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CHAPTER I

INTRODUCTION

1.1 Backgrounds

The intricate cellular processes resulting in energy and growth called metabolisms are the

complicated networks composing biochemical substances called metabolites and their transfor-

mational mechanisms. The better understanding about the metabolite production and degra-

dation processes leads to the helpful knowledge in many applications e.g. finding drug target

(Baths et al., 2011), metabolic flux analysis (Rantanen et al., 2008), metabolic engineering (Fin-

ley et al., 2009) and structural network analysis (van Helden et al., 2002). Now, the vast amount

of metabolic-related data, namely, genomics, proteomics and metabolomics stored on databases

like KEGG and MetaCyc (Caspi et al., 2010; Kanehisa et al., 2008) is enable us to develop a

lot of computational approaches (Pitkänen et al., 2010) bringing about the analysis of several

metabolic aspects which can be done by building many models using single or multi-omic data

based upon what questions are. A variety of biochemical network models in the form of graphs

such as metabolic networks, regulatory networks and signal transduction networks have been

suggested in an attempt to explain the systems of metabolisms in cells (Deville et al., 2003). The

closest realistic detailed metabolic models were presented by the dynamic models because the

various data including stoichiometric data and kinetic data have to be integrated, but, nowadays,

for some multiple species or whole species dynamic metabolic network model analysis, there

are no such entirely required data. The metabolic graph-based models added stoichiometric

properties are studied by solving an optimization problem at steady-state when given stoichio-

metric data and constraints of the defined biochemical reactions sets (Oberhardt et al., 2009).

Although, this method is powerful and widely used in many applications (Raman and Chandra,

2009), there are some limitations. For example, to receive the good results, it requires the ac-

curate metabolic network as the predefined system which it is time-consuming procedure if the

size of the network is large. Another example, due to alternative objective pathway definitions,

there exist some considered routes of metabolites on the metabolic network that are not under

the steady-state assumption with stoichiometrically balanced compounds (Félix and Valiente,

2007). For above reasons, the non-stoichiometric metabolic graph-based models still be an es-
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sential analysis as not only the basic information for building the stoichiometric models as well

as dynamic models (Faust et al., 2011) but also as preliminary methods for investigating such

huge metabolic network models (Aittokallio and Schwikowski, 2006). One problem studied

by using these models in metabolic network reconstruction and pathway analysis is to predict

compound transformation routes when given compounds and their related reactions. In other

words, there exists the mechanisms/reactions to transform one compound to others or not (Zhao

et al., 2006). To depict the whole steps of the start compounds to the end compounds, a criterion

like the shortest path or the extension of shortest path concept can be combined (Rahman et al.,

2005).

1.2 Problem Statement

The main problem was defined that whether each metabolite input query received from a

pre-defined biochemical transformation graph is in the same routes. A metabolite input query

set is composed of the list of possible two end vertices as beginning and terminal metabolites

with/without every possibly intermediate metabolite.

This main problem is indirectly studied by stating the following four supervised binary

classification problems when each metabolite input query is assigned:

1) whether it is one or two consecutive steps of reaction transformation (class 1 vs. non-

class 1),

2) whether it is one step of reaction transformation and multi-step reaction transforma-

tions through a certain intermediate metabolite(class 2 vs. non-class 2),

3) whether it is multi-step reaction transformations through a certain intermediate

metabolite, and

4) whether it is not all above cases (class 4 vs. non-class 4).

Every binary class target is labeled by routine path searching method on the defined graph. Each

input feature pattern associated with its metabolite input query obtains from the proposed nu-

merical transformed properties from each calculated 3D molecular property set of its metabolite

in such query.

A procedure to treat the imbalanced binary class distribution was also offered, because the

imbalanced class distributions of the pre-training data affect the model prediction performances

in the supervised learning approaches.
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1.3 Objectives

1. To build the supervised feed-forward neural network model for the problems of predicting

atomically transferable metabolite in theE.coli metabolic pathway set.

2. To offer the four defined types of metabolite transformation as the four binary target

classes when given each metabolite input query after preparing the predefinedE.coli

graph consisting of metabolite and reaction links.

3. To present the transformed and reduced features of the input data corresponding to each

metabolite query from the computed 3D molecular features using the 2D atomic data of

each metabolite.

4. To propose the algorithms to handle the seriously imbalanced binary class data.

5. To show the four trained predictive model performance of the predicted output values,

called our result I, and compare them withS CL approach, using various metrics in a few

aspects such as the various sub-data size splitting for improving effectiveness, the cut-off

value variation and significance test for classifying output value as binary class, as well

as the unseen data prediction and comparison.

6. To explore the three adjusted output values of the predicted output values for performance

improvement, namely, our result II which is the mean of all four our result I values from

all four models for each corresponding input data, our# result I which the output values

are set to negative class ifS CL is zero, and our# result II which is the mean of all four

our# result I values from four models for each corresponding input data set.



CHAPTER II

LI TERATURE REVIEW

2.1 Path finding problems in metabolic network models

Metabolic network models built from organism-specific data or multi-organism data can

be used for representing elements, e.g. genes, proteins (enzymes) and metabolites, as well as

their interactions depending on the studying problems. One key question so-called the path

finding problem (Planes and Beasley, 2008) is about searching the paths or eventually getting

the systems of transformation processes in the manner that initial substrates are sequentially

transformed by each reaction step to final or desired products which is beneficial exploration for

several tasks, especially, pathway designs (McClymont and Soyer, 2013) and network studies

(Lacroix et al., 2008; Cottret and Jourdan, 2010).

Path finding methods is based on a metabolic reaction network model which mostly rep-

resents biochemically systemic processes of metabolite and/or reaction and their relationship

as metabolite-metabolite connections and/or reaction-metabolite connections. The consecutive

related metabolites at each step of reactions are searched by the path finding methods. Gener-

ally, the term ’related metabolites’ refers to biochemically relevant, plausible, and/or feasible

metabolites (Planes and Beasley, 2008; Faust et al., 2011) in former works.

There are two main metabolic reaction network graph-based models known that each

other is complement, stoichiometric models and non-stoichiometric models (Hatzimanikatis

et al., 2004), though in some works (Pey et al., 2011) their advantages were combined. The

stoichiometric models generally are suitable for specific and detailed purpose of the organism-

specific system due to the computational complexity (Schuster et al., 2000; Klamt and Stelling,

2003). Though, there are some modified methods that try to avoid complexity in the large

scale stoichiometric model analysis (de Figueiredo et al., 2009; Kaleta et al., 2009), it is still a

challenge to improve the better effectiveness. In the stoichiometric approaches (Schilling and

Palsson, 1998), they solved the objective function to find a set of steady-state zero flux metabo-

lites when given a set of considered reactions including directions, internal-external metabolites

as well as stoichiometric data and a set of constraints, while in the metabolic reaction graph-
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theoretic approaches without stoichiometric properties, they used the graph theoretic methods

to query the related metabolites of successive reactions according to the graph-theoretic ques-

tions such as the shortest step between a source metabolite or a group of metabolites and a target

metabolite or a group of metabolites in the considered network (Pitkänen et al., 2005) which

can be an organism system or whole organism-merged system.

Without any criteria to identifying related metabolites, the graph-theoretic methods

yielded abundant results of related metabolites routes (Küffner et al., 2000) in consequence

of combinatorial possibility of related metabolites and meaningless short steps of processes be-

cause of absurd related routes passing through some metabolites such as kind of proton/electron

carrier and cofactor (Arita, 2004). These metabolites are called pool, currency or side metabo-

lites (Huss and Holme, 2007) which they are found in almost every metabolic reaction. Defining

them exactly and removing them from the network causes some missing reactions from the sys-

tem by result of the context dependent properties of these metabolites (Ma and Zeng, 2003).

Later, two core ideas for identifying related metabolites have been offered which they depend

on additional data used for avoiding misleading links. The first one have used atomic data repre-

sented as atom graph of metabolite and defined mapping methods, for instance, (sub)graph iso-

morphic approaches and common (sub)graph matching (Raymond and Willett, 2002; Akutsu,

2004; Crabtree and Mehta, 2009; Hattori et al., 2010; Heinonen et al., 2011) so as to identify

how each metabolite can be related by the others via some defined measurements i.e. simi-

larity (Raymond et al., 2002; Le et al., 2004). Another idea has used degree connectivity of

metabolite nodes called weight in a graph model as searching criteria for obtaining the routes

with minimum weight (Croes et al., 2005) thanks to the fact that pool metabolites often contain

high weight and they must be avoided by searching procedure. After that, the works based

on combining two above ideas have been proposed for finding linear related routes (Blum and

Kohlbacher, 2008b) and also branched routes (Pitkänen et al., 2009). Apart from that, RPAIR

database (Kotera et al., 2004) build on atomic data is one of KEGG databases storing a list of

metabolite pairs as atomically transferable information associated with a set of reactions have

been applied by some path finding methods coupled with degree connectivity scheme for linear

related pathway searching approach (Faust et al., 2009) and also branched pathways searching

approach (Heath et al., 2010). In various path searching conditions, many concepts have been

presented which provide different pathway discovery results, example, the (k)shortest path as

minimum (k)steps (Arita, 2000; Blum and Kohlbacher, 2008a), the lightest path as the smallest

sum of degree connectivity (Faust et al., 2009, 2010), at least one atom conserved or at least a
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number of atoms conserved (Mithani et al., 2009; Heath et al., 2011).

At this point, the combined ideas together with different searching path conditions are

able to reduce unreasonable connection and yield the quite related linear and branched path-

ways. In spite of the usefulness of extracted atomic graph properties in path finding conditions,

atomic mapping definitions will be useless if there are incomplete or no atomic data in some

metabolites as well as their RPAIR data is unavailable. Counting only on the usages of degree

connectivity data in the way of the smallest weight metabolite chosen at each searching step,

in some reaction whose metabolites are all high or all low degree connectivity, it is not always

successful (Croes et al., 2006). Because of the context-specific nature, when given a metabolite

pair in one reaction it is difficult to clearly identify each metabolite is the importantly trans-

formable metabolite in that context of a reaction. However, atomically transferable information

still be the valuable properties since it reflects the real mechanism that change one metabolite

to another metabolite in the one step biochemical process such as a reaction.

2.2 Supervised learning techniques in bioinformatics applications

In the tasks of metabolic reaction prediction, when a novel metabolite with its atomic data

has elucidated, the possible biochemical transforming mechanism is predicted by the expert

system (Li et al., 2004; Hou et al., 2004) with the well-organized rules from the known mech-

anisms. Lately, support vector machine (SVM), one of supervised learning approaches, was

applied for learning and predicting possible substrates and possible products of well-classified

enzyme mechanism (Mu et al., 2011) by feeding the calculated atomic and molecular properties

from its optimized 3D atomic structure. In recent times, the prediction of potential enzymatic

reactions in metabolic pathways was studied. The chemical fingerprints of compound pairs was

converted into feature vectors as input data patterns with binary target class for the SVM binary

classifiers to construct model in order to identify that whether the first compound is changed to

the second compound in some enzymatic reactions (Kotera et al., 2013).

The supervised learning paradigm is able to extract the knowledge from the represen-

tative data as the trained model and use that trained model to predict the new data. Another

popular supervised learning approach is the bio-inspired method in the type of artificial intel-

ligent algorithm called artificial neural networks (ANNs). The simple organization of ANNs

is composed of an input layer, a hidden layer (neurons) and an output layer. The input layer

is fully linked by each weight as the synapse to each neuron. It is widely used in many ar-
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eas of applications including bioinformatics tasks e.g. protein structure and function prediction

(Wood and Hirst, 2005), gene finding (Browne et al., 2004), gene expression data analysis (Xu

et al., 2002) as well as parameter estimation for the small metabolic dynamic model (Almeida

and Voit, 2003) due to the powerful ability to design input-output schemes as well as the ar-

chitectures. Nevertheless, many factors such as suitable number of neurons and epoch must be

considered so as to receive an effective model (Zhang, 2000).

2.3 Imbalanced class distribution solving for supervised learning methods

The imbalanced data training usually faces in in real world data with traditional super-

vised learning that always makes the predictive model trained by unequal class proportion data

bias toward the big class data (Sun et al., 2009). Fortunately, many methods were offered to

manage and fix this bias (Guo et al., 2008; He and Garcia, 2009). These methods can be catego-

rized into two main approaches. First one, they are aim to manage data such as fixing unequal

class proportion data into the approximately equal class proportion data (Chawla et al., 2002;

Bunkhumpornpat et al., 2012; Liu et al., 2006) or selecting/generating the most informative data

sets as training data sets (Ertekin et al., 2007; Barua et al., 2011). Second one, they are aim to fix

the algorithms to make them handle imbalanced data situation effectively (Fu et al., 2002; Hong

et al., 2007; Liu and Yu, 2007; Adam et al., 2010; Batuwita and Palade, 2010). Furthermore,

there are training techniques which creates a groups of trained models for prediction rather than

a single predictive model such as ensemble schemes with sampling techniques (Liu et al., 2006;

Estabrooks et al., 2004; Kraipeerapun and Fung, 2009) and multi-binary classification methods

(Jeatrakul and Wong, 2012), sometimes one or both above aims are also applied (Yan et al.,

2003; Chen et al., 2010; Thanathamathee and Lursinsap, 2013). Apart from managing data,

fixing traditional classification algorithms and building series of classifiers, other methods were

proposed to solve imbalance data classification, for instance, offering a new metric (Batuwita

and Palade, 2009) or feature selection technique(Zheng et al., 2004).

2.4 Dissertation Outline

In this paper, the problem of identifying the relevant metabolites in biochemical transfor-

mation routes was considered in a new perspective as a supervised learning problem. First, bio-

chemical transformation was defined from the combined reactions and their involved metabo-

lites (Section 3.1). Second, the problem of identifying the relevant metabolites in biochemical

transformation routes was changed into four defined questions suitable for model training by
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the feed-forward neural network method, then a defined metabolite query set obtained from the

defined graph in the first step used as input query set to seek ’yes’/’no’ answer set according

to each defined question using conventional graph path searching algorithm (Sections 3.2.1 and

3.4). Third, input feature data set, the transformed molecular properties calculated from 3D

atomic structures, was prepared by using a defined metabolite query set and the associated an-

swer set for each defined question was target classes for each defined question (Sections 3.2.2

and 3.4). Fourth, the data division method was applied to split the prepared data into adequate

size. Since imbalanced data problem occurred, the proposed method was offered to handle this

problem. So, they were trained by the feed-forward neural network and selected the sub-models

with effective performance. After that, sub-models were combined in the predictive model for

each defined question (Sections 3.2.3, 3.3 and 4.1). Fifth, various performance evaluations

were done in many output score types of each predictive model corresponding to each defined

question for the following comparison with the strength of chemical linkage approaches: the

pre-training sub-data size varying, the cut-off score value variation and significance test, the

unseen data prediction and comparison in a sub-model aspect, a conventional pathway aspect,

and a compound aspect (Section 4.2). Finally, the whole works were discussed and concluded

(Sections 5 to 6). The work flow diagram was briefly presented by Figure 2.1.
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Figure 2.1: The work flow diagram illustration. 1) The defined graph model is converted into the input-
target data set which can be trained and built predictive models; 2) According to the large data set from
step 1, a data set is divided. Next, the class imbalanced sub-data is handled by our proposed methods.
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CHAPTER III

METHODS

The defined terms for metabolite transformation, the defined problem as supervised clas-

sification problems, the proposed method to handle the seriously unequal proportions of class

distribution a in data set, and the data preparation for experiments are described.

3.1 Preliminary Terms And Conditions

Let u andv be two metabolites.

A metabolite pair,(u,v): (u,v) is calledtransformable metabolite pair if u andv are in at least

one plausible metabolite path. Otherwise, they are callednon-transformable metabolite pair.

Denote thatforward andbackward direction are omitted from consideration, so, (u,v) and (v,u)

indicate the same transformation.

A transformation process, Ri: it is a process concerning a metabolite pair, (u,v) such thatu can

be changed intov in one step, or vice versa. In this work, it is defined that there exists at least

one reactionr ∈ Ri that can make such biochemical transformation happens.

One step transformable metabolite pair: (u,v) is calledone step transformable metabolite pair

if 1) u andv are in the same transformation process, in this case, a reaction setRi; 2) u is a

substrate andv is a product, or vice versa; and 3)u andv appear on the reference map.

Multi-step transformable metabolite pair: (u,v) is calledmulti-step transformable metabolite

pair if 1) u andv are two-end metabolites of at least one plausible metabolite path with length

more than 2;and 2)u andv appear on the reference map.

In the supervised data set preparation(see Section 3.4), everymetabolite pair was ex-

tracted froma metabolite set of all reactions in the whole consideredreference maps from

Lemer et al. (2004).
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Let b, t, andn be the beginning, terminal, and intermediate metabolites, respectively.

Metabolite Transformation Network, K : a simple fully-connected undirected graph,K = (V,E).

Denote that 1)V = V′ ∪V′′ is a non-empty finite metabolite set whereV′ and V′′ are two

metabolite lists that one appears and another does not appears onreference maps, respectively;

and 2) two edge sets,E′ andE′′ whereE=E′∪E′′, representone step transformable metabolite

pair andother pairs, respectively.

A plausible metabolite path, P: givenK , a plausible metabolite path, P= (b, ...,n, ..., t), is a sim-

ple path such that 1)n is one intermediate metabolite locating onP between two-end metabolites

b andt; and 2) every edgee ∈ E′, otherwise, it isnon-plausible path. Denote that 1)a plausible

metabolite path with length one has non and it is so-calledone step transformable metabolite

pair; and 2)P can be considered eitherforward andbackward path.

A metabolite input query set, H: givenb, t, andn, determine whetherb is transformable ton

andn is transformable tot. Everymetabolite query, hj ∈H such thathj = (b,n, t) or hj = (b, t) is

obtained from a givenK .
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3.2 Encoding Relevant Metabolites in Paths Problem as Supervised Classification Prob-

lems

The representation as a graph allows us to observe in many sides when the graph problem

is well-defined. In this paper, the problem of plausible metabolite path is transformed into su-

pervised binary classification problems of predicting whether the given beginning and terminal

metabolites, sometimes including an intermediate metabolite, are in some plausible metabolite

path. The associated features of each metabolite query, beginning, intermediate and terminal

metabolites, are also proposed as in the following sections.

3.2.1 A Metabolite Input Query Set and Binary Class Target Formation

From the defined graphK and some statements in previous section, a metabolite input

query setH = {h j| j = 1,2, ..., l} is given. Each input queryh reflects to several questions from the

graphK . Here, with respect to the path fromb to t including the determination ofn locating this

path, the binary targets for the following four basic transformation questions can be assigned:

Question 1:1) if (b,n, t) is considered, whether (b,n) and (n, t) are bothone step transformable

metabolite pair; or 2) if (b, t) is considered, whether (b, t) is one step transformable metabolite

pair.

Question 2: whether (b,n) is one step transformable metabolite pair but (n, t) is multi-step

transformable metabolite pair, or vice versa.

Question 3:whether (b,n) and (n, t) are bothmulti-step transformable metabolite pair.

Question 4:whether (b,n, t) does not meet any above conditions in questions 1, 2, or 3.

For each binary target set, the class with a large data set is calledmajority data class

and the other class is calledminority data class. Hence, each question and its answer can be

interpreted as each input feature data set and its class target in a two-class pattern recognition

problem. Many algorithms with supervised learning methods can be applied for constructing

classifiers that can efficiently guess the class of each new data pattern.
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Figure 3.1: The input-target formation presentation. a) A setof example reactions and their involved
compounds; b) An example of all possible links in a reaction R1; c) The complete graph showing all
possible links from the example set in a); d) Forward and backward transformation routes in the form
of two direct graphs from the example set in a); e) Each example of each class compound query set
acquired from the defined complete graph in c), when each each class compound query set reflects to
each defined questionq for q = 1,2,3,4; f) The proposed process to transform each ofm 3D features
in a metabolite query to an input feature pattern ready for being trained by neural network method(see
Transformed feature procedure in details).
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3.2.2 Input Feature Calculation and Transformation

Considering each metabolite input query, each molecular property of each metabolite was

calculated. These molecular properties (Mu et al., 2011) consists of the surface, shape, energy

and charge distribution of a 3D compound molecule. Letfb = [ fb1, ..., fbs ]
T be a vector storings

properties of a beginning metaboliteb, similarly, let ft andfn be a terminal metabolitet and an

intermediate metaboliten if n exists, respectively. The aim is to create an input patterna as the

s representative properties fromfb, ft andfn if n exists (seeTrans f ormed f eatureprocedure).

For each metabolite query in the training and the testing data, the number of features may

be equal to 81×3 for 3-tuple (m(b),m(n),m(t)) and 81×2 for 2-tuple (m(b),m(t)). This number

of features is too large for computation and it must be reduced. The following process was

proposed to reduce the number of features.
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Let fb, fn, andft be sets of features form(b), m(n), andm(t), respectively.

Transformed feature procedure

Case 1:2-tuple (m(b),m(t))

1. Let F(b,t) =
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





















T

.

2. Compute the covariance matrixC from F(b,t).

3. Letu be the eigenvector ofC whose eigenvalue is maximum.

4. Compute new feature vectorq(b,t) = uT F(b,t) for 2-tuple (m(b),m(t)).

Case 2:3-tuple (m(b),m(n),m(t))

1. Compute new feature vectorq(b,n) = uT F(b,n) for 2-tuple (m(b),m(n))

as in Case 1 procedure.

2. Compute new feature vectorq(n,t) = uT F(n,t) for 2-tuple (m(n),m(t))

as in Case 1 procedure.

3. LetQ(b,n,t) =
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4. Compute the covariance matrixC from Q(b,n,t).

5. Letu be the eigenvector ofC whose eigenvalue is maximum.

6. Compute new feature vectora(b,n,t) = uT Q(b,n,t) for 3-tuple

(m(b),m(n),m(t)).

Feature vectora(b,n,t) is used as an input patttern of the training and the testing data.
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3.2.3 Artificial Neural Network

In the general concept of the supervised learning technique (Bishop, C.M., 2006), a train-

ing data set along with class targetΓ = {(aj,c j)| j = 1,2, ..., l} , whereaj ∈ ℜm andc j ∈ ℜn, is

used for building a particular model in order to predict the value of each classc associated with

each new input patterña.

The feed-forward neural network with a hidden layer is one among suitable model for

supervised classifying data patterns (Haykin, 1998). A chosen architecture consists of three

layers in fully connected structures, namely, input layer, hidden layer and output layer. In the

forward direction from one layer to another, excepting input layer which delivers a training

data set for a network system, each layer does a linear combination of its served inputs in

each neuron where coefficients and bias are gathered as adjustable parameters, after that its

outputs are yielded by taking a differentiable function in each neuron. In each round of training,

parameters are adjusted to reduce the differences between class target set and class output set in

the form of an error function.

Given an input pattern vectora = [a1, ...,ai, ...,am]T and its class target vectorc =

[c1, ...,ck, ...,cn]T , thekth element in its output vectoro= [o1, ...,ok, ...,on]T can be shown as

ok = f (2)
k (

s
∑

j=1

w(2)
k j f (1)

j (z j)+w(2)
k0 )

such thatz j =
m
∑

i=1
w(1)

ji ai +w(1)
j0 wherew(1)

j0 as well asw(2)
k0 are biases andw(1)

ji as well asw(2)
k j are

coefficients. Denote thatf (2)
k (·) is an activation function of thekth neuron in the output layer

producing outputok , similarly, f (1)
j (·) which is a function of thejth hidden neuron in the hidden

layer. Apart from thats andm are the number of hidden neurons in the hidden layer and the

size of input features in the input layer, respectively.

In each roundr of network training, an error function to measure the learning perfor-

mance is

ξ =
1
2

l
∑

i=1

n
∑

k=1

(c(n)
k −o(n)

k )
2

wheren andl are the number of neurons in the output layer and the number of input patterns,

respectively. The aim is to find a value set of parameters that produces the acceptable minimum

errorξ which can be obtained by using one of various numerical optimization techniques. All
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parameters gathered as weight vectorw initialized asw0 is iteratively updated by scaled con-

jugate gradient (SCG) algorithm (Moller, 1993) developed from the conjugate gradient (CG)

method and Levenberg-Marquardt algorithm in order to decrease errorξ until reach the desired

small value using the information of the partial derivatives with respect to weights. The SCG

weight-update rule is given bywr+1 = wr +∆w such that∆w = αrpr where a learning rate pa-

rameterα and a conjugate gradient directionp are systemically adapted by some rules. Denote

thatp0 is a steepest descent direction at an initial round. The benefit of SCG technique is the

effective convergence resulting from no computation of line search procedure in calculatingα

unlike the original CG method.

In practical situation, when a training data set along with class targetΓ is very big, it

will take a long time to yield an appropriate trained network model. Therefore, to reduce the

time of training such one big network,Γ is partitioned by key feature concept intog disjoint

sub-data set,τ1...∪ τi ∪ ...τg = Γ. Each sub-data setτi is trained by sub-networki in parallel

fashion (Plaimas et al., 2005). The final output results from all sub-networks are determined

by defined criteria. By this way, the complexity of data and training time would be reduced.

Shortly, the key feature is one feature of data set used as an identifier for dividing a data set into

several small groups which helps to build supervised classification sub-models, simultaneously.

First, the range of all values in a data set is found. Second, the data set is equally divided by the

range into n intervals. After that, an important interval which contains the maximum number

of values considered from the entire data set is discovered. Next, for each feature of the whole

data set, the numbers of values that are members of an important interval are counted, then, the

minimum one is defined as a key feature.
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3.3 Class Imbalance Data Treatment

From previous sections, the path inference problems can be expressed as the four defined

questions of the supervised binary classification problems. Once an input pattern set associated

with its metabolite input queryA was prepared, the class targetc(q)
j ∈ {0,1}, where (aj,c

(q)
j ) ∈ Γ(q)

andaj ∈ A, corresponding to binary answer of a defined questionq was assigned. Hence, the

four training data sets along with class targets,Γ(q) for q = 1,2,3 and 4, were available for train-

ing each neural network model resulting in the four classifiers, one for each defined question-

answer. However, each class occurrence in each training data set is not equal frequency. In fact,

they are very imbalanced. Without a procedure to deal with these class imbalance problems, the

performances of the trained neural network models are inefficient, especially, in the minority

class prediction (Visa, 2005). Thereby, to improve the performance of such trained models, the

proposed algorithm was designed for handling the highly class-imbalanced training data based

on combination of local under samplings and local over sampling manners including a defined

nearest neighbor rule for generating added minority data applied on a particular situation. Some

protocols were adapted from the recent methods (Thanathamathee and Lursinsap, 2013).

In brief, there are the following four main processes. First, each class data set is clus-

tered into small sub-data. Second, for each sub-data, the standard deviations before and after

combining sub-data with additional data from resampling method are computed. Third, the

border data point sets for each pair of the minority-majority sub-data are found out. Finally, the

new data are generated for both classes with approximately equal distribution using each border

data point set and the corresponding difference of previous and current standard deviations. The

following is the explanation of each process.

3.3.1 Clustering each class data set into small sub-data

Based on a chance that each class data set complexly locates in the data space, this entire

class data set would be hard to be separated. An unsupervised clustering method helps to

partition each class data set into many sub-groups, so, the imbalanced situations between the

paired sub-groups of the binary class are easily managed by the next procedures. Similar to the

recent work (Thanathamathee and Lursinsap, 2013), the self-organizing map (SOM) method

was applied.
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Figure 3.2: The illustration of 2D binary class imbalance datain generating additional data procedures
before clustering each class data set into sub-data sets. Synthesized data are depicted as purple points.
1) The concept of algorithm 1Generating Synthetic Inner-Class Data is depicted when nearest minority
neighbork = 3. 2) The result after using algorithm 1 is shown.

3.3.2 Combining each sub-data with additional data from resampling method and cal-

culating the standard deviation of previous and current sub-data

Bootstrap method was implemented for estimating the natural standard deviation of each

sub-cluster by repetitively sampling data with replacement. Subsequently, the difference of

two standard deviations from bootstrap method and the initial standard deviation was used

as information to position the new synthetic data for lessening the imbalanced data situations

(Thanathamathee and Lursinsap, 2013). But, in this paper, not only Bootstrap strategy but also

two proposed procedures to handle extremely imbalanced data were proposed.

First process, the new generated data are added to minority class data (AlgorithmGener-

ating Synthetic Inner-Class Data) before the process 3.3.1. This procedure considers the whole

binary class data. For each data pointq in the minority data set, no more than newk minority

data points are generated by findingk nearest minority data points in the form of Euclidean

distance and locating them along each line betweenq and each ofk nearest data points with a
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Figure 3.3: The illustration of 2D binary class imbalanced data in generating additional data procedures
before finding the two side border data sets. Synthesized data are depicted as dark/light green points. 1)
The concept of resampling technique called Boostrapping within the last step of creating a nearly bal-
anced training data set process is depicted. 2) Two closet data sets after applying algorithm 2Identifying
Boundary Data are represented.

distance no longer than the minimum length (see Algorithm 1 and Figure 3.2). This concept is

supposed to help increasing amount of the data points and also to expand the possibly occupied

data space of the minority class data before the clustering process.

Second process, unlike the recent method (Thanathamathee and Lursinsap, 2013), boot-

strap method was also used in slightly different ways before finding the rim data of each

minority-majority sub-cluster pair on the next process. Bootstrap method was performed in

order to both create the new additional data and calculate the difference of the previous and the

current standard deviations which was used in the last procedure. This process considers each

of minority−majority sub-clusters. For each sub-data with sizel, initially, the standard devi-

ation is calculated. Next, data are sampled with replacement forl times. Then, sampled data

are averaged as a new additional data to the sub-data. These are repeatedly done until reaching

the desired amount of additional data. After that, the current standard deviation is calculated

(see Figure 3.3). Because the severely imbalanced data as well as the sub-cluster division yield
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the tiny size in the terms of space and quantity of particular sub-clusters, in some cases, a bor-

der data set is possibly represented by that whole sub-cluster. The above procedure tries to

carefully enlarge such sub-clusters by embedding each new additional data set. Thus, these

combined sub-data are used for finding the border data sets. The new additional data could be

one member of the border data sets which are expected to increase the chance of the built model

to predict the new incoming data, effectively.

3.3.3 Finding border data point sets for each pair of the minority−majority sub-data

Every minority−majority sub-data pair contains two border data sets on each side. These

border data sets are identified by using Hausdorff distance concept which relied on Euclidean

distance (see Algorithm 2 and Figure 3.3) similar to the previous work (Thanathamathee and

Lursinsap, 2013). Each data point in one border side is the nearest point for at least one point in

the whole opposite side. This method helps to discard unnecessary data and retain only crucial

data in building separating model.

3.3.4 Generating new data for both classes with nearly equal distribution

At this point, the nearly balanced training data in binary class distribution are prepared by

synthesizing new data from the border data sets. The size of entirely balanced both class data

should be adequately available for providing information to efficiently build each predictive

model. Hence, first added synthetic data set is based on a rough criterion that the number

of small class data in each class should not be less than the dimension of data. Later, new

more synthetic data is added in order to obtain the nearly balanced training data set ready for

training supervised neural network models (see algorithm 4). The synthetic data are generated.

Each border data point is added by the standard deviation difference of its sub-cluster scaled by

random values from [−1,0)∪ (0,1] (see algorithm 3-4).

Therefore, the feed-forward neural network models with a sufficiently certain number of

epochs were trained by feeding the approximately balanced training data from the new synthetic

data including the border data sets. Afterwards, the performances of models were measured.
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Creating a nearly balanced training data set process

1. Generate synthetic inner-class data of minority class by using AlgorithmGenerating Syn-

thetic Inner-Class Data.

2. Identify clusters in each class by using self-organizing mapping method.

3. For any two clusters from different classes, find their boundary data by using Algorithm

Identifying Boundary Data which the concept of Hausdorff distance between two sets is

applied as in Thanathamathee and Lursinsap (2013).

4. Adjust imbalanced class ratio to the nearly balanced class ratio by generating new syn-

thetic boundary data of each cluster using AlgorithmGenerating Synthetic Boundary

Data and AlgorithmAdjusting Number of Boundary Data.

Algorithm 1: Generating Synthetic Inner-Class Data

1. Letd denote a considered data point in a minority data class.d can be referred as

q(b,t) in case 1 ora(b,n,t) in case 2 in Section 3.2.2

2. For each data pointd do

3. LetK be a set ofk original nearest data points ofd.

4. Letℓ be minimum values of||d−ρ|| whereρ ∈ K .

5. For each data pointρ ∈ K do

6. If ||d−ρ||2 > ℓ then

7. Generate a new data point

d′ = d+
(

ℓ
||d−ρ|| (ρ−d)

)

.

8. else

9. Generate a new data point

d′ = d+ρ
2 .

10. EndIf

11. EndFor

12. EndFor

||d−ρ|| is the Euclidean distance betweend andρ.
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Let c(A) andc(B) be two close clusters from classesA andB, respectively. The following

algorithm is for identifying the boundary data of two close clustersc(A) andc(B).

Algorithm 2: Identifying Boundary Data

1. LetB(A) = φ bea set of boundary data forc(A).

2. LetB(B) = φ be a set of boundary data forc(B).

3. For each data pointd ∈ c(A) do

4. Find all data pointsρ ∈ c(B) whose||d−ρ|| is minimum

and put them inB(B).

5. EndFor

6. For each data pointρ ∈ c(B) do

7. Find all data pointsd ∈ c(A) whose||d−ρ|| is minimum

and put them inB(A).

8. EndFor

Before the last step, the concept of well-known resampling technique called Bootstrap-

ping was adapted to estimate the natural standard deviation of data distribution of each cluster.

Let σ(org) andσ(nat) be the original standard deviation and the natural standard deviation of

training data of a cluster, respectively. A set of synthetic data is generated within the suitable

space calculated by using the difference ofσ(org) andσ(nat).

Suppose classA is a considered class.

Algorithm 3: Generating Synthetic Boundary Data

1. Letβi ∈ {−1,1} be a random sign value for each featurei.

2. Letαi ∈ (0,1] be a random constant for each featurei.

2. LetD(A) = φ be the set new boundary data points.

3. For eachd ∈ B(A) do

4. Generate a new boundary data pointd′ such that

d′i = di+αiβi|σ(org)
i −σ(nat)

i |.
5. D(A) =D(A)∪{d′}.
6. EndFor
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Let N (A) andN (B) be two sets of all identified boundary data points in classesA andB, respec-

tively.

Supposeη is the dimensions of feature space.

Algorithm 4: Adjusting Number of Boundary Data

1. If |N (A)| < |N (B)| then

2. If N (B) < η then

3. Use AlgorithmGenerating Synthetic Boundary Data to

generate additional data points toN (B) until N (B) ≥ η.
4. EndIf

5. If |N (A)| < |N (B)| then

6. Use AlgorithmGenerating Synthetic Boundary Data to

generate additional data points toN (A) until |N (A)|
equals|N (B)|.

7. EndIf

8. else

9. If N (A) < η then

Use AlgorithmGenerating Synthetic Boundary Data to

generate additional data points toN (A) until N (A) ≥ η.
10. EndIf

11. If |N (B)| < |N (A)| then

12. Use AlgorithmGenerating Synthetic Boundary Data to

generate additional data points toN (B) until |N (A)|
equals|N (B)|.

13. EndIf

14. EndIf
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3.4 Data Preparation

A set of 55E.coli reference pathways were obtained from aMAZE database (Lemer et al.,

2004). All metabolites associated with all reactions in this reference pathway set were listed.

There are 166 reactions and their associated 215 metabolites. Based on the available 2D chem-

ical structures in LIGAND database from KEGG database (Goto et al., 2002) downloaded in

July, 14, 2010, the available 208 metabolites and their involved reactions were used to construct

a defined graphK as described in Sections 3.1 and 3.2.1 and obtainedCm
2 · (m−1) metabolite

input queries wherem = 208. So, there are 4,456,296 metabolite input queries which they are

too huge. Instead of a big metabolite input query set acquired from a graphK , K1, ...,K s from

s disjoint sets of metabolitesV1, ...,Vs were constructed wheres is a number of connected com-

ponents discovered by constructing a combined graph of allE.coli reference pathways. Then,
∑s

i=1C |Vi |
2 · (|Vi| −1) metabolite input queries were obtained in order to prepare input feature pat-

terns. The whole 13 connected components were found out from combined 50E.coli reference

pathways and obtained each metabolite input queryh j ∈ H where j = 1,2, ..., l andl = 44,048.

Note that 5 reference pathways, namely, Phospholipid biosynthesis, Proline degradation, Proto

heme and heme O biosynthesis, Pyruvate oxidation pathway including Siroheme biosynthesis,

were excluded since some metabolites in such pathways have no 2D structure information.

Transformable or convertible properties were checked for every possible metabolite pair

as defined in Section 3.1. In order to detect the transformable property for each metabolite

pair (b, t), p possible simple paths with length no more than a certain valuek were searched by

applying bread-first search graph traversal routine (Cormen et al., 2001) to discover each new

path. Later, information about intermediate vertices gained fromp possible simple paths was

used for assigning 4 binary class targets to their relevant metabolite input queries according to

4 questions in Section 3.2.1.

To prepare each input feature patternaj ∈ A as explained in Section 3.2.2, molecular

features introduced by (Mu et al., 2011) including their calculation protocols were used as

the following. For each metabolite, 81 molecular properties were calculated by using JOELib

2004 (JOELib, 2004), CDK 1.4.6 (Steinbeck et al., 2003) and MOPAC 2009 (Stewart, 2009).

Before computing all properties, its optimized 3D chemical structure was computed by using

MOPAC 2009 with a PM3 parameter set which the 3D structure originated from a 2D structure

with added explicit hydrogen atoms that was prepared by MolConvertor 5.5.1 (Marvin, 2011).
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After calculating all properties of all metabolites, all of them were checked that whether some

properties of some metabolites were able to be properly computed, if they are±∞ or NaN, then

each of them is set to a constant distinct value comparing with all distinct values in its property.

3.5 Performance Evaluation

After a balanced binary class training data setB = {(xk,ck)|k = 1, ..., lB}, prepared by the

method in Section 3.3, was trained by the feed-forward neural networks, each class outputoi ∈O

related to its testing datãai such that (̃ai,ci) ∈ T was predicted by these trained models where

i = 1, ..., lT. Let ci = 1 be a positive(minority) class andci = 0 be a negative(majority) class.

According to confusion matrix, two aspects of the correct prediction between a class outputoi

and its corresponding class targetci were evaluated as true positiveT P and true negativeT N,

whereas two aspects of the misprediction were measured as false positiveFP and false nega-

tive FN. Then, some traditional metrics in Figure 3.4, namely, accuracy, sensitivity (recall),

specificity, precision(positive predictive value), F-measure for positive and negative classes,

G-means and Matthews correlation coefficient were calculated in order to assess more charac-

teristics of model performance. In addition, area under the curveAUC was also computed by

plotting ROC curve wherex-axis is 1-specificity andy-axis is sensitivity.

Accuracy:Acc =
T P+T N

T P+T N +FP+FN
(a)

Sensitivity/Recall/T P rate:T PR =
T P

T P+FN
(b)

Specificity/T N rate:T NR =
T N

T N +FP
(c)

Precision/Positive predictive value:PPV =
T P

T P+FP
(d)

Positive class F-measure:FP
β
= (1+β2)

PPV ·T PR

β2PPV +T PR
, whereβ = 1 (t)

Negative class F-measure:FN
β
= (1+β2)

NPV ·T NR

β2NPV +T NR
, whereβ = 1 andNPV =

T N
T N +FN

(t)

G-mean:Gm =
√

T PR ·T NR (f)

Matthews correlation coefficient: MCC =
(T P ·T N)− (FP ·FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(g)

Figure 3.4: Evaluation Metrics.

In comparative study (see Section 4.2), the statistical significance was analyzed by the

pairedt-test (Walpole et al., 2011) of the paired value sets from two comparing methods such

that each set was computed by the same performance evaluation. Each evaluation was calcu-

lated from the combined results of all sub-models. The pairedt-test is based on assumption
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that differences of pair are close to normally distributed. The null hypothesis is a difference

of mean between the paired results from two methods equivalent to zero which it is given as

H0 : µ1−µ2 = 0, while the alternative hypothesis is such mean difference not equivalent to zero

which it is written asH1 : µ1− µ2 , 0. Denote thatµ1− µ2 is the population mean difference.

Let di = x1i− x2i be a difference of two values calculated by the same performance metric from

method 1 and method 2 wherei is theith trial(or theith fold testing data) anddi ∈ D. There are

|D| = n trials for each considered method. The test statistic is given as follows:t = d̄
/

(sd

/√
n)

where d̄ and sd are the mean and the standard deviation of the difference setD, respectively.

Critical regions are found by constructing thet-distribution withυ = n−1 degree of freedom.

The test process does not rejectH0 when−tα/2,υ < t < tα/2,υ where the significant level isα= 0.05,

otherwise, it implies thatH1 is accepted.



CHAPTER IV

EXPERIMENTS AND RESULTS

This section exhibits the experimental results from applying the proposed methodology.

First, the ANNs supervised learning model results of the predictive classq vs. non-classq

models were shown. Second, performance results of these predictive model output values,

both original output scores and adjusted output scores were compared with those of another

method in many points such as the different number of the parallel trained sub-models, the

different output cut-off values for classifying the input data as classq or non-classq, and various

aspects of new unseen data performance results i.e. performance measurement according to

each particular sub-model, pathway and compound.

4.1 Training Neural Network Models and Evaluating Model Performance

From the previous section, the four input-target data setsΓ
(q) such that (aj,c

(q)
j ) ∈ Γ(q),

aj ∈ A andq = 1,2,3,4 were ready for the next procedure that produced the balanced training

data set. Before handling an imbalanced training data set problem, although the number of

metabolite input queries were reduced by preparing them from graphK1, ...,K s , the size of a

data set,l = 44,048, still be not easy to yield an effective feed-forward neural network model

with suitable parameters in reasonable time. Therefore, using a key feature as mentioned in

Section 3.2.3,A was finally divided intog disjoint input pattern sub-setsA1, ...,Ai, ...Ag. On ac-

count of model performance evaluation, each ofAi was randomly partitioned intok = 3 disjoint

sub-groups according to thek-fold cross validation,
∑3

k=1A(k)
i = Ai, with preserving the pro-

portion of classq and non-classq for q = 1,2,3,4 as nearly the same as before dividing them.

Later, each sub-data group marked asA(k′)
i became an input pattern part in the testing data sets

T(q)
i such thata′ j ∈ A(k′)

i and (a′ j,c
(q)
j ) ∈ T(q)

i . The rest two sub-data groups were combined as an

input part of each pre-training sub-data setτ(q)
i such thata j ∈

∑3
k=1,k,k′ A

(k)
i and (aj,c

(q)
j ) ∈ τ(q)

i .

Afterwards, all pre-training sub-data setsτ(q)
1 , ..., τ

(q)
i , ..., τ

(q)
g were applied for creating its corre-

sponding balanced training data setB(q)
1 , ...,B

(q)
i , ...,B

(q)
g as detailed in Section 3.3. An example

of the total 6 sub-data visualization before and after fixing imbalanced data using the proposed

method are shown in Figures 4.1 to 4.6.
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Any of supervised learning methods can takeB(q)
i to train a sub-modelM (i,q) for i =

1,2, ...,g andq = 1,2,3,4. In this work, the feed-forward neural network with scaled conjugate

gradient technique was used to build each predictive sub-modelM (i,q). The activation func-

tion of both a hidden layer and an output layer is sigmoid function. Conventional parameters

not only in the feed-forward neural network training procedure but also in Kohonen′s self-

organizing map(SOM) procedure, for instance, a number of epochs and a learning rate etc.,

were identically set for every pre-training sub-data setτ
(q)
i and their corresponding sub-model

M (i,q). However, there are some concerned factors that considerably impact performance of

each sub-model,M (i,q). One is numbers of neurons, (x−,y−) and (x+,y+), in 2D SOM method

(Section 3.3.1) for clustering majority(negative) and minority(positive) class data points, re-

spectively. Another is the number of neurons,s, in a hidden layer of each feed-forward neural

network. Moreover, a neighbor threshold,k, is varied which may help improving performance

of sub-models (Section 3.3).

There are no clues how to select these three concerned parameters. Based on above

sub-data splitting methods as well as the following scheme of training and selecting predic-

tive model, theg · |q| sub-models were parallel trained. Then, each sub-model with suitable

concerned parameter values was picked out as the predictive sub-modelM (i,q) that yielded ac-

ceptable (maybe not optimum) performances in practical time. Initially, for each pre-training

sub-data setτ(q)
i , a neighbor thresholdk was set as 0, the numbers of neurons in 2D self-

organizing map both (x−,y−) and (x+,y+) were both set as (10,10) for the big size ofτ(q)
i or

(7,7) for the small-medium size ofτ(q)
i . Note that the size of eachτ(q)

i was about 2,600−16,000

input patterns. The feed-forward neural network models were trained with various number of

hidden neuronss as following: s = 1,2,4,8,16,32 and 64. If there exists a trained model with

s yielding all performance values being greater than 0.75 for all 3 different training and testing

sub-data sets, then, the process of seeking the appropriate parameters, (x−,y−, x+,y+,k, s), was

stopped, else the values ofk, (x−,y−) and (x+,y+) were simultaneously selected guided by prior

performance results hoping that they would produce the better performance than the previous

round of selecting parameter values. The new values ofk, (x−,y−) and (x+,y+) were varied for

no more than 5 rounds due to the practicable time of performing the whole experiments in this

work. In the case of no appropriate parameter values, one trained model withs on a round that

returned the better performance values among all of them was selected. These metrics (Section

3.5) for selecting sub-models are as the following:

1) Accuracy (Acc) measures the whole correctness which is the fraction of the truly pre-
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dicted minority and majority class samples in all predicted samples,

2) True positive rate (T PR) measures the minority class sample correctness which is the

fraction of the truly predicted minority class samples in all minority class samples,

3) True negative rate (T NR) calculates in the same way as true positive rate, but it mea-

sures the majority class sample correctness,

4) Gm is Geometric mean ofT PR andT NR, and

5) Area under the ROC curve (AUC) represents a single value from ROC graph to show

performance of each classifier which if it is more than 0.5, then the model is better than ran-

domly guessing.

Table 4.1:Acc, T PR, T NR andGm performances at an output cut-off value= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from the 3− fold cross validation for
separating class 1 and non-class 1.

Sub-data Acc T PR T NR Gm AUC

P
re

-t
ra

in
in

g
da

ta
se

t

1 0.950± 0.012 1.000± 0.000 0.950± 0.012 0.975± 0.006 0.978± 0.004
2 0.857± 0.060 0.959± 0.001 0.856± 0.061 0.906± 0.032 0.910± 0.043
3 0.780± 0.024 0.839± 0.048 0.779± 0.025 0.808± 0.010 0.854± 0.021
4 0.735± 0.041 0.885± 0.015 0.732± 0.042 0.804± 0.022 0.808± 0.018
5 0.931± 0.025 0.986± 0.025 0.931± 0.025 0.958± 0.025 0.955± 0.025
6 0.945± 0.041 0.967± 0.058 0.945± 0.041 0.955± 0.025 0.975± 0.018

Overall 0.888± 0.015 0.902± 0.017 0.887± 0.015 0.894± 0.003 0.912± 0.022

N
ea

rly
ba

la
nc

ed
tr

ai
ni

ng
da

ta
se

t 1 0.978± 0.004 1.000± 0.000 0.953± 0.006 0.976± 0.003 0.975± 0.004
2 0.947± 0.047 0.987± 0.015 0.908± 0.078 0.946± 0.047 0.944± 0.048
3 0.880± 0.019 0.943± 0.024 0.809± 0.048 0.873± 0.022 0.903± 0.028
4 0.855± 0.028 0.961± 0.023 0.732± 0.037 0.839± 0.031 0.854± 0.021
5 0.979± 0.031 0.989± 0.019 0.969± 0.044 0.979± 0.031 0.977± 0.034
6 0.988± 0.006 0.999± 0.001 0.974± 0.014 0.986± 0.007 0.983± 0.008

Overall 0.910± 0.010 0.967± 0.012 0.848± 0.025 0.905± 0.011 0.937± 0.019

Te
st

in
g

da
ta

se
t 1 0.948± 0.016 0.767± 0.088 0.949± 0.016 0.852± 0.043 0.861± 0.038

2 0.846± 0.042 0.489± 0.100 0.851± 0.044 0.642± 0.051 0.719± 0.048
3 0.767± 0.030 0.604± 0.072 0.770± 0.030 0.681± 0.044 0.708± 0.068
4 0.728± 0.031 0.672± 0.099 0.729± 0.034 0.698± 0.037 0.720± 0.055
5 0.923± 0.021 0.689± 0.119 0.925± 0.022 0.796± 0.064 0.797± 0.053
6 0.945± 0.041 0.633± 0.153 0.945± 0.042 0.770± 0.098 0.836± 0.037

Overall 0.883± 0.013 0.633± 0.051 0.884± 0.013 0.748± 0.036 0.797± 0.065
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Table 4.2: Acc, T PR, T NR andGm performances at an output cut-off value= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from the 3− fold cross validation for
separating class 2 and non-class 2.

Sub-data Acc T PR T NR Gm AUC

P
re

-t
ra

in
in

g
da

ta
se

t

1 0.947± 0.015 1.000± 0.000 0.947± 0.015 0.973± 0.008 0.975± 0.006
2 0.917± 0.035 0.966± 0.006 0.912± 0.039 0.938± 0.022 0.937± 0.028
3 0.878± 0.028 0.939± 0.038 0.875± 0.028 0.906± 0.032 0.935± 0.014
4 0.926± 0.036 0.972± 0.010 0.923± 0.038 0.947± 0.023 0.953± 0.020
5 0.919± 0.028 0.950± 0.028 0.917± 0.031 0.933± 0.009 0.943± 0.009
6 0.948± 0.025 0.995± 0.009 0.948± 0.025 0.971± 0.013 0.979± 0.010

Overall 0.929± 0.011 0.959± 0.007 0.928± 0.011 0.944± 0.005 0.954± 0.006

N
ea

rly
ba

la
nc

ed
tr

ai
ni

ng
da

ta
se

t 1 0.980± 0.016 1.000± 0.000 0.959± 0.034 0.979± 0.017 0.978± 0.015
2 0.975± 0.018 0.993± 0.000 0.954± 0.040 0.973± 0.021 0.967± 0.022
3 0.924± 0.048 0.965± 0.032 0.876± 0.062 0.920± 0.048 0.934± 0.026
4 0.962± 0.027 0.987± 0.011 0.932± 0.046 0.959± 0.029 0.959± 0.024
5 0.922± 0.021 0.982± 0.007 0.857± 0.050 0.917± 0.024 0.919± 0.023
6 0.959± 0.020 0.996± 0.004 0.922± 0.036 0.958± 0.021 0.958± 0.020

Overall 0.948± 0.011 0.982± 0.007 0.908± 0.015 0.945± 0.011 0.958± 0.005

Te
st

in
g

da
ta

se
t 1 0.939± 0.014 0.821± 0.044 0.939± 0.014 0.878± 0.020 0.927± 0.018

2 0.853± 0.035 0.714± 0.043 0.869± 0.043 0.787± 0.010 0.840± 0.006
3 0.856± 0.021 0.774± 0.042 0.860± 0.024 0.816± 0.013 0.888± 0.019
4 0.896± 0.022 0.737± 0.017 0.905± 0.023 0.816± 0.007 0.875± 0.035
5 0.912± 0.014 0.900± 0.028 0.913± 0.016 0.906± 0.008 0.919± 0.005
6 0.946± 0.022 0.892± 0.099 0.946± 0.022 0.918± 0.042 0.957± 0.013

Overall 0.915± 0.008 0.785± 0.010 0.919± 0.008 0.849± 0.004 0.898± 0.011

Table 4.3:Acc, T PR, T NR andGm performances at an output cut-off value= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from the 3− fold cross validation for
separating class 3 and non-class 3.

Sub-data Acc T PR T NR Gm AUC

P
re

-t
ra

in
in

g
da

ta
se

t

1 0.968± 0.008 0.989± 0.010 0.968± 0.008 0.978± 0.007 0.984± 0.007
2 0.947± 0.002 0.947± 0.037 0.947± 0.008 0.947± 0.014 0.957± 0.009
3 0.920± 0.024 0.935± 0.016 0.918± 0.025 0.927± 0.021 0.933± 0.021
4 0.911± 0.037 0.945± 0.033 0.906± 0.038 0.925± 0.034 0.936± 0.026
5 0.942± 0.003 0.982± 0.008 0.939± 0.003 0.960± 0.005 0.966± 0.002
6 0.970± 0.005 0.983± 0.015 0.970± 0.005 0.976± 0.008 0.984± 0.003

Overall 0.950± 0.007 0.951± 0.017 0.950± 0.007 0.950± 0.012 0.962± 0.009

N
ea

rly
ba

la
nc

ed
tr

ai
ni

ng
da

ta
se

t 1 0.973± 0.014 0.999± 0.002 0.946± 0.030 0.972± 0.016 0.971± 0.018
2 0.985± 0.007 0.987± 0.011 0.983± 0.005 0.985± 0.007 0.982± 0.007
3 0.968± 0.013 0.978± 0.007 0.956± 0.021 0.967± 0.014 0.965± 0.015
4 0.967± 0.021 0.982± 0.012 0.951± 0.030 0.966± 0.021 0.966± 0.020
5 0.979± 0.012 0.995± 0.005 0.961± 0.020 0.978± 0.013 0.977± 0.010
6 0.969± 0.011 0.997± 0.004 0.937± 0.022 0.967± 0.012 0.966± 0.014

Overall 0.971± 0.012 0.984± 0.007 0.957± 0.018 0.970± 0.012 0.970± 0.012

Te
st

in
g

da
ta

se
t 1 0.963± 0.007 0.901± 0.067 0.964± 0.008 0.932± 0.031 0.973± 0.010

2 0.869± 0.013 0.707± 0.066 0.898± 0.011 0.796± 0.038 0.888± 0.031
3 0.877± 0.014 0.804± 0.018 0.886± 0.016 0.844± 0.012 0.898± 0.014
4 0.842± 0.036 0.725± 0.045 0.859± 0.040 0.789± 0.032 0.858± 0.020
5 0.907± 0.015 0.809± 0.017 0.914± 0.016 0.860± 0.014 0.913± 0.018
6 0.968± 0.001 0.899± 0.035 0.968± 0.001 0.933± 0.018 0.961± 0.021

Overall 0.925± 0.005 0.777± 0.006 0.934± 0.005 0.852± 0.005 0.922± 0.005
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Table 4.4: Acc, T PR, T NR andGm performances at an output cut-off value= 0.5 includingAUC per-
formance of theg = 6 sub-models with selected parameter values from the 3− fold cross validation for
separating class 4 and non-class 4.

Sub-data Acc T PR T NR Gm AUC

P
re

-t
ra

in
in

g
da

ta
se

t

1 0.964± 0.006 0.990± 0.010 0.963± 0.005 0.976± 0.008 0.983± 0.000
2 0.963± 0.007 0.959± 0.004 0.965± 0.009 0.962± 0.006 0.978± 0.011
3 0.973± 0.004 0.985± 0.001 0.970± 0.005 0.978± 0.002 0.986± 0.002
4 0.974± 0.009 0.990± 0.002 0.970± 0.011 0.980± 0.006 0.988± 0.006
5 0.975± 0.009 0.986± 0.003 0.974± 0.010 0.980± 0.006 0.990± 0.004
6 0.966± 0.021 0.996± 0.003 0.965± 0.022 0.980± 0.012 0.983± 0.009

Overall 0.968± 0.006 0.983± 0.001 0.967± 0.007 0.975± 0.003 0.985± 0.002

N
ea

rly
ba

la
nc

ed
tr

ai
ni

ng
da

ta
se

t 1 0.965± 0.006 0.995± 0.007 0.933± 0.011 0.963± 0.006 0.962± 0.010
2 0.985± 0.008 0.989± 0.002 0.981± 0.014 0.985± 0.008 0.984± 0.009
3 0.995± 0.003 0.995± 0.002 0.995± 0.004 0.995± 0.003 0.994± 0.003
4 0.996± 0.001 0.998± 0.001 0.994± 0.002 0.996± 0.001 0.995± 0.002
5 0.996± 0.003 0.999± 0.001 0.992± 0.006 0.995± 0.003 0.994± 0.004
6 0.987± 0.004 0.998± 0.002 0.974± 0.007 0.986± 0.004 0.984± 0.004

Overall 0.992± 0.002 0.996± 0.001 0.987± 0.004 0.991± 0.002 0.991± 0.003

Te
st

in
g

da
ta

se
t 1 0.960± 0.006 0.925± 0.059 0.961± 0.007 0.942± 0.028 0.974± 0.012

2 0.931± 0.004 0.909± 0.012 0.940± 0.001 0.924± 0.007 0.955± 0.006
3 0.928± 0.002 0.899± 0.011 0.934± 0.005 0.916± 0.004 0.954± 0.007
4 0.916± 0.016 0.870± 0.036 0.927± 0.012 0.898± 0.023 0.947± 0.021
5 0.949± 0.009 0.912± 0.003 0.954± 0.010 0.933± 0.006 0.966± 0.007
6 0.962± 0.016 0.930± 0.020 0.963± 0.016 0.946± 0.015 0.973± 0.011

Overall 0.948± 0.006 0.898± 0.002 0.952± 0.006 0.925± 0.004 0.961± 0.001

In each trial of different training and testing sub-data sets, theg selected sub-models

M (1,q), ...,M (i,q), ...,M (g,q) for classq were combined. Since a sigmoid function of an output

layer yields each output value in the range from 0 to 1, the selected cut-off value was 0.5 for

categorizing output values into classq vs. non-classq. Each performance evaluation result was

averaged as presented by Tables 4.1 to 4.4. The selected classq vs. non-classq predictive sub-

models forq = 1,2,3,4 show the satisfied average performance values including its standard

deviation from 3 trails in almost sub-data as well as the overall values.

Considering Tables 4.1 to 4.4, every overall performance value of the nearly balanced

data sets is better than such overall values of the testing data set, while almost each of overall

performance values of the pre-training data sets still be competitive with each of such values of

the nearly balanced data sets. Each nearly balanced data set is composed of the border data from

its pre-training data set and also the new synthetic data according to the proposed approaches.

The calculated molecular properties including the pre-process for reducing and transforming the

input features provide the pre-training data set with their class targets. The methods produce

the nearly balanced data set from the pre-training data set which is not difficult to learn by each

neural network sub-model with adequate parameter values.
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Generally, with the appropriate parameter values, theg = 6 nearly balanced sub-data

sets are quite suitable for training neural network models as predictive models for the defined

questions 1 to 4. When the performance values of unseen data like the testing sub-data sets

were determined, the combined model built for the broadest question i.e. class 4 vs. non-class 4,

yielded the superior performance values. Moreover, its class distribution is slightly imbalanced

data situation (Table 4.9). This question is about whether input compounds are not roughly

related in some routes unlike the kinds of class 1,2 or 3. In sequence, the models of more

specific questions like class 3 vs. non-class 3 and class 2 vs. non-class 2 produced the good

performance values (Tables 4.8 and 4.7). Meanwhile, the models built for the most specific

question which asking about whether one/two step relation of transformable compounds such

as class 1 vs. non-class 1 yielded the less effective performance values among four defined

question models. Also, its class distribution is the most critically imbalanced data situation

(Table 4.6).

The chosen parameter sets along with each binary class data ratios of the pre-training

and the testing sub-data sets including the nearly balanced training sub-data sets are shown by

Tables 4.6 to 4.9.

In each sub-data set for each question in sub-model building tasks, the more the seriously

imbalanced binary class sub-data sets exist, the harder the imbalanced data handling is. More-

over, the effective models were yielded by the suitable parameter values. Based on the four

pairs of Tables, namely, Tables 4.6 and 4.1, Tables 4.7 and 4.2, Tables 4.8 and 4.3 and Tables

4.9 and 4.4, the classq vs. non-classq ratio of each sub-data set can be observed before/after

making them to each corresponding nearly balanced sub-data set along with their performance

values. Additionally, when setting adequate numbers of SOM neurons for coarsely clustering

data in practical time as well as starting with no need to apply generating more minority data

process, the first initial assigned parametersx−,y−, x+,y+ andk gave the satisfied results.

Furthermore, the models using original imbalanced data before becoming the nearly bal-

anced data were also trained by the proposed processes. Theg selected models corresponding

to g sub-space for each binary class were combined in each fold data set. Each performance

evaluation result from all 3-fold data sets, both training and testing data, was averaged and pre-

sented by Table 4.5 including its standard deviation. There were two predictive sub-model types

for each question model. One was built by the imbalanced training data,τ, whereas another was
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Table 4.5: Acc, T PR, T NR andGm performance at output cut-off = 0.5 includingAUC performance
of the g = 6 combined sub-models with selected parameter values from the 3−fold cross validation for
separating each model output set into binary classes.

Model Acc T PR T NR Gm AUC

1

τo 0.997± 0.000 0.589± 0.064 1.000± 0.000 0.766± 0.043 0.797± 0.039
τn 0.888± 0.015 0.902± 0.017 0.887± 0.015 0.894± 0.003 0.912± 0.022
Bn 0.910± 0.010 0.967± 0.012 0.848± 0.025 0.905± 0.011 0.937± 0.019
To 0.991± 0.000 0.170± 0.048 0.997± 0.001 0.409± 0.059 0.636± 0.022
Tn 0.883± 0.013 0.633± 0.051 0.884± 0.013 0.748± 0.036 0.797± 0.065

2

τo 0.993± 0.003 0.813± 0.074 0.999± 0.001 0.900± 0.041 0.932± 0.012
τn 0.929± 0.011 0.959± 0.007 0.928± 0.011 0.944± 0.005 0.954± 0.006
Bn 0.948± 0.011 0.982± 0.007 0.908± 0.015 0.945± 0.011 0.958± 0.005
To 0.972± 0.001 0.484± 0.031 0.987± 0.001 0.691± 0.022 0.869± 0.015
Tn 0.915± 0.008 0.785± 0.010 0.919± 0.008 0.849± 0.004 0.898± 0.011

3

τo 0.992± 0.001 0.883± 0.022 0.999± 0.000 0.939± 0.012 0.947± 0.009
τn 0.950± 0.007 0.951± 0.017 0.950± 0.007 0.950± 0.012 0.962± 0.009
Bn 0.971± 0.012 0.984± 0.007 0.957± 0.018 0.970± 0.012 0.970± 0.012
To 0.969± 0.001 0.692± 0.017 0.985± 0.000 0.825± 0.010 0.915± 0.006
Tn 0.925± 0.005 0.777± 0.006 0.934± 0.005 0.852± 0.005 0.922± 0.005

4

τo 0.994± 0.001 0.940± 0.011 0.999± 0.001 0.969± 0.005 0.971± 0.010
τn 0.968± 0.006 0.983± 0.001 0.967± 0.007 0.975± 0.003 0.985± 0.002
Bn 0.992± 0.002 0.996± 0.001 0.987± 0.004 0.991± 0.002 0.991± 0.003
To 0.982± 0.001 0.883± 0.014 0.992± 0.001 0.936± 0.007 0.964± 0.012
Tn 0.948± 0.006 0.898± 0.002 0.952± 0.006 0.925± 0.004 0.961± 0.001

Two predictive sub-model types denoted by subscripto and n which were trained by the imbalanced training data,τ, and the nearly
balanced training data set,B, respectively.τ, B and the unseen testing data,T , were applied to both types of selected sub-models
to measure the performance. Each bold performance value of each binary class is the highest one comparing among the training
data or the testing data.

constructed by the nearly balanced training data,B. The output values were in the range from

0 to 1 due to a sigmoid function, so the selected cut-off value was 0.5 for categorizing output

values into two classes for each question model. Considering Table 4.5, generally, the com-

bined sub-models trained byB yielded the clearly improvedT PR, Gm andAUC values of the

unseen testing data,T. The highAcc andT NR values including the lowT PR values reflect

misrepresentation of separating function trained by the imbalanced data. Except in the question

4 combined sub-models, their performance values ofT look slightly different because of the

least imbalanced ratio among 4 defined question models. Only sub-space training seem to be

enough to yield effective sub-models.
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Table 4.6: The selected parameter values and distribution ratios of class 1 and non-class 1.

Sub-
data

ithfold
2D SOM neurons Clusters

k
FFNN
hidden
units

Pre-training data set Testing data set Nearly balanced
training data set

(x−,y−) (x+,y+) c− c+ Total Ratio of class 1
to non-class 1

Total Ratio of class 1
to non-class 1

Total Ratio of class 1
to non-class 1

1
1

(10,10) (10,10)
60 41

10
1 5,485 0.20 : 99.80 2,743 0.22 : 99.78 1,856 52.05 : 47.95

2 68 39 1 5,486 0.22 : 99.78 2,742 0.18 : 99.82 2,276 51.32 : 48.68
3 63 36 1 5,485 0.20 : 99.80 2,743 0.22 : 99.78 2,514 56.96 : 43.04

2
1

(7,7) (7,7)
22 36

10
1 1,739 1.44 : 98.56 870 1.38 : 98.62 2,588 47.30 : 52.70

2 31 21 1 1,740 1.44 : 98.56 869 1.38 : 98.62 1,514 52.05 : 47.95
3 23 27 8 1,739 1.38 : 98.62 870 1.49 : 98.51 1,903 46.24 : 53.76

3
1

(7,7) (7,7)
46 42

10
1 4,858 1.32 : 98.68 2,428 1.32 : 98.68 6,053 54.57 : 45.43

2 48 35 1 4,857 1.32 : 98.68 2,429 1.32 : 98.68 5,429 52.22 : 47.78
3 47 43 2 4,857 1.32 : 98.68 2,429 1.32 : 98.68 6,557 52.11 : 47.89

4
1

(7,7) (7,7)
49 32

3
1 3,461 2.02 : 97.98 1,729 1.97 : 98.03 4,210 54.44 : 45.56

2 49 29 1 3,460 1.99 : 98.01 1,730 2.02 : 97.98 4,414 51.93 : 48.07
3 49 30 1 3,459 1.99 : 98.01 1,731 2.02 : 97.98 4,202 55.02 : 44.98

5
1

(7,7) (7,7)
35 21

10
2 2,948 0.78 : 99.22 1,473 0.81 : 99.19 1,592 51.63 : 48.37

2 36 20 1 2,946 0.78 : 99.22 1,475 0.81 : 99.19 1,574 51.97 : 48.03
3 24 24 64 2,948 0.81 : 99.19 1,473 0.75 : 99.25 1,787 42.08 : 57.92

6
1

(7,7) (7,7)
27 16

5
1 10,878 0.10 : 99.90 5,436 0.09 : 99.91 1,206 56.38 : 43.62

2 26 19 16 10,876 0.10 : 99.90 5,438 0.09 : 99.91 1,090 51.74 : 48.26
3 31 19 2 10,874 0.09 : 99.91 5,440 0.11 : 99.89 1,004 52.59 : 47.41

Table 4.7: The selected parameter values and distribution ratios of class 2 and non-class 2.

Sub-
data

ithfold
2D SOM neurons Clusters

k
FFNN
hidden
units

Pre-training data set Testing data set Nearly balanced
training data set

(x−,y−) (x+,y+) c− c+ Total Ratio of class 2
to non-class 2

Total Ratio of class 2
to non-class 2

Total Ratio of class 2
to non-class 2

1
1

(10,10) (10,10)
71 16

0
2 5,485 0.47 : 99.53 2,743 0.47 : 99.53 1,657 50.27 : 49.73

2 70 16 4 5,486 0.47 : 99.53 2,742 0.47 : 99.53 1,688 50.59 : 49.41
3 65 15 2 5,485 0.47 : 99.53 2,743 0.47 : 99.53 1,418 51.34 : 48.66

2
1

(10,10) (10,10)
58 57

0
64 1,739 10.18 : 89.82 870 10.23 : 89.77 2,560 51.25 : 48.75

2 58 44 4 1,740 10.17 : 89.83 869 10.24 : 89.76 3,196 54.82 : 45.18
3 61 53 8 1,739 10.24 : 89.76 870 10.11 : 89.89 3,225 59.44 : 40.56

3
1

(10,10) (10,10)
100 69

0
4 4,858 5.48 : 94.52 2,428 5.48 : 94.52 7,770 55.39 : 44.61

2 99 63 8 4,857 5.48 : 94.52 2,429 5.48 : 94.52 7,916 54.83 : 45.17
3 99 63 2 4,857 5.48 : 94.52 2,429 5.48 : 94.52 7,350 51.37 : 48.63

4
1

(10,10) (10,10)
96 53

0
4 3,461 5.20 : 94.80 1,729 5.21 : 94.79 6,056 54.16 : 45.84

2 97 59 2 3,460 5.20 : 94.80 1,730 5.20 : 94.80 5,834 54.51 : 45.49
3 98 61 16 3,459 5.20 : 94.80 1,731 5.20 : 94.80 5,710 52.75 : 47.25

5
1

(10,10) (10,10)
63 41

0
1 2,948 4.99 : 95.01 1,473 4.96 : 95.04 2,508 52.15 : 47.85

2 61 42 2 2,946 4.96 : 95.04 1,475 5.02 : 94.98 2,234 51.30 : 48.70
3 67 37 1 2,948 4.99 : 95.01 1,473 4.96 : 95.04 2,466 51.34 : 48.66

6
1

(10,10) (10,10)
71 25

0
1 10,878 0.57 : 99.43 5,436 0.55 : 99.45 2,352 50.77 : 49.23

2 68 21 4 10,876 0.56 : 99.44 5,438 0.57 : 99.43 2,040 50.49 : 49.51
3 72 25 2 10,874 0.56 : 99.44 5,440 0.57 : 99.43 2,172 50.00 : 50.00

Table 4.8: The selected parameter values and distribution ratios of class 3 and non-class 3.

Sub-
data

ithfold
2D SOM neurons Clusters

k
FFNN
hidden
units

Pre-training data set Testing data set Nearly balanced
training data set

(x−,y−) (x+,y+) c− c+ Total Ratio of class 3
to non-class 3

Total Ratio of class 3
to non-class 3

Total Ratio of class 3
to non-class 3

1
1

(10,10) (10,10)
68 19

0
1 5,485 1.11 : 98.89 2743 1.09 : 98.91 1690 53.02 : 46.98

2 68 20 4 5,486 1.09 : 98.91 2742 1.13 : 98.87 1822 50.71 : 49.29
3 70 20 2 5,485 1.11 : 98.89 2743 1.09 : 98.91 1864 50.54 : 49.46

2
1

(10,10) (10,10)
60 48

0
16 1,739 15.30 : 84.70 870 15.29 : 84.71 2960 50.95 : 49.05

2 55 54 32 1,740 15.29 : 84.71 869 15.30 : 84.70 3458 58.76 : 41.24
3 56 62 8 1,739 15.30 : 84.70 870 15.29 : 84.71 3823 45.30 : 54.70

3
1

(10,10) (10,10)
99 84

0
8 4,858 11.53 : 88.47 2428 11.53 : 88.47 9996 54.20 : 45.80

2 99 78 16 4,857 11.53 : 88.47 2429 11.53 : 88.47 10659 54.80 : 45.20
3 98 82 8 4,857 11.53 : 88.47 2429 11.53 : 88.47 9560 52.97 : 47.03

4
1

(10,10) (10,10)
95 76

0
8 3,461 12.28 : 87.72 1729 12.26 : 87.74 9779 53.16 : 46.84

2 99 76 32 3,460 12.28 : 87.72 1730 12.25 : 87.75 10099 53.08 : 46.92
3 98 76 8 3,459 12.26 : 87.74 1731 12.31 : 87.69 10282 53.74 : 46.26

5
1

(10,10) (10,10)
60 43

0
16 2,948 6.78 : 93.22 1473 6.72 : 93.28 3037 55.22 : 44.78

2 64 45 4 2,946 6.75 : 93.25 1475 6.78 : 93.22 2823 52.60 : 47.40
3 65 47 8 2,948 6.75 : 93.25 1473 6.79 : 93.21 2845 53.46 : 46.54

6
1

(10,10) (10,10)
63 24

0
2 10,878 0.91 : 99.09 5436 0.90 : 99.10 2080 53.65 : 46.35

2 68 23 4 10,876 0.91 : 99.09 5438 0.90 : 99.10 1978 51.26 : 48.74
3 68 18 1 10,874 0.90 : 99.10 5440 0.92 : 99.08 2162 52.45 : 47.55
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Table 4.9: The selected parameter values and distribution ratios of class 4 and non-class 4.

Sub-
data

ithfold
2D SOM neurons Clusters

k
FFNN
hidden
units

Pre-training data set Testing data set Nearly balanced
training data set

(x−,y−) (x+,y+) c− c+ Total Ratio of non-
class 4 to class 4

Total Ratio of non-
class 4 to class 4

Total Ratio of non-
class 4 to class 4

1
1

(10,10) (10,10)
72 27

0
2 5,485 1.79 : 98.21 2,743 1.79 : 98.21 2,505 52.10 : 47.90

2 64 28 2 5,486 1.79 : 98.21 2,742 1.79 : 98.21 2,325 52.69 : 47.31
3 71 23 2 5,485 1.79 : 98.21 2,743 1.79 : 98.21 2,452 54.24 : 45.76

2
1

(10,10) (10,10)
52 63

0
16 1,739 26.91 : 73.09 870 26.90 : 73.10 3,991 49.11 : 50.89

2 50 62 8 1,740 26.90 : 73.10 869 26.93 : 73.07 4,026 49.03 : 50.97
3 58 64 4 1,739 26.91 : 73.09 870 26.90 : 73.10 4,123 48.56 : 51.44

3
1

(10,10) (10,10)
99 89

0
64 4,858 18.32 : 81.68 2,428 18.33 : 81.67 12,154 55.83 : 44.17

2 99 91 32 4,857 18.32 : 81.68 2,429 18.32 : 81.68 12,055 56.32 : 43.68
3 98 95 32 4,857 18.32 : 81.68 2,429 18.32 : 81.68 11,837 55.88 : 44.12

4
1

(10,10) (10,10)
94 87

0
32 3,461 19.50 : 80.50 1,729 19.43 : 80.57 11,352 56.29 : 43.71

2 97 91 64 3,460 19.48 : 80.52 1,730 19.48 : 80.52 11,137 55.36 : 44.64
3 96 92 64 3,459 19.46 : 80.54 1,731 19.53 : 80.47 12,211 56.78 : 43.22

5
1

(10,10) (10,10)
63 58

0
32 2,948 12.55 : 87.45 1,473 12.49 : 87.51 3,485 58.79 : 41.21

2 59 54 32 2,946 12.49 : 87.51 1,475 12.61 : 87.39 3,455 56.87 : 43.13
3 60 52 32 2,948 12.55 : 87.45 1,473 12.49 : 87.51 2,494 52.21 : 47.79

6
1

(10,10) (10,10)
65 30

0
16 10,878 1.58 : 98.42 5,436 1.55 : 98.45 2,916 52.26 : 47.74

2 64 26 4 10,876 1.57 : 98.43 5,438 1.56 : 98.44 2,788 52.51 : 47.49
3 70 31 4 10,874 1.55 : 98.45 5,440 1.60 : 98.40 2,964 52.23 : 47.77
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4.2 Comparative Study

To point out pros and cons of this methods,S CL value (Zhou and Nakhleh, 2011), the

conserved chemical content between two aligned compounds as stated by information from

KEGG RPAIR database (Kotera et al., 2004) divided by the maximum chemical content of

these two compounds, was calculated for each metabolite input query. To illustrateS CL value

calculation, two biochemical reactions R1 and R2 (in Figure 3.1a) are demonstrated as the

following equations: R1)A+B→←C+D and R2)C→←E+F. A metabolite input queryhi = {A,C}
is a compoundA and a compoundC situated on each side of the first reaction. The originally

definedS CL for hi = {A,C} when ignoring product and substrate information in the reaction is

as follows:

S CL{A,C} =
|Cnt(A)∩Cnt(C)|

max(|Cnt(A)| , |Cnt(C)|) ,

whereCnt(·) is chemical content e.g.Cnt(A) is calculated by counting non-hydrogen atoms

of A. For S CL of a metabolite input queryh j = {A,E,C} , originally definedS CL is simply

extended as follows:

S CL{A,E,C} =
|Cnt(A)∩Cnt(E)∩Cnt(C)|

max(|Cnt(A)| , |Cnt(E)| , |Cnt(C)|) .

After calculating eachS CL value for each metabolite input query, the comparison between the

S CL method and the proposed method can be arranged. In addition, due to the pre−process of

the originalS CL value calculation, in the case of no information from KEGG RPAIR database,

theS CL is set to zero. In this work, SIMCOMP (Hattori et al., 2010) was used for computing

alignment of chemical contents.

For comparative tasks (Sections 4.2.1 to 4.2.3), besides the output values yielded from

the proposed method called our result I, the adjusted output values called our# result I is one

method which adds the 2D structural compound alignment pre-process ofS CL method as the

post-process applied to the output values. Apart from that, the mean of our result I from four

models is denoted as our result II which each mean value associated with its input pattern is the

average of 4 output values from all 4 predictive models. The mean of our# result I from four

models is stated as our# result II in a similar way. The improved performance result II from

result I are expected.

The pairedt-test at 5% significant level (Section 3.5) was explored (Section 4.2.2) for the
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Table 4.10: AUC performance of the combined 3-fold testing data of the total sub-models when the
number of sub-models,g, in the data splitting step is 6,8 and 9 for separating classq and non-classq for
q = 1,2,3,4.

q No.of sub-models S CL our result I our result II our#result I our#result II

1
6

0.9548
0.7952 0.8980 0.8376 0.9209

8 0.7759 0.9065 0.8055 0.9256
9 0.7860 0.9067 0.8136 0.9264

2
6

0.9113
0.8975 0.9480 0.9115 0.9553

8 0.8945 0.9474 0.9060 0.9544
9 0.8947 0.9467 0.9065 0.9542

3
6

0.8764
0.9226 0.9496 0.9281 0.9496

8 0.9249 0.9473 0.9276 0.9475
9 0.9226 0.9461 0.9262 0.9470

4
6

0.9147
0.9614 0.9685 0.9625 0.9729

8 0.9637 0.9675 0.9647 0.9716
9 0.9634 0.9666 0.9650 0.9714

Each boldAUC value of each classq and non-classq model is the highest one.

paired performance value sets from two comparing methods. Each set is computed by the same

performance evaluation metric. The 5% significance test at several cut-off values was done.

Before doing the pairedt-test, the effect of the various numbers of sub-models was observed

(Section 4.2.1). Later, the unseen data prediction was analyzed (Section 4.2.3) in terms of sub-

model and pathway viewpoints by using non-cut-off value metric likeAUC (Section 4.2.3.1) as

well as compound and pathway viewpoints by using correctness measurement at a chosen cut-

off value (section 4.2.3.2 and 4.2.3.3). Additionally, they were visualized in forms of pathway

maps (Section 4.2.3.4).

4.2.1 Sub-pre−training data size impact

At first, the pre-training data were separated intog = 6 sub-data according to a sub-data

division step in the proposed method (Section 3.2.3). Then, overall acceptable predictive sub-

models for questions 1 to 4 were trained and selected. To increase effectiveness of predictive

class models, some of sub-data were recursively divided intog = 8 andg = 9 sub-data. The var-

ious score outcomes as above mentioned includingS CL scores were compared byAUC values

(Table 4.10). The very slightly different performance betweeng = 6, 8 and 9 in each type of

scores indicates thatg = 6 pre−training sub-data is enough to receive overall acceptable pre-

dictive sub-models for questions 1 to 4. Increasing numbers of pre-training sub-data is slightly

increasing performance for overall predictive class 1 sub-models, but other class models are not
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Figure 4.7: Precision-Recall graphs of the combined 3-fold testing data of the total sub-models when the
numbers of sub-models,g, in the data splitting step are 6,8 and 9 for separating classq and non-classq
for q = 1,2,3,4.

in the same trends. Because the more sub-data may make the looseness of global information

in training each predictive class model, but, in class 1 sub-models, they may reduce the com-

plex of separation hyper-planes according to the neural network model building. However, the

more amounts of sub-data certainly sacrifices more time in training and selecting satisfactory

sub-models. Besides, the precision-recall graphs were plots in Figure 4.7 which each area un-

der its curve also showed the resemble results asAUC values in Table 4.10. BothAUC values

and precision-recall graphs from our# result I/II mostly improve those from our result I/II. In

the next experiments,g = 6 sub-models were selected in building each predictive classq model

whereq = 1,2,3,4 and measured performance characteristics in many viewpoints.
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4.2.2 Cut−off value variation and significance test

Both S CL values and output values, called the combined model result I, from an output

layer of the combined neural network sub-models are in the range from 0 to 1, therefore various

cut-off values were set from 0.05 to 0.95 increasing by 0.05 to separating bothS CL scores and

output scores into two classes. Apart from that, the same various cut-off values were applied

to the mean output scores, called the combined model result II, as well. Then, to measure and

compare the performance ofS CL values, our output values and our# output values in two forms

of the combined model result I and II, each performance evaluation metric as in Figure 3.4 was

computed at each cut-off value for different testing data and pre-training data from all 3 trails.

The average performance values ware plotted as in Figures 4.8 to 4.11. Clearly, considering the

whole performance results, the average output values denoted as the combined model result I

from both our method and our# method (see (a) in Figures 4.8 to 4.11) as well as the average

mean output values denoted as the combined model result II from both our method and our#

method (see (b) in Figures 4.8 to 4.11) are comparative at almost every cut-off values. When

focusing on only a cut-off value that yielded the highest performance value from each metric,

the averageS CL values seems to mostly loss other two comparing values (Figures 4.9 to 4.11)

excepting the performance values of the predictive models for question 1 (Figure 4.8). Next,

the cut-off values with the highest performance values between the combined model result I and

II (Figures 4.9 to 4.11) were considered. The highest performance values of each metric in the

combined model result II mainly belongs to our method or our# method whereas such highest

values only some of them belongs to our method or our# method in the combined model result

I. In contrast, the half of highest performance values in the combined model result I and II of

the predictive models for question 1 (figure 4.8) belongs toS CL method while the half of them

look inconclusive from the plotted graphs. Additionally, most of the performance outcomes in

Figures 4.8 to 4.11 indicate that the models rather little over fit to the pre-training data sets than

the testing data sets.

The next plots aim to show each performance at the selected cut-off values with signifi-

cance test from diffrent values, comparatively.S CL values as well as the overall output values

of each predictive class sub-model when the associatedith fold testing sub-data was applied. The

default cut-off value was 0.4 for evaluating performances ofS CL values (Zhou and Nakhleh,

2011). Hence, to comparatively measure the performance ofS CL values, our output values and

our# output values in two forms of the combined model result I and II, each performance evalu-
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ation metric (as in Figure 3.4) was computed for all 3 folds of the testing data. Furthermore, the

small, medium and high cut−off values were set as 0.3, 0.5 and 0.8, respectively, to separating

bothS CL scores and output scores into two classes. The additional metrics apart from those 5

metrics for selecting sub-models are as follows:

1) Precision (PPV) measures the fraction of truly predicted minority class samples in all

samples that are predicted as minority class samples,

2) Positive class F1-measure (F1P)is harmonic mean of precision and recall,

3) Negative class F1-measure (F1N) is harmonic mean ofT NR noting that negative pre-

dictive value (NPV) whereNPV measures the fraction of truly predicted majority class samples

in all samples that are predicted as majority class samples, and

4) Matthews correlation coefficient (MCC) measures the superiority of binary class clas-

sification which the high truly predicted both majority and minority class samples and the low

wrongly predicted both majority and minority class samples produce theMCC values close to

ideal value, 1.

Later, to compare each performance value from two different method results at each cut−off

value, the pairedt-test with 5% significant level was performed for every possible pair in the

same score type i.e. I or II. The average performance values ware plotted (Figures 4.12 to

4.15). In addition, the average performance values are shown with their standard deviation if

each of them significantly overcomes its compared performance value from another method

result. Because of an assumption that the differences of each paired value in the process of the

paired t-test must be normally distributed, Kolmogorov-Smirnov test for the normal distribu-

tion test (Gibbons and Chakraborti, 2003) was also performed in every comparing result pair

of each performance metric. The null hypothesis is defined as the differences of each paired

value follow the standard normal distribution whereas the alternative hypothesis is defined as

such differences do not follow the standard normal distribution. There are three pair types (six

pairs in total) for each performance evaluation e.g. result I/II of S CL method vs. our method,

result I/II of S CL method vs. our# method and result I/II of our method vs. our# method. Every

result pair of all performance evaluation failed to reject null hypothesis which implied that the

differences of every result pair are normally distributed at 1% significant level.
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(a)Cut-off values versus its evaluation values on the combined model result I
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(b)Cut-off values versus its evaluation values on the combined model result II

Figure 4.8: Performance evaluation of class 1 vs. non-class 1 prediction model at cut-off value =
0.05,0.1,0.15, ...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets, respec-
tively, while blue, magenta and green represent each average performance value resulting from applying
the 3-fold pre-training/testing data sets toS CL methods, our methods and our# methods, respectively.
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(a)Cut-off values versus its evaluation values on the combined model result I
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(b)Cut-off values versus its evaluation values on the combined model result II

Figure 4.9: Performance evaluation of class 2 vs. non-class 2 prediction model at cut-off value =
0.05,0.1,0.15, ...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets, respec-
tively, while blue, magenta and green represent each average performance value resulting from applying
the 3-fold pre-training/testing data sets toS CL methods, our methods and our# methods, respectively.
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(a)Cut-off values versus its evaluation values on the combined model result I
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(b)Cut-off values versus its evaluation values on the combined model result II

Figure 4.10: Performance evaluation of class 3 vs. non-class 3 prediction model at cut-off value
= 0.05,0.1,0.15, ...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets,
respectively, while blue, magenta and green represent each average performance value resulting from
applying the 3-fold pre-training/testing data sets toS CL methods, our methods and our# methods, re-
spectively.
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(a)Cut-off values versus its evaluation values on the combined model result I
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(b)Cut-off values versus its evaluation values on the combined model result II

Figure 4.11: Performance evaluation of class 4 vs. non-class 4 prediction model at cut-off value
= 0.05,0.1,0.15, ...,0.95. Dot and asterisk denote the pre-training data sets and the testing data sets,
respectively, while blue, magenta and green represent each average performance value resulting from
applying the 3-fold pre-training/testing data sets toS CL methods, our methods and our# methods, re-
spectively.
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a.SCL result b.our result I c.our result II d.our# result I e.our# result II

Acc
d.0.93±0.01†♦

e.0.9±0.00†♦

PPV

a.0.047±0.00∗II

d.0.065±0.01♦

e.0.05±0.00♦

TPR
a.0.92±0.01∗†I ∗†II

TNR
d.0.94±0.01†♦

e.0.9±0.00†♦

Gm
a.0.89±0.01∗†I ∗†II

d.0.77±0.04♦

e.0.83±0.00♦

F1P
a.0.09±0.00∗II

d.0.12±0.02♦

e.0.094±0.00♦

MCC a.0.19±0.00∗II

d.0.19±0.03♦

e.0.18±0.00♦

F1N
d.0.97±0.00†♦

e.0.95±0.00†♦

 

 

Acc

b.0.91±0.01∗

d.0.93±0.01†♦

e.0.92±0.00†♦

PPV

b.0.22±0.02∗

c.0.2±0.01∗

d.0.28±0.02†♦

e.0.25±0.01†♦

TPR

c.0.91±0.01∗

e.0.9±0.01†

TNR

b.0.92±0.01∗

d.0.94±0.01†♦

e.0.92±0.00†♦

Gm

c.0.9±0.01∗

d.0.86±0.00♦

e.0.91±0.01†♦

F1P

b.0.35±0.02∗

c.0.33±0.02∗

d.0.41±0.02†♦

e.0.39±0.02†♦

MCC
b.0.39±0.01∗

c.0.4±0.02∗

d.0.44±0.01†♦

e.0.45±0.02†♦

F1N b.0.95±0.00∗

d.0.96±0.00†♦

e.0.96±0.00†♦

 

 

1) class 1 vs. non-class 1 2) class 2 vs. non-class 2
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Figure 4.12: Performance evaluation of five different scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cut-off value= 0.4 of every classq vs. non-classq model,q = 1,2,3,4, was
plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values between 0 to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pairedt-test significance
test are shown. Denote that∗, †and♦ are a significantly better performance results in the types of scores,
I or II, from the following paired method:S CL method vs. our method,S CL method vs. our# method,
and our method vs. our# method, respectively.
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a.SCL result b.our result I c.our result II d.our# result I e.our# result II
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1) class 1 vs. non-class 1 2) class 2 vs. non-class 2
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Figure 4.13: Performance evaluation of five different scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cut-off value= 0.3 of every classq vs. non-classq model,q = 1,2,3,4, was
plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values between 0 to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pairedt-test significance
test are shown. Denote that∗, †and♦ are a significantly better performance results in the types of scores,
I or II, from the following paired method:S CL method vs. our method,S CL method vs. our# method,
and our method vs. our# method, respectively.
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c.0.84±0.01∗

d.0.93±0.00†

e.0.84±0.01†

F1P

b.0.76±0.02∗

c.0.72±0.02∗

d.0.83±0.02†♦

e.0.77±0.02†♦

MCC
b.0.74±0.02∗

c.0.7±0.02∗

d.0.81±0.02†♦

e.0.75±0.02†♦

F1N
b.0.97±0.00∗

c.0.97±0.00∗

d.0.98±0.00†♦

e.0.98±0.00†♦

3) class 3 vs. non-class 3 4) class 4 vs. non-class 4

Figure 4.14: Performance evaluation of five different scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cut-off value= 0.5 of every classq vs. non-classq model,q = 1,2,3,4, was
plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values between 0 to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pairedt-test significance
test are shown. Denote that∗, †and♦ are a significantly better performance results in the types of scores,
I or II, from the following paired method:S CL method vs. our method,S CL method vs. our# method,
and our method vs. our# method, respectively.
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a.SCL result b.our result I c.our result II d.our# result I e.our# result II

Acc
a.0.99±0.00∗I ∗†II

d.0.95±0.02♦

PPV

a.0.22±0.01∗†I ∗†II

d.0.069±0.02♦

e.0.037±0.01♦

TPR
a.0.39±0.03∗†II

TNR
a.0.99±0.00∗†II

d.0.95±0.02♦

Gma.0.62±0.03∗†II

F1P
a.0.28±0.02∗†I ∗†II

d.0.12±0.03♦

e.0.05±0.01♦

MCC a.0.28±0.02∗†I ∗†II

d.0.17±0.04♦

e.0.044±0.01♦

F1N
a.0.99±0.00∗†II

d.0.97±0.01♦

Acc
a.0.97±0.00∗†I

d.0.94±0.01♦

e.0.97±0.00♦

PPV

a.0.29±0.01∗I

d.0.29±0.02♦

e.0.34±0.05♦

TPR

b.0.75±0.04∗

c.0.18±0.03∗

d.0.74±0.04†

e.0.18±0.03†

TNR
a.0.99±0.00∗†I

d.0.94±0.01♦

e.0.99±0.00♦

Gm

b.0.83±0.02∗

c.0.42±0.03∗

d.0.84±0.02†

e.0.42±0.03†

F1P

b.0.35±0.02∗

d.0.41±0.02†♦

e.0.23±0.03†♦

MCC
b.0.39±0.01∗

d.0.44±0.01†♦

e.0.23±0.03♦

F1N a.0.98±0.00∗†I

d.0.97±0.00♦

e.0.98±0.00♦

1) class 1 vs. non-class 1 2) class 2 vs. non-class 2

Acc

a.0.94±0.00∗I

c.0.94±0.00∗

d.0.95±0.00†♦

e.0.94±0.00†

PPV

b.0.41±0.02∗

c.0.44±0.03∗

d.0.52±0.01†♦

e.0.47±0.01†

TPR

b.0.76±0.01∗♦

c.0.14±0.01∗♦

d.0.74±0.00†

e.0.13±0.01†

TNR
a.0.99±0.00∗†I

d.0.96±0.00♦

Gm

b.0.84±0.00∗

c.0.37±0.01∗♦

d.0.84±0.00†

e.0.35±0.01†

F1P

b.0.53±0.01∗

c.0.21±0.01∗

d.0.61±0.00†♦

e.0.2±0.01†

MCC
b.0.53±0.01∗

c.0.22±0.00∗

d.0.59±0.00†♦

e.0.22±0.01†

F1N a.0.97±0.00∗I

d.0.97±0.00†♦

e.0.97±0.00†

Acc

b.0.95±0.01∗

d.0.97±0.00†♦

e.0.92±0.00†

PPV

a.0.78±0.03∗I

d.0.79±0.03♦

e.0.85±0.06♦

TPR

b.0.89±0.00∗♦

c.0.14±0.01∗♦

d.0.87±0.01†

e.0.14±0.01†

TNR
a.1±0.00∗†I

d.0.98±0.00♦

Gm

b.0.92±0.00∗

c.0.38±0.01∗♦

d.0.92±0.00†

e.0.37±0.01†

F1P

b.0.76±0.02∗

c.0.24±0.01∗

d.0.83±0.02†♦

e.0.24±0.01†

MCC
b.0.74±0.02∗

d.0.81±0.02†♦

e.0.32±0.01†

F1N b.0.97±0.00∗

d.0.98±0.00†♦

e.0.96±0.00†

3) class 3 vs. non-class 3 4) class 4 vs. non-class 4

Figure 4.15: Performance evaluation of five different scores (a-e) is comparatively depicted. Each per-
formance evaluation result at cut-off value= 0.8 of every classq vs. non-classq model,q = 1,2,3,4, was
plotted by each average performance value of each score type (a-e) resulting from applying the 3-fold
testing data.In each axis, all five average values were comparatively scaled into values between 0 to 1. A
maximum one was scaled to one. Additionally, at 5% level of significance, the average results with stan-
dard deviation of the significantly outperforming performance analysed by the pairedt-test significance
test are shown. Denote that∗, †and♦ are a significantly better performance results in the types of scores,
I or II, from the following paired method:S CL method vs. our method,S CL method vs. our# method,
and our method vs. our# method, respectively.
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Comparing performance values at cut-off value= 0.4 (Figure 4.12), the mostly common

significant performance results come from our# method in both I and II (line d-e) for all 4

predictive models. These suggest that the combination of the proposed method and irrelevant

compound filtering usingS CL = 0 or the existent compound pairs in RPAIR database works

well for predicting various defined degrees of relevant compounds (Section 3.2.1). In addition,

the general performance values of models that the balanced training data originated from the

pre-training data with the less degrees of the imbalanced situation tend to be high. Moreover,

the small, medium and high cut−off values were set as 0.3, 0.5 and 0.8, respectively, therefore,

the same representation of the performance values was shown (Figures 4.13 to 4.15). The

typical results are also similar to Figure 4.12 except the class 1 vs. non-class 1 model. The

outcomes of cut-off variation and significance test point out that cut-off variation obviously

affects the general performance results of all compared methods in the class 1 vs. non-class 1

model which it contains the highest degrees of imbalanced pre-training data. However, in the

cases of the lesser degrees of imbalanced pre-training data, the predictive model performance

can be improved by the proposed methods. Especially, our# method in both I and II.
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4.2.3 Unseen data prediction and comparison

In this experiment, the four models from combining each of six selected sub-models

corresponding to each classq model forq = 1,2,3,4 were used in the tasks of predicting unseen

data patterns prepared by the 7-pathway examples. Each unseen input pattern was predicted

by three models derived by the previous 3-fold cross validation procedure, then a max output

value was a predicted output value. Theses following 7E.coli pathways were selected from 7

different pathway functions:

1) purine metabolism involved in a process of nucleotides,

2) valine leucine and isoleucine biosynthesis involved in a process of proteins,

3) streptomycin biosynthesis involved in a process of secondary metabolites,

4) methane metabolism involved in a process of energy metabolism,

5) nicotinate and nicotinamide metabolism involved in a process of cofactors

and vitamins,

6) phospholipid biosynthesis involved in a process of lipids, and

7) pyruvate oxidation pathway involved in a process of carbohydrates.

These pathways were downloaded from KEGG Pathway as the same version of KEGG Ligand

database used for preparing relevant compound features except the last two pathways came

from aMAZE database as the same database we used in model building (see Section 3.4). Their

relationship according to our four defined questions was extracted into a data pattern set with

four target sets.

4.2.3.1 AUC performance: sub-model vs. pathway perspective

A data pattern set with four targets was divided into 6 sub-data according to a key feature

calculated in a sub-data division step (Section 3.2.3). First one, the output scores associated with

each unseen data pattern were predicted by each sub-model of classes 1 to 4. Then, based on the

results of the previous section,AUC performance evaluation of all 6 sub-data was calculated by

applying scores from our# method II. Another one, the output scores yielded by each sub model

of classq was gathered and re-divided according to each pathway example they are associated

with. Then,AUC values of scores from our# method II was computed. Afterwards, bothAUC

values were compared withAUC values ofS CL method.

Focusing on every classq model in Figure 4.16,AUC results of scores from our# method

II in the 3rd-4th and the 5th-6th sub-models are clearly better and slightly better than results
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of scores fromS CL method, respectively, while,AUC results of scores fromS CL method

in the 1st-2nd sub-models obviously outperform results of another method.AUC values of

scores fromS CL method in purine metabolism, streptomycin biosynthesis, and nicotinate and

nicotinamide metabolism are greater than results of scores from our# method II. However, for

the most parts,AUC results of scores from our# method II in the rest four pathway examples are

higher thanAUC values of scores fromS CL method. In the sub-model view, the large parts of

overall sub-models yield output scores from our# method II with the betterAUC performances.

In the pathway perspective, both methods seem to complement each other with the different

efficient AUC performances. Interestingly, some drawbacks ofS CL score is ineffective in

some compounds involved lipid pathways and a pyruvate oxidation pathway like acetyl-CoA

and acetate (Zhou and Nakhleh, 2011), but, the greaterAUC results of scores from our# method

II in these two cases were found.
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a) AUC performance evaluation according to each selected pre-
dictive sub-model

b) AUC performance evaluation according to each pathway ex-
ample

Figure 4.16: AUC performance comparison between the combine model result II by our# method and
those results byS CL method for all 4 defined question models. Note that the new unseen input data were
derived from the 7-pathway examples (see Section 4.2.3)

0% : pathways of 

nucleotides

54% : pathwyas of proteins

0% : pathways of secondary 
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0% : pathways of energy 

metabolisms

2% : pathways of cofactors 

and vitamins

4% : pathways of lipids

38% : pathways of 

carbohydrates

2% : pathways of others

Figure 4.17: Distribution amount of pathways according to metabolite types of 50Ecoli pathways from
aMAZE (Lemer et al., 2004) that their involed reaction and metabolite sets were used in model training
processes (Section 3.4).
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4.2.3.2 Correctness performance: compound perspective

In the form of correctness measurement, accuracyAcc measures how good the method

correctly predict in both binary classes in a data pattern set is. However, in the imbalanced

binary class data, the majority class accurateness affectsAcc. Then, G-meanGm would be

suitable to represent the reasonable correctness of each binary classes since it is the geometric

mean ofT PR andT NR (Figure 3.4). In this task, the 172 input-target sets were prepared due

to all available 2D compound structures from the 7-pathway examples. For each set, every

metabolite query in such set has one distinct compound in common. After that, to measure how

accurate they are in the compound viewpoint, correctness performance denoted asC based on

Gm, T PR andT NR were offered as the following: a) if that set contains binary targets,Gm

performance was calculated asC of the output scores at cut-off=0.5 from our method I (Cour),

those from our# method I (Cour#), and those fromS CL method (CS CL) in comparison; and b)

if that set contains only either a positive or a negative target, eitherT PR or T NR performance

was calculated asC of the output scores at cut-off=0.5, namely,Cour, Cour#, andCS CL.

Cour, Cour#, andCS CL of the 172 input-target sets were calculated for all four defined

questions. EachC performance value is in [0,1]. To visualize and simplify allC results (see

figure 4.18),C values were categorized into four levels as the following: 1)C ∈ [0,0.25] are

the low values denoted as white color; 2)C ∈ (0.25,0.50] are the medium-low values denoted

as green yellow color; 3)C ∈ (0.50,0.75] are the medium-high values denoted as brown color;

and 4)C ∈ (0.75,1] are the high values denoted as blue color.

In Figure 4.18,Cour, Cour#, andCS CL of the 121 input-target sets for all four defined

questions has been shown. The restC results of the 51 input-target sets are omitted because none

of them are the highC values. For the 121 input-target sets which each of them is associated

with a compound, they are displayed as different colors as the following:

1) some of them are dark green color labeled as the positive seen metabolites if they are

involved in the training data and they also appear on the reference maps,

2) some of them are italic and light green color labeled as the negative seen metabolites

if they are involved in the training data and they do not appear on the reference maps,

3) some of them are dark red color labeled as the positive unseen metabolites if they are

not involved in the training data and they also appear on the reference maps, and

4) some of them are italic and light red color labeled as the egative unseen metabolites if
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they are not involved in the training data and they do not appear on the reference maps.

Additionally, 66 in 121 distinct common compounds in each set are the seen metabolites. Apart

from that, for each input-target set associated with a compound, such compounds participated

in one or more than one of 7-pathway examples (see Section 4.2.3) were also identified.

The groups ofC results can be analyzed across different defined questions and com-

pared methods. First, almost all ofC results of input-target set id 1-26 associated with each

compound have highC values across all defined questions and compared methods. More than

half of them are the input-target sets of the negative seen metabolites. Second,C results of

input-target set id 27-41 associated with each compound were explored. In question 1 model,

it was found that set id 27-32 yielded results from three methods with highC values whereas

set id 33-41 yielded results from our and our# methods with highC values. In question 2-4

models, they were found that a third of them, id 27-32, which are the positive unseen metabo-

lites have the highCS CL values as well as around a third of them, id 33-36, which are the

positive seen metabolites have the highCour andCour# values. Focusing on set id 27-32, most

of them are from example pathways concerning nucleotides, secondary metabolites and en-

ergy metabolisms which are known as the rare trained data in the training processes (Figure

4.17). Almost all of set id 33-41 are the positive seen metabolites that they failed to achieve

highCS CL values across four defined questions. When considering each compound involved in

set id 27-41, the most compounds are phospholipids, i.e. Glycerone phosphate, 1,2-Diacyl-sn-

glycerol, CDP-diacylglycerol, Phosphatidylglycerophosphate, Phosphatidylserine. Such com-

pounds with long chain shapes and their route characteristics of lipid transformations cause

no high S CL scores (Zhou and Nakhleh, 2011). The second groups are compounds carry-

ing formyl or acetyl groups for attaching to other compounds by its roles i.e. Acetyl-CoA,

Methanol, Formaldehyde(Methanal), and Formate. An input-target set associated with Glycine

yields high correctness in questions 1 and 4 models since Glycine is an amino acid with simple

structure and also the positive seen metabolites as the trained data. It is involved in many pairs in

class 1 like a hub of transformation, so this may be a reason that yielded highC values in ques-

tion 1 and 4 models. The rest of them are myo-Inositol, 1D-myo-Inositol 3-phosphate, Urate,

Nicotinamide and Oxalureate which all positive unseen metabolites excepting Nicotinamide.

Because they are not obvious to discuss about their highCour values via only visualization of

resemble structures or their route characteristics, these may be implied that the trained neural

network models can effectively predict these kinds of them. Third, the most of input-target set
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id 42-60 associated with each compound are from as Valine Leucine and Isoleucine biosyn-

thesis which is protein pathways and such pathways are the main parts in the trained data (see

Figure 4.17). In question 1 model, allCour# values are high while a half ofCS CL values are high.

In other question models,Cour# values are still high in a large group of sets. Fourth,C results of

input-target set id 61-74 associated with each compound were investigated. In question 1 and

3 models, the highCS CL values are the main results, but in question 2 and 4 models, the high

Cour# values are the main results. Same as input-target set id 42-60, the most of compounds

are from Valine Leucine and Isoleucine biosynthesis. The last part,C results of input-target set

id 75-121 were considered, only in question 1 model can yield mainly high correctness from

S CL method. Nearly all sets are associated with compounds from Purine metabolism which is

nucleotide pathways and such pathways are not participated in the trained data (Figure 4.17).

In conclusion from the compound perspective, filtering irrelevant 2D structure pair of

compounds as our# method can improve the output values from the proposed method because it

helps to eliminate noise results in some cases e.g. set id 42-60. Apart from that, almost all cases

of highCour values are also highCour# values. Besides, input-target sets that yielded either high

Cour values orCour# values in at least one question model are mainly associated with the seen

metabolites involved in the trained data.
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Phosphatidylglycerol 21

D−Glucose 6−phosphate 23

Glycine 27

Phosphatidylserine 33
Phosphatidylglycerophosphate 34

CDP−diacylglycerol 35
1,2−Diacyl−sn−glycerol 36
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Formate 41
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L−Isoleucine 52
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Figure 4.18: The correctness performance,C, evaluation of four defined models in compound perspec-
tives. Each class model, the output scores were obtained byS CL method, our method I, and our# method
I. From 174 compounds obtained by the 7-pathway examples, there are 172 available 2D compound
structures. These are 121 results with at least one highC value of 172 input-target sets such that every
metabolite query in a set contains one compound in common. The right side shows pathway example
id (see Section 4.2.3) which each compound is participated.C values were categorized into four levels
as the following: 1)C ∈ [0,0.25] denoted as white color; 2)C ∈ (0.25,0.50] denoted as green yellow
color; 3)C ∈ (0.50,0.75] denoted as brown color; and 4)C ∈ (0.75,1] denoted as blue color. Each set
involved each compound is displayed as different colors as the following: 1) dark green color labelled as
positive seen metabolites; 2) italic and light green color labelled as negative seen metabolites; 3) dark red
color labelled as positive unseen metabolites; and 4) italic and light red color labelled as negative unseen
metabolites. Note that the details of seen/unseen metabolites andC computation are in Section 4.2.3.2.
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4.2.3.3 Correctness performance: pathway perspective

In this task, the metabolite queries prepared from the 7-pathway examples were gathered

into each input-target set associated with each pathway example (see Section 4.2.3). In one

input-target set, every metabolite query contains at least a metabolite that is participated in such

considered pathway. Then, the output results of each set for all four defined question were eval-

uated the correctness performance,C, in three compared method as Section 4.2.3.2. In addition,

the way to define class target becomes an issue in comparison. In the definition calledmetabo-

lite transformation network (Section 3.1), every existing compound pairs in the reference maps

can be transformable in one step when there exist at least a reaction to change one to another.

This was defined because of the following two reasons. First, each metabolite acting as a main

or side compound did not be defined in networks since the results of trained model would ex-

press and define them. Second, based onS CL method, it also prefers this definition, so it would

be a reason for comparison. However,C performance when the transformation obtained from

original reference maps like xml files from KEGG pathway database was also shown. In Table

4.11, the four defined class targets obtained from both metabolite transformation network and

original reference map yielded the same trends of correctness performance,C, in each of the

7-pathway examples. Both Purine metabolism and Streptomycin biosynthesis are the kind of

the rare data in the training data set, soCS CL values are maximum in all four questions com-

paring toCour andCour# values. However, Methane metabolism is also the kind of the rare

data in the training data set, but maximum values are mainly obtained fromCour values. Apart

from that maximumCour values still be found in main results of Pyruvate oxidation pathway

which is carbohydrate pathways. These kinds of pathways are not tiny parts of the training data

set. All maximum values across four defined questions are obtained fromCour# values in an

input-target set of Phospholipid biosynthesis which is lipid pathways although lipid pathways

are small parts of the training data set. All maximumCour# values were also shown from results

of Nicotinate and Nicotinamide metabolism which is also the kind of very small data in the

training data set. The output results of valine Leucine and Isoleucine biosynthesis yielded the

maximumC values fromour# or S CL method in different defined questions.

In brief, the correctness performance at a chosen cut-off value in both pathway and com-

pound perspectives indicate that the trained data must be sufficient to cover considered kinds of

pathways such that the required accurate prediction was achieved by the trained model (Tables

4.11 to 4.12).
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Table 4.11: TheC performance evaluation of four defined cases in pathway perspectives. Each class
model, the output scores were obtained byS CL method, our method I, and our# method I. There are
7 input sets with 2 target sets according to 7 metabolite query sets of the 7-pathway examples. The
two target sets for comparison were obtained by definition called metabolite transformation network and
original reference maps (see Section 4.2.3.3).

The 7-pathway examples ofE.coli C
Metabolite transformation network Original reference maps

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

Purine Metabolism
CS CL 0.731 0.590 0.518 0.538 0.773 0.656 0.581 0.594
Cour 0.227 0.237 0.336 0.275 0.328 0.244 0.336 0.272
Cour# 0.194 0.225 0.336 0.267 0.328 0.241 0.342 0.274

Valine Leucine and Isoleucine Biosynthesis
CS CL 0.773 0.722 0.673 0.691 0.774 0.718 0.676 0.691
Cour 0.644 0.588 0.757 0.761 0.659 0.591 0.757 0.761
Cour# 0.692 0.618 0.820 0.803 0.708 0.621 0.821 0.803

Streptomycin Biosynthesis
CS CL 0.838 0.634 0.548 0.657 0.838 0.634 0.548 0.657
Cour 0.449 0.477 0.247 0.363 0.449 0.477 0.247 0.363
Cour# 0.464 0.517 0.253 0.371 0.464 0.517 0.253 0.371

Methane Metabolism
CS CL 0.509 0.322 0.378 0.391 0.623 0.000 0.000 0.329
Cour 0.680 0.441 0.251 0.516 0.745 0.457 0.573 0.704
Cour# 0.557 0.397 0.268 0.428 0.683 0.424 0.433 0.593

Nicotinate and Nicotinamide Metabolism
CS CL 0.652 0.374 0.265 0.325 0.652 0.374 0.265 0.325
Cour 0.636 0.489 0.430 0.483 0.636 0.489 0.430 0.483
Cour# 0.704 0.500 0.466 0.505 0.704 0.500 0.466 0.505

Phospholipid Biosynthesis
CS CL 0.739 0.614 0.632 0.650 0.739 0.614 0.632 0.650
Cour 0.812 0.867 0.862 0.885 0.812 0.867 0.862 0.885
Cour# 0.877 0.883 0.882 0.911 0.877 0.883 0.882 0.911

Pyruvate oxidation Pathway
CS CL 0.750 0.483 0.432 0.561 0.750 0.483 0.432 0.561
Cour 0.722 0.781 0.896 0.771 0.722 0.781 0.896 0.771
Cour# 0.827 0.763 0.859 0.727 0.827 0.763 0.859 0.727

Denote that bold values represent the maximum value in each class model of each input-target set involved in each 7-pathway example.
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Table 4.12: Pie charts represent amount of the seen/unseen compounds participated in each metabolite
query set in theC performance evaluation of all four defined cases in the pathway perspectives. Each
class model, the output scores were obtained by SCL method, our method I, and our# method I. There
are 7 input sets according to 7 metabolite query sets such that each input set was evaluated by the 2 target
sets of the 7-pathway examples. The two target sets for comparison were obtained by definition called
metabolite transformation network and original reference maps (see Section 4.2.3.3).

The 7-pathway examples of
E.coli

No. of
compounds

with available
structures

No. of
metabolite

queries

Metabolite
transformation

network

Original reference
maps

Purine Metabolism 96 433,200

Valine Leucine and Isoleucine Biosynthe-
sis

46 46,575

Streptomycin Biosynthesis 18 2,601

Methane Metabolism 19 3,078

Nicotinate and Nicotinamide Metabolism 28 10,206

Phospholipid Biosynthesis 16 1,800

Pyruvate oxidation Pathway 10 405

Denote that dark green, light green, dark red and light red represent amount of the positive seen metabo-
lites, the negative seen metabolites, the positive unseen metabolites and the negative unseen metabolites,
respectively (see Section 4.2.3.2 and Figure 4.18).
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4.2.3.4 Traditional map visualization: comparison with original reference maps and

metabolite transformation network

The comparison with references of 7-pathway examples in the form of two types of pos-

itive target maps as analyzing in Section 4.11 are visualized (Figures 4.19 to 4.25). These maps

were demonstrated to depict how good both compared methods in the positive class 1 predic-

tion are, in other words, one or two steps of compound transformation. All thick links are the

combined routes that are minority(positive) target class 1 and also the results of predicted links

from S CL method and our# method I at cut-off value= 0.5 in comparison. The vitualization

of class 1C results are nearly same trend asAUC performance in the pathway perspective.

Both compared methods can predict both same and different links. In a case of valine leucine

and isoleucine biosynthesis such that protein routes are mainly trained data. All target links

(FN = 0) of class 1 data patterns our# method I at cut-off value= 0.5 can be recovered as shown

in Figure 4.20.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model

training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.19: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in
the illustration as a traditional map, (a) and (b), ofE.coli purine metabolism. Denote that the green,
blue and orange links are true positive(T P) links predicted by bothS CL method and our# method I, only
our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively. In addition, the false negative links are grey.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model

training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.20: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in the
illustration as a traditional map, (a) and (b), ofE.coli valine leucine and isoleucine biosynthesis. Denote
that the green, blue and orange links are true positive(T P) links predicted by bothS CL method and our#

method I, only our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill
a conventional compound and reaction maps. The light yellow circles and the rectangles are compounds
and reactions, respectively.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model

training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.21: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in the
illustration as a traditional map, (a) and (b), ofE.coli streptomycin biosynthesis. Denote that the green,
blue and orange links are true positive(T P) links predicted by bothS CL method and our# method I, only
our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively. In addition, the false negative links are grey.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.22: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in
the illustration as a traditional map, (a) and (b), ofE.coli methane metabolism. Denote that the green,
blue and orange links are true positive(T P) links predicted by bothS CL method and our# method I, only
our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is an xml file from KEGG pathway database as same version as KEGG ligand database used in model

training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
xml file from KEGG pathway database as same version as KEGG ligand database used in model training.

Figure 4.23: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in the
illustration as a traditional map, (a) and (b), ofE.coli nicotinate and nicotinamide metabolism. Denote
that the green, blue and orange links are true positive(T P) links predicted by bothS CL method and our#

method I, only our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill
a conventional compound and reaction maps. The light yellow circles and the rectangles are compounds
and reactions, respectively.



73

H
2
O

ATP

ADP

Orthophosphate

Diphosphate

CMP

CTP

L−Serine

D−Glycerol 1−phosphate

CDP−diacylglycerol

Phosphatidylglycerol

Phosphatidate
1,2−Diacyl−sn−glycerol

Phosphatidylserine

Phosphatidylglycerophosphate

Membrane−derived−oligosaccharide D−glucose

Membrane−derived−oligosaccharide 6−(glycerophospho)−D−glucose

Cardiolipin

R01799

R01800

R01801

R02029

R02030

R02240

R04511

(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is a file from aMAZE database as same version as used in model training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
file from aMAZE database as same version as used in model training.

Figure 4.24: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in the
illustration as a traditional map, (a) and (b), ofE.coli phospholipid biosynthesis. Denote that the green,
blue and orange links are true positive(T P) links predicted by bothS CL method and our# method I, only
our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively.
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(a) A traditional compound-reaction map acording to definition called metabolite transformation network including information from
a referecnce map which is a file from aMAZE database as same version as used in model training.
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(b) A compound-compound map with only appearing metabolites on a reference map acording to only information from a referecnce
file from aMAZE database as same version as used in model training.

Figure 4.25: Comparison of class 1vs non−class 1 true positive(T P) samples at cut-off value= 0.5 in the
illustration as a traditional map, (a) and (b), ofE.coli pyruvate oxidation pathway. Denote that the green,
blue and orange links are true positive(T P) links predicted by bothS CL method and our# method I, only
our# method I, and onlyS CL method, respectively. The yellow links are drawn to fulfill a conventional
compound and reaction maps. The light yellow circles and the rectangles are compounds and reactions,
respectively. The dark yellow compounds have no structure data. In addition, the false negative links are
grey.



CHAPTER V

DISCUSSION

5.1 Atomically convertibility of each considered metabolite input query in biochemical

transformation routes from a predefined graph

When two compounds given as a beginning metabolite and a terminal metabolite or three

compounds given as a beginning metabolite, an intermediate metabolite and a terminal metabo-

lite, the following basic questions which can be answered by information obtained from the

reconstructed biochemical transformation networks like metabolic networks. Whether there is

a route that transforms a beginning metabolite via an intermediate metabolite (if it is given) to a

terminal metabolite, where a route or a path can be simply defined as the sequences of feasible

biochemical transformation steps or reactions. To discover a path, it concerns about whether

there exists possible biochemical transformation steps for the interested compounds. In real

life, many factors are involved in systematic and dynamic ways to transform one compound to

another. But, to construct such ideal relationship of a metabolic system, it requires a vast of

data with the big tasks.

To study some specific questions as the above mentioned question or discovering knowl-

edge from metabolic networks, partial data with some necessary factors to construct question-

specific network can be enough to achieve satisfied answer. One of such network is a metabolic

reaction network model which is a graph-based model that a set of interested metabolites are

connected by the relation of them in the feasible biochemical transformation steps as a network.

The algorithm used in graph theory problems such as shortest path with some conditions caused

by the predefined question is widely applied to give required information from the model. Thus,

the correctness of answers depends on the accurately defined transformation steps or each rela-

tion between two metabolites as well as some defined conditions to help in the elimination of

irrelevant relations. The accurately defined transformation steps are stored by many databases

according the objective of each database. However, in some specific data or objective, informa-

tion from databases still be lacking for reconstructing a specific graph model to answer specific

question.
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5.2 The four defined supervised classification problems and their corresponding binary

answers

In this work, instead of another different alternative or a new graph algorithm with some

conditions to answer an above mentioned question, a graph model was predefined and recon-

structed (see Sections 3.1 and 3.4), then this graph is ready to convert to the supervised classi-

fication problem which is solved by supervised learning methods like the feed-forward neural

network model to make the predictive model that can be predict the unseen data. In the experi-

ment, a graph was built up from a finite set of pathways fromE.coli based on the collected data

from reliable database including the well-defined transformation steps.

An above mentioned question was divided into four specifically defined questions ac-

cording to degrees and types of metabolite relation (see Section 3.2.1 and Figure 3.1). The

most specific question, question 1 for the class 1 vs. non-class 1 model is about whether it is the

one or two steps of consecutive reactions. Another more specific question, question 2 for the

class 2 vs. non-class 2 model is about whether metabolites in a query are related in any paths

but only one of the interested compound pairs defined from metabolites in a query exists one

step of the biochemical transformation. The little more specific question of metabolite relation,

question 3 for the class 3 vs. non-class 3 model is about whether metabolites in a query are

related in any paths but none of the interested compound pairs defined from metabolites in a

query exists one step of the biochemical transformation. The less specific metabolite relation

question, question 4 which it implies the combination of classes 1 to 3 vs. otherwise. Later, the

routine graph algorithm based on the bread-first search algorithm with necessary conditions to

properly discover paths in this graph was used in order to search each answer of each metabolite

query in prepared query sets from a graph for all four defined questions. An answer stands for

a target class (classq or non-classq) of each questionq predictive model. A metabolite query

stands for a set of a beginning, an intermediate (if it is assigned), and a target metabolites used

for preparing an input feature pattern. From each whole input data set and their target class set,

some of them were used for building each predictive model referred to the pre-training data sets

and the some of them were used for evaluating the correctness of the built predictive models re-

ferred to the testing data sets. Chemical properties e.g. molecular properties of each metabolite

in a metabolite query from its calculated optimized 3D structure by using 2D coordinate were

indirectly used as an input feature pattern, because the calculated molecular properties for each

metabolite query were transformed by numerical methods to represent new characteristics as an
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input feature pattern with the lesser number of properties. Henceforth, the pre-training data sets

could be used for the model building.

5.3 The algorithm to handle the seriously imbalanced binary class data before construct-

ing four feed-forward neural network predictive models

Unfortunately, the nature of the metabolite transformation network graph including the

defined metabolite query sets results in the unequal proportion of the binary class data. When

observing each binary class data distribution and the size before dividing the pre-training and

the testing data sets for each model building, they are huge and very unbalancing. The too

big training data set may cause time-consuming in training the feed-forward neural network

models. It would take a long time until reaching the the sum square error threshold or desired

number of epochs. So, the whole data was divided by using a key feature into more adequate

size and easy to be trained by the neural network method with suitable parameter values in

practical time as each the predictive sub-model which they was finally combined. Besides, the

sub-models can be trained at the same time. In an imbalanced data situation, it is commonly

known that impacts the typical sum square error in the weight updating procedure of the feed-

forward neural network. Therefore, the nearly balanced training data sets created by using the

pre-training data sets with the proposed methods were alternatively trained.

The proposed methods rely on two main criteria for managing and fixing the imbal-

anced data for each predictive model building. First, sub-groups of each binary class data was

discovered by clustering methods in order to help to handle the complex data space that the

binary class data could be hard to be separated by activation function of each hidden unit in

the feed-forward neural network algorithm. Second, due to the high unbalancing ratio of data,

the minority class data are very small comparing with the majority class data. Hence, there are

three procedures to handle the imbalanced data and turn it into the nearly balanced data. First

procedure (if it is necessary) before doing each class data clustering process, at most newk data

positioned between each minority data and everyk minority neighbor data are created by the

proposed rules in order to oversample the minority data as well as expand the minority class

data space, appropriately. Second procedure, additional created data from resampling method

are combined to each sub-data group before finding two border data sets of each sub-cluster

pair with each one belonging to different binary class. This procedure aims to not only find the

standard deviation difference of before and after adding the created data as the suitably expand-
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ing breadth for more data generation in the next step but also provide the possibility that the

created data become one point in border data sets which infers that such new point locates new

possible space beneficial to model building for unseen data prediction. Third procedure, two

border data sets are found for each pair of minority and majority sub-data groups in a term of

under sampling. Then, they are used as initial data for synthetizing more data into the nearly

balance data with sufficient size in a term of over sampling.

To explore the general ability of the new characteristics as input feature patterns with the

defined targets trained by the feed-forward neural network methods in all four defined problems,

all trained sub-models with adequate parameter values were sought out in the limited rounds

of sub-model building with the acceptable evaluation values from some metrics applied to the

testing data sets, the nearly balanced training data sets, and also the pre-training data set so that

each metric result value can be comparatively explored.

In searching appropriate parameter values, even though the experiments to observe effects

of difference of them in detail were not formed, it may be useful to discuss some issues. First,

the numbers of neurons in 2D SOM method should be enough to roughly cluster each binary

class data, because insufficient numbers of neurons lead to bad capturing local groups resulting

in unsuccessful predictive model built by the nearly balanced training data sets. However, too

many numbers of neuron in 2D SOM methods cause SOM process to slowly reach the desired

stopping criteria and also make the lack of information in minority sub-data with very tiny size.

Additionally, the big occurring clusters according to the class distribution nature of that sub-

data bring about the large minority-majority sub-data pairs with the large numbers of border

data sets which produce the huge size of the corresponding nearly balanced training data set.

Second, the new generated data according to thek nearest minority data in each minority data

would be unnecessary if the data space is not too complicated and/or not too less informative to

cluster each binary class into sub-groups using 2D SOM method. Besides, the obtaining sub-

groups still provide needed information in a term of suitable extended minority data space in

order to effectively generate the corresponding nearly balanced training data set for successful

sub-model building. The last one, the numbers of hidden neurons in each feed-forward neural

network model were systemically varied. Since the difference in high dimensional sub-data

location and space, the feed-forward neural network models with various numbers of hidden

neurons were simultaneously performed.
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5.4 The experimental outcomes and comparison

The comparative study is to compare the strength of chemical linkage (S CL) values with

our output values as various score types i.e. our/our# result I/ II in classifying binary class data.

Our# output values are the output values from each our predictive model, but the pre-process of

S CL which the obviously irrelevant metabolite queries are set to zero. Also, the corresponding

output values are filtered to zero for fair comparison. Apart from that, there are two types of the

score results, namely, the model result I which all output values from every selected sub-model

built for that single question are combined and the model result II which four output values

associated with one input pattern are average from all four predictive combined sub-model.

The results of these in detail are in the previous section. In this section, the crucial general

findings were discussed.

First, the appropriate numbers of sub-models building in the sub-data division step de-

pends on training time and the desired performance of the built sub-models for each particular

defined question. If it is too big, then it would take a long time and the chance of the missing

global information. But, if it is too small, then some sub-data with so complicated space would

take too long time to yield good performance. In this work, the total 6 pre-training sub-data

were appropriate.

Second, at the small(0.3), medium(0.5) and large(0.8) including default(0.4) cut-off val-

ues, their performance results in all eight evaluation metrics were observed and the pairt-test

significance test at 0.05 degree of significance was also performed. In all cut-off values, the

common performance results of the models from our/our# score I/ II tend to reverse the degree

of the imbalanced data situation except those of the models fromS CL scores. The least to the

most specific questions for asking route-relevance of each metabolite query are the questions

4,3,2, and 1 with the least to the most degrees of the imbalanced sub-data sets. The different

cut-off values effect the performance results. The very effective general performance results of

four models were received by our# score I/ II at cut-off values= 0.3 and 0.4. The most effec-

tive S CL scores appeared at cut-off value= 0.5, but they did not significantly outperformed in

every metric. These above results tell us that the proposed input feature patterns in a form of

the sub-space data can be classified by the supervised feed-forward neural network techniques.

The more improved output scores is our# score which combined the good point ofS CL calcu-

lation such that our# score are set to zero same asS CL score if an input pattern query contains
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no common compound alignments. In addition, our# result I and II showed the comparable

performance noting that the significance test for the result pairs of them was not computed.

Third, from the efficient performance results of our# score I and II, more two tasks of

comparison were done. One is non-cut-off value measurement.AUC values of our# score II

were calculated and compared with those ofS CL scores for predicting the new data from the

7-pathway examples for the four defined questions in the form of each pathway evaluation and

each sub-model evaluation. The results showed that to predict the answers of questions about

route relevance of a metabolite input query set according to the sub-model perspective as the

proposed method or the traditional pathway perspective, both our# method II andS CL method

contain its different advantages. However, the proposed method is more flexible, theoretically,

since the size of sub-data for training sub-model in a defined question can be tuned to increase

a chance of yielding the satisfied performance results.

Another one is the correctness measurement at a chosen cut-off value. First experiment,

each metabolite input query set which one set is associated with each distinct compound from

the 7-pathway examples was prepared.C values of our score I and our# score I were calcu-

lated and compared with those ofS CL scores. This experiment explored the correctness of

the compared methods in comparison for predicting each metabolite input query set when one

particular compound exists in every query of a whole set, in other words, the correctness in the

compound perspective was measured. This tells us that which one of the compared methods

is adequate for predicting an interested question about relevant route associated with a certain

compound. The results depict that some compounds can be accurately predicted the related

general paths by one of the compared methods in the different questions about route-relevance.

There are compounds that their highC values in the various questions can be received by our

# method I, but in the large numbers of compounds, their results suggest that the our# score

I andS CL scores are competitive when predicting metabolite queries of the seen compounds

that are involved in the trained data. In the rare pattern input cases of the trained data, unsuc-

cessful prediction of the unseen data with the same rare cases were shown by our# method.

However, they were unsuccessfulS CL prediction in some sets like lipid routes and compounds

carrying formyl/acetyl groups, our# method can effectively predicted them. Besides, results of

our # method seem to improve results of our method excepting in some small amount of sets.

Another experiment, the 7 metabolite input query sets and their input data sets were prepared as

same as the non-cut-off value measurement, so this is the correctness evaluation in the pathway
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perspective. But, there are two target types that were prepared by original reference maps and

definition called metabolite transformation network for comparison. Generally, for both target

types, some pathways can be predicted with highC results from different compared methods.

From both experiments with the correctness measurement at a chosen cut-off value as

well as the non-cut-off value measurement, the necessary training data patterns should exist for

building supervised models with the desired abilities.

5.5 Using the four predictive models in unseen data prediction

Various experiments were represented in Section 4.2, however, they were illustrated in

each binary class prediction. So, our result I and our# result I earned by trained models of the

nearly balanced training data were depicted in a form of the 4×4 confusion matrices as the

combined four class prediction (appendix A) in the 7-pathways examples. Besides, the 4×4

confusion matrices of the 7 additional other pathways (Table A.15) concerning metabolism of

terpenoids and polyketides, metabolism of other amino acids, biosynthesis of other secondary

metabolites, and xenobiotics biodegradation and metabolism were also provided. All of them

were considered as the unseen data in the pathway types/roles that never involved in the trained

data. Each value at position (i, j) in confusion matrix is amount of data patterns with their

target classi such that a modelj yields maximum output value and predict them as classj.

Denote that there are two types of targets obtained by definition, metabolite transformation

network, and original reference maps from KEGG pathway database as the same version as

the trained data. Confusion matrices show overall results of model prediction, since amount

of true positive patterns of all patterns in a set across four models are directly displayed. In

each testing data where their metabolite queries associated with a single pathway, the small

size of the testing data seems to have identical two types of targets and predicted outcomes.

In addition, the amount of positive target class 2 is more than those of positive target class

3. Confusion matrices of our# result I were always improved from those of our result I when

considering misclassified fraction of patterns (confusion value). Because adding information of

irrelevant 2D structures alignment of metabolite input queries can reduce misclassified amount

in positive class 4. Focusing on overall confusion matrices of the 7 additional other pathways,

the combined predictive models captured some simple in-route relations in a case of one or

two consecutive steps (positive class 1). These indicate that, in a case of the rare trained pattern

types such as the pathway types/roles that never involved in the trained data, the simplest unseen
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patterns of in-route relations were able to detected by the trained models. Moreover, the large

amount of correctly classified majority class like positive class 4 came from our# result I. The

positive data patterns in classes 2 and 3 were hardly accurately predicted due to complication

of unseen in-route relation and the rare trained pattern types. In conclusion, these confusion

matrices tell us that decreasing misclassified outcomes still be further challenged. First, the

process of the nearly balanced training data preparation should be further developed to make

the effective class separation of neural network models. Second, other features, especially, 2D

structure similarity still be necessary and should be added. Otherwise features should be further

considered, since the large amount of features would take a long time in model training process.

5.6 Combined four predictive models versus each predictive binary class model in un-

seen data prediction

In combined four predictive models from four binary predictive models, there are more

than one class models that predicted positive outcomes for one pattern. This situation occurred

in not small amount of patterns when predicting only one class for one pattern (combined four

predictive models). These should be explored in many viewpoints. First view point is the

shortest path criteria in assigning one of four defined class targets when given one considered

metabolite query. The shortest path concept is widely used in the previous works of path search-

ing in metabolic pathways, since it is easy to cope with a simple graph model of metabolic

networks and the existing graph algorithms. Furthermore, every metabolite query from a con-

sidered metabolite transformation network can be categorized into one class based on our four

defined classes. However, the total routes in the form of metabolite transformation networks are

beyond just the combination of multiple shortest steps into a network (Figure 5.1). One weak

point of shortest path concept in the proposed definitions and other previous works is the lack

of information about alternative routes which may be necessary, especially, in the new path-

way design for metabolic engineering applications. So, some previous work based on graph

algorithms tried to extend shortest path conditions by gathering shortest paths not exceeding a

setting step/weight (Faust et al., 2011). Therefore, the extension of metabolite query can be de-

signed for further handling this issue. Anyway, the effective binary class models can preliminary

offer class target in each binary class prediction for each predicted pattern. Second view point

is the combining four binary class models into one multi-class predictive model. The simplest

output combining scheme were used such as a maximum output value becomes the predicted

class outcome for such considered input pattern associated with a metabolite query. Apart from
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discussion in Section 5.5, the effective output scheme for multiple binary class combination still

be challenged (Galar et al., 2011) and should be further improved.
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Figure 5.1: An example of the shortest path criteria issue as discussed in Section 5.6. A graph was
defined connection by metabolite transformation network (Section 3.1). These example data were from
a part of eco00290.xml in KEGG Pathway Database(14-7-2010). Denote that the grey links are the
main routes. An example of a metabolite input query (1,2,3) : (Pyruvate,(S)-2-Acetolactate,2-Oxo-3-
hydroxyisovalerate) with class target 1 according to a shortest path condition is shown. A four bit vector
of Our# result I at cut-off value= 0.5 from four class models is (1,0,0,1). In addition, almost predicted
outcomes for metabolite queries in this picture mostly yielded more than one class prediction at cut-off

value= 0.5.
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5.7 Other discussion

Other aspects bring to be discussed. The common benefit of supervised learning algo-

rithms is the flexibility to build model in any defined questions(input) and answers(class). In the

problem of identifying the type of relevance in the routes of each interested metabolite query.

Instead of these four questions, it can be variously defined. For instance, a metabolite query

consists of only in-route metabolites. Its input feature pattern can be any finite sets of proper-

ties that considerably contain the association with its defined target class. However, if the ratio

of class distribution in the training data is imbalanced, then, the pre-process should be added to

fix it to balance the training data. In addition, although it is time-consuming in the hard sepa-

rating data, the sub-data division method will help to simplify the complex location of the huge

data. Aside from that, there are many existing ideas to further improve predictive performance,

for example, the committee scheme training processes.



CHAPTER VI

CONCLUSION

To discover the meaningful paths from the metabolic reaction network model which

is a graph-based model, the partial data with some necessary factors to construct question-

specific network can be enough to achieve satisfied answer. In this work, the supervised learning

schemes such as the feed-forward neural network were alternatively offered in order to construct

the predictive models learned by prior reference data. Initially, a graph model was predefined

and reconstructed, then it was demonstrated by anE.coli finite pathway set with the well-defined

transformation steps from the reliable databases. Later, this graph was ready to convert to

the supervised classification problems which were solved by the feed-forward neural network

model to make the predictive models that can predict the unseen data.

These above results tell us that the nearly balanced training data from the proposed in-

put feature patterns can be satisfactorily classified by supervised feed-forward neural network

techniques. Especially, the pre-training data contain enough necessary information like in the

defined questions 2 to 4 model building which they are asking about metabolite relation beyond

two step changing. In case of no more than two step metabolite transformation (a defined ques-

tion 1) model building, the enough necessary information of positive class is further required in

order to obviously obtain superior performance results from the proposed methods to those from

S CL method. The numerically transformed input feature patterns resulting from the computed

3D molecular properties of every metabolite in each considered query are suitable for training

their binary classes of transformation by supervised learning methods if the binary proportion

is quite equal. Apart from that, the 2D co-ordinate compound alignment as the useful output

filter from S CL method, such as our# scores, is the reasonable combination which additionally

helps to yield the better performance results. Moreover, the input patterns as the enough repre-

sentatives for the whole considered routes of compound types are crucial for the effectiveness

of such trained models.
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Appendix A

CONFUSION MATRICES OF UNSEEN DATA PREDICTION

Table A.1: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Purine metabolism in the 7-pathway examples (section 4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 56 26 42 1,111 1,235
Positive class 2 893 486 801 13,915 16,095
Positive class 3 4,561 3,252 5,883 83,871 97,567
Positive class 4 18,535 14,245 19,811 265,712 318,303

Total 24,045 18,009 26,537 364,609 433,200

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 28 14 23 226 291
Positive class 2 460 234 407 6,132 7,233
Positive class 3 2,738 1,982 3,824 55,191 63,735
Positive class 4 20,819 15,779 22,283 303,060 361,941

Total 24,045 18,009 26,537 364,609 433,200

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.37.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.29.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 45 13 27 1,150 1,235
Positive class 2 750 417 688 14,240 16,095
Positive class 3 4,203 2,982 5,567 84,815 97,567
Positive class 4 12,312 10,594 12,845 282,552 318,303

Total 17,310 14,006 19,127 382,757 433,200

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 27 12 22 230 291
Positive class 2 455 220 385 6,173 7,233
Positive class 3 2,720 1,883 3,760 55,372 63,735
Positive class 4 14,108 11,891 14,960 320,982 361,941

Total 17,310 14,006 19,127 382,757 433,200

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.33.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.25.

Table A.2: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Valine leucine and isoleucine biosynthesis in the 7-pathway
examples (section 4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 23 12 16 8 59
Positive class 2 279 114 290 20 703
Positive class 3 1,185 359 768 25 2,337
Positive class 4 7,503 5,107 7,051 23,815 43,476

Total 8,990 5,592 8,125 23,868 46,575

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 22 10 12 5 49
Positive class 2 271 103 270 11 655
Positive class 3 1,194 372 792 37 2,395
Positive class 4 7,503 5,107 7,051 23,815 43,476

Total 8,990 5,592 8,125 23,868 46,575

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.47.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.47.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 23 12 16 8 59
Positive class 2 274 111 289 29 703
Positive class 3 1,146 346 764 81 2,337
Positive class 4 5,323 4,140 4,378 29,635 43,476

Total 6,766 4,609 5,447 29,753 46,575

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 22 10 12 5 49
Positive class 2 266 100 269 20 655
Positive class 3 1,155 359 788 93 2,395
Positive class 4 5,323 4,140 4,378 29,635 43,476

Total 6,766 4,609 5,447 29,753 46,575

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.34.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.34.
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Table A.3: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Streptomycin biosynthesis in the 7-pathway examples (section
4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15
Positive class 4 173 651 83 1,652 2,559

Total 175 669 84 1,673 2,601

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15
Positive class 4 173 651 83 1,652 2,559

Total 175 669 84 1,673 2,601

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.36.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.36.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15
Positive class 4 70 413 27 2,049 2,559

Total 72 431 28 2,070 2,601

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 4 0 3 9
Positive class 2 0 6 0 12 18
Positive class 3 0 8 1 6 15
Positive class 4 70 413 27 2,049 2,559

Total 72 431 28 2,070 2,601

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.21.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.21.

Table A.4: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Methane metabolism in the 7-pathway examples (section 4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 1 9 5 18
Positive class 2 1 6 5 24 36
Positive class 3 5 2 0 6 13
Positive class 4 176 205 354 2,276 3,011

Total 185 214 368 2,311 3,078

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 6 3 12
Positive class 2 0 5 8 8 21
Positive class 3 5 0 2 3 10
Positive class 4 178 208 352 2,297 3,035

Total 185 214 368 2,311 3,078

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.26.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.25.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 4 11 18
Positive class 2 1 4 3 28 36
Positive class 3 5 1 0 7 13
Positive class 4 83 100 114 2,714 3,011

Total 91 106 121 2,760 3,078

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 4 5 12
Positive class 2 0 4 4 13 21
Positive class 3 4 0 1 5 10
Positive class 4 85 101 112 2,737 3,035

Total 91 106 121 2,760 3,078

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.12.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.11.
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Table A.5: The 4× 4 confusion matrix of four positive classes yielded by our result I (a-b) and our#

result I (c-d) using four models for predicting Nicotinate and nicotinamide metabolism in the 7-pathway
examples (section 4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 12 0 6 16 34
Positive class 2 65 10 29 159 263
Positive class 3 114 17 52 394 577
Positive class 4 1,193 71 1,050 7,018 9,332

Total 1,384 98 1,137 7,587 10,206

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 12 0 6 16 34
Positive class 2 65 10 29 159 263
Positive class 3 114 17 52 394 577
Positive class 4 1,193 71 1,050 7,018 9,332

Total 1,384 98 1,137 7,587 10,206

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.31.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.31.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 12 0 6 16 34
Positive class 2 62 10 29 162 263
Positive class 3 109 17 52 399 577
Positive class 4 307 8 233 8,784 9,332

Total 490 35 320 9,361 10,206

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 12 0 6 16 34
Positive class 2 62 10 29 162 263
Positive class 3 109 17 52 399 577
Positive class 4 307 8 233 8,784 9,332

Total 490 35 320 9,361 10,206

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.13.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.13.

Table A.6: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Phospholipid biosynthesis in the 7-pathway examples (section
4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 18 1 2 0 21
Positive class 2 40 13 1 0 54
Positive class 3 36 7 6 2 51
Positive class 4 394 118 107 1,055 1,674

Total 488 139 116 1,057 1,800

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 18 1 2 0 21
Positive class 2 40 13 1 0 54
Positive class 3 36 7 6 2 51
Positive class 4 394 118 107 1,055 1,674

Total 488 139 116 1,057 1,800

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.40.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.40.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 18 1 2 0 21
Positive class 2 39 13 1 1 54
Positive class 3 35 7 6 3 51
Positive class 4 260 97 59 1,258 1,674

Total 352 118 68 1,262 1,800

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 18 1 2 0 21
Positive class 2 39 13 1 1 54
Positive class 3 35 7 6 3 51
Positive class 4 260 97 59 1,258 1,674

Total 352 118 68 1,262 1,800

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.28.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.28.
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Table A.7: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Pyruvate oxidation pathway in the 7-pathway examples (section
4.2.3)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 0 1 2 5
Positive class 2 4 2 0 2 8
Positive class 3 3 0 2 0 5
Positive class 4 74 7 35 271 387

Total 83 9 38 275 405

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 0 1 2 5
Positive class 2 4 2 0 2 8
Positive class 3 3 0 2 0 5
Positive class 4 74 7 35 271 387

Total 83 9 38 275 405

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.32.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.32.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 0 1 2 5
Positive class 2 3 2 0 3 8
Positive class 3 3 0 1 1 5
Positive class 4 29 4 14 340 387

Total 37 6 16 346 405

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 0 1 2 5
Positive class 2 3 2 0 3 8
Positive class 3 3 0 1 1 5
Positive class 4 29 4 14 340 387

Total 37 6 16 346 405

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.15.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.15.

Table A.8: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Fluorobenzoate degradation in the additional 7 other pathways
(table A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 1 1 0 3
Positive class 2 1 1 0 0 2
Positive class 3 0 0 1 0 1
Positive class 4 2 5 4 1 12

Total 4 7 6 1 18

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 1 1 0 3
Positive class 2 1 1 0 0 2
Positive class 3 0 0 1 0 1
Positive class 4 2 5 4 1 12

Total 4 7 6 1 18

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.78.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.78.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 1 1 0 3
Positive class 2 1 1 0 0 2
Positive class 3 0 0 1 0 1
Positive class 4 0 0 0 12 12

Total 2 2 2 12 18

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 1 1 0 3
Positive class 2 1 1 0 0 2
Positive class 3 0 0 1 0 1
Positive class 4 0 0 0 12 12

Total 2 2 2 12 18

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.17.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.17.
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Table A.9: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Novobiocin biosynthesis in the additional 7 other pathways (table
A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 2 0 3
Positive class 2 1 1 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 26 3 79 174 282

Total 29 4 81 174 288

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 2 0 3
Positive class 2 1 1 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 26 3 79 174 282

Total 29 4 81 174 288

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.39.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.39.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 2 0 3
Positive class 2 1 1 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 19 1 42 220 282

Total 22 2 44 220 288

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 2 0 3
Positive class 2 1 1 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 19 1 42 220 282

Total 22 2 44 220 288

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.23.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.23.

Table A.10: The 4× 4 confusion matrix of four positive classes yielded by our result I (a-b) and our#

result I (c-d) using four models for predicting Phosphonate and phosphinate metabolism in the additional
7 other pathways (table A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 0 1
Positive class 2 0 0 0 0 0
Positive class 3 0 0 0 0 0
Positive class 4 5 0 2 10 17

Total 6 0 2 10 18

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 0 1
Positive class 2 0 0 0 0 0
Positive class 3 0 0 0 0 0
Positive class 4 5 0 2 10 17

Total 6 0 2 10 18

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.39.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.39.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 0 1
Positive class 2 0 0 0 0 0
Positive class 3 0 0 0 0 0
Positive class 4 1 0 0 16 17

Total 2 0 0 16 18

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 0 1
Positive class 2 0 0 0 0 0
Positive class 3 0 0 0 0 0
Positive class 4 1 0 0 16 17

Total 2 0 0 16 18

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.06.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.06.
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Table A.11: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Naphthalene degradation in the additional 7 other pathways (table
A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 2 0 5
Positive class 2 0 0 2 0 2
Positive class 3 0 1 0 0 1
Positive class 4 251 40 306 121 718

Total 253 42 310 121 726

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 2 0 5
Positive class 2 0 0 2 0 2
Positive class 3 0 1 0 0 1
Positive class 4 251 40 306 121 718

Total 253 42 310 121 726

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.83.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.83.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 2 0 5
Positive class 2 0 0 2 0 2
Positive class 3 0 1 0 0 1
Positive class 4 28 8 49 633 718

Total 30 10 53 633 726

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 2 1 2 0 5
Positive class 2 0 0 2 0 2
Positive class 3 0 1 0 0 1
Positive class 4 28 8 49 633 718

Total 30 10 53 633 726

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.13.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.13.

Table A.12: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Nitrotoluene degradation in the additional 7 other pathways (table
A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 3 4
Positive class 2 2 0 0 0 2
Positive class 3 0 1 0 0 1
Positive class 4 31 52 11 449 543

Total 34 53 11 452 550

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 3 4
Positive class 2 2 0 0 0 2
Positive class 3 0 1 0 0 1
Positive class 4 31 52 11 449 543

Total 34 53 11 452 550

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.18.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.18.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 3 4
Positive class 2 2 0 0 0 2
Positive class 3 0 1 0 0 1
Positive class 4 6 23 3 511 543

Total 9 24 3 514 550

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 1 0 0 3 4
Positive class 2 2 0 0 0 2
Positive class 3 0 1 0 0 1
Positive class 4 6 23 3 511 543

Total 9 24 3 514 550

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.07.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.07.
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Table A.13: The 4×4 confusion matrix of four positive classes yielded by our result I (a-b) and our# result
I (c-d) using four models for predicting Caprolactam degradation in the additional 7 other pathways (table
A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 0 0 3
Positive class 2 2 0 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 53 14 3 50 120

Total 59 14 3 50 126

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 0 0 3
Positive class 2 2 0 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 53 14 3 50 120

Total 59 14 3 50 126

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.58.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.58.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 0 0 3
Positive class 2 2 0 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 9 10 0 101 120

Total 15 10 0 101 126

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 0 0 3
Positive class 2 2 0 0 0 2
Positive class 3 1 0 0 0 1
Positive class 4 9 10 0 101 120

Total 15 10 0 101 126

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.17.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.17.

Table A.14: The 4× 4 confusion matrix of four positive classes yielded by our result I (a-b) and our#

result I (c-d) using four models for predicting Biosynthesis of siderophore group nonribosomal peptides
in the additional 7 other pathways (table A.15)

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 1 1 5
Positive class 2 2 2 3 1 8
Positive class 3 2 0 3 0 5
Positive class 4 17 6 56 191 270

Total 24 8 63 193 288

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 1 1 5
Positive class 2 2 2 3 1 8
Positive class 3 2 0 3 0 5
Positive class 4 17 6 56 191 270

Total 24 8 63 193 288

a) Predicted outcomes from our result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.31.

b) Predicted outcomes from our result I and the known targets
obtained from an original reference map. Confusion value=

0.31.

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 1 1 5
Positive class 2 2 2 3 1 8
Positive class 3 2 0 3 0 5
Positive class 4 4 0 14 252 270

Total 11 2 21 254 288

Predicted outcomes 1 2 3 4 Total of each class

Positive class 1 3 0 1 1 5
Positive class 2 2 2 3 1 8
Positive class 3 2 0 3 0 5
Positive class 4 4 0 14 252 270

Total 11 2 21 254 288

c) Predicted outcomes from our# result I and the known tar-
gets defined by metabolite transformation network. Confusion
value= 0.10.

d) Predicted outcomes from our# result I and the known targets
obtained from an original reference map. Confusion value=

0.10.

Table A.15: The additional 7 other pathways from KEGG Pathway database as the same version as
trained data (section 3.4)

Reference i.d. Name Pathway types/roles

eco00364 Fluorobenzoate degradation Xenobiotics biodegradation and metabolism
eco00401 Novobiocin biosynthesis Biosynthesis of other secondary metabolites
eco00440 Phosphonate and phosphinate metabolism Metabolism of other amino acids
eco00626 Naphthalene degradation Xenobiotics biodegradation and metabolism
eco00633 Nitrotoluene degradation Xenobiotics biodegradation and metabolism
eco00930 Caprolactam degradation Xenobiotics biodegradation and metabolism
eco01053 Biosynthesis of siderophore group nonribosomal peptidesMetabolism of terpenoids and polyketides
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