were used such as a maximum output value becomes the predicted

class outcome for such considered input pattern associated with a metabolite query. Apart from
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discussionin Section 5.5, th&ective output scheme for multiple binary class combination still

be challenged (Galar et al., 2011) and should be further improved.

beginning intermediate terminal
metabolite (b) metabolite (n) metabolite (¢)
Pyruvate Class 1 target from
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o\ VW@ ——©

Possible class 2 target from the whole view
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N :
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Figure 5.1: An example of the shortest path criteria issue ssudsed in Section 5.6. A graph was
defined connection by metabolite transformation network (Section 3.1). These example data were from
a part of eco00290.xml in KEGG Pathway Database(14-7-2010). Denote that the grey links are the
main routes. An example of a metabolite input query (1,2,3) : (Pyruvate,(S)-2-Acetolactate,2-Ox0-3-
hydroxyisovalerate) with class target 1 according to a shortest path condition is shown. A four bit vector
of Our” result | at cut-¢f value= 0.5 from four class models is (@,0,1). In addition, almost predicted
outcomes for metabolite queries in this picture mostly yielded more than one class predictionfét cut-o
value= 0.5.
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5.7 Other discussion

Other aspects bring to be discussed. The common benefit of supervised learning algo-
rithms is the flexibility to build model in any defined questions(input) and answers(class). In the
problem of identifying the type of relevance in the routes of each interested metabolite query.
Instead of these four questions, it can be variously defined. For instance, a metabolite query
consists of only in-route metabolites. Its input feature pattern can be any finite sets of proper-
ties that considerably contain the association with its defined target class. However, if the ratio
of class distribution in the training data is imbalanced, then, the pre-process should be added to
fix it to balance the training data. In addition, although it is time-consuming in the hard sepa-
rating data, the sub-data division method will help to simplify the complex location of the huge
data. Aside from that, there are many existing ideas to further improve predictive performance,

for example, the committee scheme training processes.



CHAPTER VI

CONCLUSION

To discover the meaningful paths from the metabolic reaction network model which

is a graph-based model, the partial data with some necessary factors to construct question-
specific network can be enough to achieve satisfied answer. In this work, the supervised learning
schemes such as the feed-forward neural network were alternatiteigain order to construct

the predictive models learned by prior reference data. Initially, a graph model was predefined
and reconstructed, then it was demonstrated dy.emli finite pathway set with the well-defined
transformation steps from the reliable databases. Later, this graph was ready to convert to
the supervised classification problems which were solved by the feed-forward neural network

model to make the predictive models that can predict the unseen data.

These above results tell us that the nearly balanced training data from the proposed in-
put feature patterns can be satisfactorily classified by supervised feed-forward neural network
techniques. Especially, the pre-training data contain enough necessary information like in the
defined questions 2 to 4 model building which they are asking about metabolite relation beyond
two step changing. In case of no more than two step metabolite transformation (a defined ques-
tion 1) model building, the enough necessary information of positive class is further required in
order to obviously obtain superior performance results from the proposed methods to those from
SCL method. The numerically transformed input feature patterns resulting from the computed
3D molecular properties of every metabolite in each considered query are suitable for training
their binary classes of transformation by supervised learning methods if the binary proportion
is quite equal. Apart from that, theD2co-ordinate compound alignment as the useful output
filter from SCL method, such as odrscores, is the reasonable combination which additionally
helps to yield the better performance results. Moreover, the input patterns as the enough repre-
sentatives for the whole considered routes of compound types are crucial fdfetiiveness

of such trained models.
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Appendix A

CONFUSION MATRICES OF UNSEEN DATA PREDICTION

Table A.1: The 4 4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Purine metabolism in the 7-pathway examples (section 4.2.3)

Predicted outcome: 1 2 3 4 Total of each clas Predicted outcome; 1 2 3 4 Total of each clas
Positive class 1 56 26 42 1,111 1,235 Positive class 1 28 14 23 226 291
Positive class 2 893 486 801 13,915 16,095 Positive class 2 460 234 407 6,132 7,233
Positive class 3 || 4,561 | 3,252 | 5,883 | 83,871 97,567 Positive class 3 || 2,738 | 1,982 | 3,824 | 55,191 63,735
Positive class 4 || 18,535| 14,245| 19,811 265,712 318,303 Positive class 4 || 20,819| 15,779 22,283 | 303,060 361,941

24,045 18,009 | 26,537 | 364,609 433,200 Total 24,045| 18,009 | 26,537 | 364,609 433,200

Total
a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
ges defined by metabolite transformation network. Confusiaistained from an original reference map. Confusion value

value= 0.37. 0.29.
Predicted outcome: 1 2 3 4 Total of each clas Predicted outcome; 1 2 3 4 Total of each clas
Positive class 1 45 13 27 1,150 1,235 Positive class 1 27 12 22 230 291
Positive class 2 750 417 688 14,240 16,095 Positive class 2 455 220 385 6,173 7,233
Positive class 3 || 4,203 | 2,982 | 5,567 | 84,815 97,567 Positive class 3 || 2,720 | 1,883 | 3,760 | 55,372 63,735
Positive class 4 || 12,312| 10,594 | 12,845 | 282,552 318,303 Positive class 4 || 14,108| 11,891 | 14,960 | 320,982 361,941
17,310| 14,006 | 19,127 | 382,757 433,200 Total 17,310 14,006 | 19,127 | 382,757 433,200

Total
c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets

gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
0.25.

value= 0.33.

Table A.2: The 44 confusion matrix of four positive classes yielded by our result | (a-b) arftiresult
| (c-d) using four models for predicting Valine leucine and isoleucine biosynthesis in the 7-pathway

examples (section 4.2.3)
Predicted outcome 1 2 3 4 Total of each clas Predicted outcome: 1 2 3 4 Total of each clas
Positive class 1 23 12 16 8 59 Positive class 1 22 10 12 5 49
Positive class 2 279 114 | 290 20 703 Positive class 2 271 103 | 270 11 655
Positive class 3 || 1,185 359 | 768 25 2,337 Positive class 3 || 1,194 | 372 | 792 37 2,395
Positive class 4 || 7,503 5,107 | 7,051 | 23,815 43,476 Positive class 4 || 7,503 | 5,107 | 7,051 | 23,815 43,476
[ 8.990] 5,592] 8,125 23,868]] 46575 | | Total [[8.990] 5,592] 8,125] 23,868]| 46,575

\ Total
a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.47. 0.47.
Predicted outcome 1 2 3 4 Total of each clas: Predicted outcome: 1 2 3 4 Total of each clas
Positive class 1 23 12 16 8 59 Positive class 1 22 10 12 5 49
Positive class 2 274 111 289 29 703 Positive class 2 266 100 | 269 20 655
Positive class 3 || 1,146 346 | 764 81 2,337 Positive class 3 || 1,155| 359 | 788 93 2,395
Positive class 4 || 5,323 4,140 | 4,378 | 29,635 43,476 Positive class 4 || 5,323 | 4,140 | 4,378 | 29,635 43,476
Total 6,766 4,609 5,447 29,753 46,575 Total 6,766 ] 4,609 5,447 29,753 46,575

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from duresult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
0.34.

value= 0.34.
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Table A.3: The 4x 4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Streptomycin biosynthesis in the 7-pathway examples (section

4.2.3)

[ Predicted outcomeff 1 | 2 | 3 4 | Total of each class [ Predicted outcomef 1 [ 2 [ 3 [ 4 [ Totalof each clas$
Positive class 1 2 4 0 3 9 Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18 Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15 Positive class 3 0 8 1 6 15
Positive class 4 || 173 | 651 | 83 | 1,652 2,559 Positive class 4 || 173 | 651 | 83 | 1,652 2,559
Total [175]669] 84 ] 1,673] 2,601 | Total [175]669] 84 1,673] 2,601 |

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.36. 0.36.
[ Predicted outcome}} 1 | 2 [ 3 | 4 [ Totalofeachclass | Predicted outcome} 1 | 2 | 3 [ 4 [ Total of each clas$
Positive class 1 2 4 0 3 9 Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18 Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15 Positive class 3 0 8 1 6 15
Positive class 4 || 70 | 413 | 27 | 2,049 2,559 Positive class 4 || 70 | 413 | 27 | 2,049 2,559
| Total [ 72] 431] 28] 2,070] 2,601 Total [ 72] 431] 28 2,070] 2,601 |

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from duresult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.21. 0.21.

Table A.4: The 4 4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Methane metabolism in the 7-pathway examples (section 4.2.3)

[ Predicted outcomef 1 [ 2 | 3 4 ]| Total of each clas$ [ Predicted outcome§ 1 [ 2 [ 3 | 4 [ Total of each class
Positive class 1 3 1 9 5 18 Positive class 1 2 1 6 3 12
Positive class 2 1 6 5 24 36 Positive class 2 0 5 8 8 21
Positive class 3 5 2 0 6 13 Positive class 3 5 0 2 3 10
Positive class 4 || 176 | 205 | 354 | 2,276 3,011 Positive class 4 || 178 | 208 | 352 | 2,297 3,035
\ Total [[185] 214] 368] 2,311] 3,078 | Total [185] 214 368] 2,311] 3,078 |

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.26. 0.25.
[ Predicted outcome§ 1 | 2 | 3 4 | Total of each class [ Predicted outcomef 1 | 2 | 3 [ 4 [ Total of each clas$
Positive class 1 2 1 4 11 18 Positive class 1 2 1 4 5 12
Positive class 2 1 4 3 28 36 Positive class 2 0 4 4 13 21
Positive class 3 5 1 0 7 13 Positive class 3 4 0 1 5 10
Positive class 4 || 83 | 100 | 114 | 2,714 3,011 Positive class 4 || 85| 101 | 112 | 2,737 3,035
Total [91]106] 121 2,760 3,078 Total [[91]106] 121] 2,760] 3,078 |

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.12. 0.11.
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Table A.5: The 4x 4 confusion matrix of four positive classes yielded by our result | (a-b) anfl our
result | (c-d) using four models for predicting Nicotinate and nicotinamide metabolism in the 7-pathway
examples (section 4.2.3)

[ Predictedoutcome§ 1 [ 2] 3 [ 4 [ Totalofeachclass [ Predictedoutcome 1 [ 2] 3 | 4 [ Totalof each class
Positive class 1 12 0 6 16 34 Positive class 1 12 0 6 16 34
Positive class 2 65 | 10| 29 159 263 Positive class 2 65 | 10| 29 159 263
Positive class 3 114 | 17| 52 394 577 Positive class 3 114 | 17| 52 394 577
Positive class 4 || 1,193 | 71 | 1,050| 7,018 9,332 Positive class 4 || 1,193 | 71 | 1,050| 7,018 9,332

\ Total [[1,384] 98] 1,137] 7,587] 10,206 | Total [ 1,384] 98] 1,137] 7,587 10,206 |

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.31. 0.31.
[ Predicted outcome§ 1 [ 2 | 3 [ 4 [ Totalofeachclas$ [ Predictedoutcome§ 1 [ 2 [ 3 | 4 [ Total of each clas$
Positive class 1 12 | 0 6 16 34 Positive class 1 12 | 0 6 16 34
Positive class 2 62 | 10| 29 | 162 263 Positive class 2 62 | 10| 29 | 162 263
Positive class 3 || 109 | 17 | 52 | 399 577 Positive class 3 || 109 | 17 | 52 | 399 577
Positive class 4 || 307 | 8 | 233 | 8,784 9,332 Positive class 4 || 307 | 8 | 233 | 8,784 9,332
Total [490]35]320]9,361] 10,206 Total [[490] 35 320] 9,361] 10,206

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
value= 0.13. 0.13.

Table A.6: The 44 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Phospholipid biosynthesis in the 7-pathway examples (section
4.2.3)

[ Predictedoutcomeff 1 [ 2 [ 3 [ 4 [ Totalofeachclass [ Predictedoutcomef 1 [ 2 [ 3 [ 4 [ Total of each class
Positive class 1 18 1 2 0 21 Positive class 1 18 1 2 0 21
Positive class 2 || 40 | 13 1 0 54 Positive class 2 || 40 | 13 1 0 54
Positive class 3 || 36 | 7 6 2 51 Positive class3 || 36 | 7 6 2 51
Positive class 4 || 394 | 118 | 107 | 1,055 1,674 Positive class 4 || 394 | 118 | 107 | 1,055 1,674
Total 488 | 139 | 116 | 1,057 1,800 Total 488 | 139 | 116 | 1,057 1,800

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value
value= 0.40. 0.40.

[ Predicted outcome§ 1 [ 2 [ 3| 4 [ Totalofeachclas$ [ Predictedoutcomef 1 | 2 [ 3 4 [ Total of each clas$
Positive class 1 18 1 2 0 21 Positive class 1 18 1 2 0 21
Positive class 2 39|13 |1 1 54 Positive class 2 39|13 |1 1 54
Positive class 3 35 7 6 3 51 Positive class 3 35 7 6 3 51
Positive class 4 || 260 | 97 | 59 | 1,258 1,674 Positive class 4 || 260 | 97 | 59| 1,258 1,674
Total [352]118] 68 1,262 1,800 Total [[352] 118] 68 1,262] 1,800

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
value= 0.28. 0.28.
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Table A.7: The 4x 4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
| (c-d) using four models for predicting Pyruvate oxidation pathway in the 7-pathway examples (section

4.2.3)

| Predicted outcome§f 1 [ 2] 3 | 4 [ Total of each clas$ [ Predicted outcome§ 1 [ 2] 3 | 4 || Total of each class
Positive class 1 2|0|1 2 5 Positive class 1 2101 2 5
Positive class 2 4120 2 8 Positive class 2 41210 2 8
Positive class 3 30| 2 0 5 Positive class 3 30| 2 0 5
Positive class 4 || 74 | 7 | 35 | 271 387 Positive class 4 || 74| 7 | 35| 271 387
\ Total H 83 \ 9 \ 38 \ 275 H 405 | | Total H 83| 9 \ 38 | 275 H 405 \

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.32. 0.32.
| Predicted outcome§f 1 [ 2] 3 | 4 [ Total of each clas$ [ Predicted outcome§ 1 [ 2] 3 | 4 [ Total of each class
Positive class 1 20| 1 2 5 Positive class 1 2101 2 5
Positive class 2 3|12|0 3 8 Positive class 2 312|0 3 8
Positive class 3 3101 1 5 Positive class 3 3(01 1 5
Positive class 4 || 29 | 4 | 14 | 340 387 Positive class 4 || 29 | 4 | 14 | 340 387
Total H 37 \ 6 \ 16 \ 346 H 405 | | Total H 37 | 6 \ 16 | 346 H 405

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
value= 0.15. 0.15.

Table A.8: The 44 confusion matrix of four positive classes yielded by our result | (a-b) arftiresult
| (c-d) using four models for predicting Fluorobenzoate degradation in the additional 7 other pathways

(table A.15)

[ Predicted outcomefj 1 [ 2] 3] 4 || Total of each class | Predicted outcome§ 1 [ 2 [ 3| 4 [| Total of each clas$

Positiveclass1 ||1{1(1|0 3 Positiveclass1 [|1[1(1|0 3
Positiveclass2 ||1 10| 0 2 Positiveclass2 ||1|1]0 |0 2
Positiveclass3 ||0 [0 1|0 1 Positiveclass3 ||0 [0 | 1|0 1
Positiveclass4 || 2|54 |1 12 Positiveclass4 || 2|54 |1 12

| Total [4]7]6]1] 18 | | Total T4]7]6]1] 18 |

a) Predicted outcomes from our result | and the known taxPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusistained from an original reference map. Confusion value

value= 0.78. 0.78.

[ Predicted outcomef 1 [ 2] 3] 4 [ Total of each class [ Predicted outcome§ 1| 2| 3] 4 [ Total of each clas$
Positiveclass1 |1 (1|1 0 3 Positiveclass1 || 1|1|1| O 3
Positiveclass2 [[1 (1| 0| O 2 Positiveclass2 || 11| 0| O 2
Positiveclass3 [[0 (0| 1| O 1 Positiveclass3 |0 0| 1| O 1
Positiveclass4 [0 (0| 0| 12 12 Positiveclass4 |0 | 0| 0] 12 12

| Total [2]2]2]12] 18 | | Total [2]2]2]12] 18

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
value= 0.17. 0.17.
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Table A.9: The 4x 4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Novobiocin biosynthesis in the additional 7 other pathways (table

A.15)

| Predicted outcomef 1 [ 2] 3 | 4 [ Total of each clas$ [ Predicted outcome§ 1 [ 2] 3 | 4 [ Total of each class
Positive class 1 10| 2 0 3 Positive class 1 10| 2 0 3
Positive class 2 1110 0 2 Positive class 2 111|0 0 2
Positive class 3 1/0|0 0 1 Positive class 3 1|0|0 0 1
Positive class 4 || 26 | 3| 79 | 174 282 Positive class 4 || 26 | 3| 79 | 174 282
\ Total H 29 \ 4 \ 81 \ 174 H 288 | | Total H 29 | 4 \ 81 | 174 H 288 \

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.39. 0.39.
| Predicted outcome§ 1 [ 2] 3 | 4 [ Total of each clasg [ Predicted outcomef 1 [2] 3 | 4 | Total of each clas$
Positive class 1 10| 2 0 3 Positive class 1 110| 2 0 3
Positive class 2 1110 0 2 Positive class 2 111|0 0 2
Positive class 3 1/0|0 0 1 Positive class 3 10| 0 0 1
Positive class 4 || 19 | 1 | 42| 220 282 Positive class 4 || 19| 1 | 42| 220 282
\ Total [22]2]44]220] 288 N Total [22]2]44]220] 288 |

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.23. 0.23.

Table A.10: The 4 4 confusion matrix of four positive classes yielded by our result | (a-b) anl our
result | (c-d) using four models for predicting Phosphonate and phosphinate metabolism in the additional

7 other pathways (table A.15)

[ Predicted outcomef 1 [ 2] 3] 4 [ Total of each class [ Predicted outcome§ 1| 2| 3] 4 [ Total of each clas$

Positiveclass1 [[1 (0| 0| O 1 Positiveclass1 || 10| 0| O 1
Positiveclass2 [0 (0| 0| O 0 Positiveclass2 ||0| 0| 0| O 0
Positiveclass3 [[0 (0| 0| O 0 Positiveclass3 ||[0| 0| 0| O 0
Positiveclass4 |5 0| 2| 10 17 Positiveclass4 || 5| 0| 2| 10 17

| Total [6]0]2]10] 18 | Total [6]0]2]10] 18 |

a) Predicted outcomes from our result | and the known tayPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusmistained from an original reference map. Confusion value

value= 0.39. 0.39.

[ Predicted outcomef 1 [ 2] 3] 4 [ Total of each class [ Predicted outcome§ 1| 2| 3] 4 [ Total of each clas$
Positiveclass1 [[1 (0| 0| O 1 Positiveclass1 || 1| 0| 0| O 1
Positiveclass2 [[0[{0| 0| O 0 Positiveclass2 |0/ 0| 0| O 0
Positiveclass3 [[0 (0| 0| O 0 Positiveclass3 ||[0| 0| 0| O 0
Positiveclass4 |1 (0| 0| 16 17 Positiveclass4 || 1| 0| 0| 16 17

| Total [2]o]of16] 18 | Total [2]o]0]16] 18 |

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.06. 0.06.
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Table A.11: The 4«4 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
| (c-d) using four models for predicting Naphthalene degradation in the additional 7 other pathways (table

A.15)

[ Predicted outcome§ 1 | 2 | 3 | 4 [ Total of each clas$ [ Predicted outcome§ 1 [ 2 | 3 [ 4 [ Total of each clas$

Positive class 1 2 1 2 0 5 Positive class 1 2 1 2 0 5
Positive class 2 0 0 2 0 2 Positive class 2 0 0 2 0 2
Positive class 3 0 1 0 0 1 Positive class 3 0 1 0 0 1
Positive class 4 || 251 | 40 | 306 | 121 718 Positive class 4 || 251 | 40 | 306 | 121 718
Total [ 253]42]310] 121 726 | Total [[253] 42310 121 726 |

a) Predicted outcomes from our result | and the known taxPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusistained from an original reference map. Confusion value

value= 0.83. 0.83.

| Predicted outcomef 1 [ 2 [ 3 [ 4 [ Totalof each clasg [ Predicted outcome§ 1 | 2 [ 3 [ 4 [ Total of each clas$
Positive class 1 2112 0 5 Positive class 1 2112 0 5
Positive class 2 0|02 0 2 Positive class 2 0|02 0 2
Positiveclass3 || 0 | 1 | O 0 1 Positiveclass3 || 0 | 1 | O 0 1
Positive class 4 || 28 | 8 | 49 | 633 718 Positive class 4 || 28 | 8 | 49 | 633 718

\ Total H 30 \ 10 | 53 \ 633 H 726 | | Total H 30 \ 10 | 53 \ 633 H 726 \

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.13. 0.13.

Table A.12: The 44 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
| (c-d) using four models for predicting Nitrotoluene degradation in the additional 7 other pathways (table

A.15)

[ Predicted outcomeff 1 | 2 [ 3 [ 4 | Totalof each clasg | Predicted outcome§ 1 | 2 | 3 [ 4 [ Total of each clas$
Positive class 1 1/0(0 3 4 Positive class 1 1/0(0 3 4
Positive class 2 2100 0 2 Positive class 2 2100 0 2
Positive class 3 o|1]0 0 1 Positive class 3 o|1]|0 0 1
Positive class 4 || 31 | 52| 11 | 449 543 Positive class 4 || 31 | 52| 11 | 449 543
\ Total [34]53]11]452] 550 | | Total [34]53][11]452] 550 |

a) Predicted outcomes from our result | and the known taxPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusistained from an original reference map. Confusion value

value= 0.18. 0.18.
| Predicted outcome§ 1| 2 [ 3] 4 [ Total of each class [ Predicted outcomef 1| 2 [3 ] 4 [ Total of each clas$
Positiveclass1 [[1| 0 |0 | 3 4 Positiveclass1 || 1| O |0 | 3 4
Positiveclass2 [[2| 0 |0| O 2 Positiveclass2 ||[2| 0 |0O| O 2
Positiveclass3 [[0| 1 |0| O 1 Positiveclass3 ||[0| 1 (0| O 1
Positive class 4 || 6 | 23| 3 | 511 543 Positive class 4 || 6 | 23| 3 | 511 543
Total H 9 \ 24 \ 3 \ 514 || 550 Total || 9 | 24 | 3 \ 514 H 550

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value
value= 0.07. 0.07.
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Table A.13: The 44 confusion matrix of four positive classes yielded by our result | (a-b) arftresult
I (c-d) using four models for predicting Caprolactam degradation in the additional 7 other pathways (table

A.15)

| Predicted outcome§ 1 [ 2 [ 3] 4 || Total of each class [ Predicted outcome} 1 [ 2 [ 3] 4 [ Total of each clas$

Positive class 1 30|00 3 Positive class 1 3(0|0|O0 3
Positive class 2 20|00 2 Positive class 2 210/|0|0 2
Positive class 3 1/0|0|O0 1 Positive class 3 1/0|0|O0 1
Positive class 4 || 53| 14 | 3 | 50 120 Positive class 4 || 53 | 14 | 3 | 50 120
Total H 59 | 14\ 3 | 50 || 126 \ \ Total || 59 | 14 \ 3 \ 50 H 126

a) Predicted outcomes from our result | and the known taxPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusistained from an original reference map. Confusion value

value= 0.58. 0.58.
| Predicted outcome§ 1 | 2 [ 3] 4 [ Total of each clas$ [ Predicted outcome§ 1 | 2 [ 3] 4 [ Total of each class
Positive class 1 3/0(0| O 3 Positive class 1 3|/]0|0| O 3
Positive class 2 2|0]|0| O 2 Positive class 2 2|10|0| O 2
Positive class 3 1,00 0 1 Positive class 3 1100 O 1
Positive class 4 9 /10|0]| 101 120 Positive class 4 9 (10| 0] 101 120
\ Total [15]10] 0] 101] 126 | | Total [15]10]0]101] 126

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusiditained from an original reference map. Confusion value

value= 0.17. 0.17.

Table A.14: The 4 4 confusion matrix of four positive classes yielded by our result | (a-b) anl our
result | (c-d) using four models for predicting Biosynthesis of siderophore group nonribosomal peptides
in the additional 7 other pathways (table A.15)

| Predicted outcome§ 1 [ 2] 3 | 4 | Total of each clasg | Predicted outcomef 1 [2] 3 | 4 | Total of each clas$
Positive class 1 3101 1 5 Positive class 1 3(01 1 5
Positive class 2 212| 3 1 8 Positive class 2 2123 1 8
Positive class 3 20| 3 0 5 Positive class 3 2103 0 5
Positive class 4 || 17 | 6 | 56 | 191 270 Positive class 4 || 17 | 6 | 56 | 191 270
Total [24]8]63]193] 288 | | Total [24]8]63] 193] 288 |

a) Predicted outcomes from our result | and the known taxPredicted outcomes from our result | and the known targets
gets defined by metabolite transformation network. Confusiistained from an original reference map. Confusion value

value= 0.31. 0.31.
| Predicted outcome§ 1 [ 2] 3 | 4 [ Total of each clasg [ Predicted outcomef 1 [2] 3 | 4 | Total of each clas$
Positive class 1 3101 1 5 Positive class 1 3(01 1 5
Positive class 2 212| 3 1 8 Positive class 2 2123 1 8
Positive class 3 20| 3 0 5 Positive class 3 2103 0 5
Positive class 4 4 10|14 252 270 Positive class 4 4 1014|252 270
Total [11]2]21]254] 288 | | Total [11]2]21] 254 ] 288

c) Predicted outcomes from duresult | and the known tar-d) Predicted outcomes from dunesult | and the known targets
gets defined by metabolite transformation network. Confusidntained from an original reference map. Confusion value

value= 0.10. 0.10.

Table A.15: The additional 7 other pathways from KEGG Pathway database as the same version as
trained data (section 3.4)

[ Reference.d. | Name Pathway typesoles

eco00364 Fluorobenzoate degradation Xenobiotics biodegradation and metaboli%m
eco00401 Novobiocin biosynthesis Biosynthesis of other secondary metabolites
eco00440 Phosphonate and phosphinate metabolism Metabolism of other amino acids
eco00626 Naphthalene degradation Xenobiotics biodegradation and metabolism
eco00633 Nitrotoluene degradation Xenobiotics biodegradation and metabolism
eco00930 Caprolactam degradation Xenobiotics biodegradation and metabolism
eco01053 | Biosynthesis of siderophore group nonribosomal peptidelsletabolism of terpenoids and polyketides
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