STUDY ON ADMICELLAR POLYMERIZATION OF STYRENE ON SILICA FROM RICE HUSK

Mr. Thanawat Ou-Udomying

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

ISBN 974-17-2342-3

3 1 61 9. 2500

Thesis Title:	Study on Admicellar Polymerization of Styrene on Silica
	from Rice Husk
By:	Thanawat Ou-Udomyting
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Ratana Rujiravanit
	Dr. Manit Nithitanakul
	Prof. Richard M. Laine

÷

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyalint.

..... College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Ratana Rujiavanit

(Asst. Prof. Ratana Rujiravanit)

X.D.

(Dr. Manit Nithitanakul)

(Prof. Richard M. Laine)

Nantayo Januaret.

(Assoc. Prof. Nantaya Yanumet).

(Assoc. Prof. Sujitra Wongkasemjit)

บทคัดย่อ

ธนวัต อู่อุคมยิ่ง: การศึกษากระบวนการแอคไมเซลลาร์ พอลิเมอไรเซชั่น ของสไตรีนบน ซิลิกาจากแกลบข้าว (Study on Admicellar Polymerization of Styrene on Silica from Rice Husk) อ. ที่ปรึกษา: ผศ. ดร. รัตนา รุจิรวนิช, ดร. มานิตย์ นิธิธนากุล และ ศ. ดร. ริชาร์ด เอ็ม เลน 64 หน้า ISBN 974-17-2342-3

อสัญฐานซิลิกาที่มีความบริสทธิ์ของซิลิกาสงถึงร้อยละ 97.46 มีพื้นที่ผิวจำเพาะ 349 ตารางเมตรต่อกรับ และมีขนาครูพรุน 52.80 อังสตรอม สามารถเตรียมได้จากแกลบข้าวโดยผ่าน กระบวนการถ้างด้วยกรดก่อนที่จะนำไปเผาที่อุณหภูมิ 600°C ปริมาณอสัญฐานซิลิกาที่เตรียมได้ ้กิดเป็นปริมาณร้อยละ 19 โดยน้ำหนัก และพบว่าอุณหภูมิการเผาและการล้างค้วยกรคมีผลต่อ ความเป็นผลึกของซิลิกาที่เตรียมมาจากแกลบข้าว จากการศึกษาการดูคซับของสารลดแรงตึงผิว บนพื้นผิวของซิลิกา และการปรับปรุงพื้นผิวของซิลิกาที่ได้จากแกลบข้าวเปรียบเทียบกับซิลิกาทาง การค้า (Hi-Sil[®]255) โดยผ่านกระบวนการแอคไมเซลลาร์ พอลิเมอไรเซชั่น ที่ใช้สไตรีนและเซ ติลไตรเมทธิลแอมโมเนียมโบรไมด์ เป็นมอนอเมอร์และสารลดแรงตึงผิวตามลำดับ พบว่าการ ้ปรับปรุงพื้นผิวของซิลิกาโดยกระบวนการแอคไมเซลลาร์ พอลิเมอไรเซชั่นส่งผลให้พื้นที่ผิวของซิ ้ลิกาลคลง พอลิสไตรีนที่ถูกสกัดออกมาจากซิลิกาที่ผ่านกระบวนการแอคไมเซลลาร์ พอลิเมอไร โคยตัวทำละลายเทตทระ ไฮโครฟูแลน ได้ถูกตรวงสอบคุณสมบัติด้วยเครื่องฟูเรียท เซชั่น รานฟอร์มอินฟาเรดสเป็คโตรสโคป และเครื่องเจลเพอมิเอชั่นโครมาโตรกราฟฟี่ พบว่าน้ำหนัก โมเลกลของพอลิสไตรีนที่ถกสกัดออกมางากซิลิกาที่ได้งากแกลบข้าว และซิลิกาทางการค้ามีค่า 832 และ 885 กรับต่อโบลตาบลำดับ

ABSTRACT

4472023063 : POLYMER SCIENCE PROGRAM Thanawat Ou-udomying: Study on Admicellar Polymerization of Styrene on Silica from Rice Husk. Thesis Advisors: Asst. Prof. Ratana Rujiravanit, Dr. Manit Nithitanakul, and Prof. Richard M. Laine, 64 pp. ISBN 974-17-2342-3
Keywords : Silica/ Rice Husk/ Admicellar Polymerization

Amorphous silica with high purity and high specific surface area was prepared from rice husk by calcination at 600°C with acid leaching pretreatment. The purity of the silica obtained was 97.46% SiO₂ with a yield of about 19% on a dry weight basis. The specific surface area and porosity diameter of the rice husk silica were 349 m^2/g and 52.80 Å, respectively. The calcination temperature and acid leaching pretreatment were found to affect the crystallinity of the rice husk silica. Surface modification of the rice husk silica by admicellar polymerization using styrene monomer was investigated and the results were compared with those obtained from Hi-Sil[®]255, a commercially available or precipitated silica. Cetyl trimethylammonium bromide (CTAB) and 2,2'-azobis-2-methylpropionitrile (AIBN) were used as surfactant and initiator, respectively. The adsorption isotherm of CTAB on the rice husk silica and Hi-Sil[®]255 were determined. After admicellar polymerization, the decreases in specific surface area of both types of silica were measured. Polystyrene was extracted from the silica and characterized by FTIR and GPC. The weight average molecular weight of polystyrene extracted from the rice husk silica and Hi-Sil[®]255 were 832 and 885, respectively.

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following individuals who are, always, my inspiration to complete this research work.

First of all, I would like to express my grateful appreciation to my advisors, Asst. Prof. Ratana Rujiravanit, Dr. Manit Nithitanakul and Prof. Richard M. Laine for their intensive suggestion, encouragement, invaluable guidance, and vital assistance throughout this research work.

I would like to thank Assoc. Prof. Nantaya Yanumet and Assoc. Prof. Sujitra Wongkasemjit for being my committee and other teachers for providing technical knowledge and helpful suggestion.

I would like to extend appreciation to Pornjalearn Rice Mill Industry, Ratchaburi (Thailand) for kind supply of rice husk. To all staff in the Department of Mineral Resource, Ministry of Natural Resources and Environment for the XRF analysis.

I would like to give special thanks to all staffs, all Ph.D. students, and all friends at Petroleum and Petrochemical College, Chulalongkorn University, for their kind assistance and encouragement throughout this research work.

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Ultimately, extreme appreciation is to my family for their financial support, love, understanding, and encouragement during my studies and thesis work.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	х
СНАРТН	CR	
Ι	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Rice Husk	4
	2.1.1 Composition of Rice Husk	5
	2.1.2 Acid-Leaching Treatment of Rice Husk	6
	2.1.3 Calcination of Rice Husk	7
	2.2 Admicellar Polymerization	10
	2.2.1 Surfactant Adsorption	10
	2.2.2 Admicellar Polymerization	13
III	EXPERIMENTAL	17
	3.1 Materials	17
	3.2 Methodology	17
	3.2.1 Preparation of Silica from Rice Husk	17
	3.2.1.1 Rice Husk Preparation	17
	3.2.1.2 Silica Preparation	17
	3.3.1.3 Silica Characterization	18

CHAPTER

PAGE

		Polymer	ization	18
		3.2.2.1	Adsorption Isotherm of CTAB onto	
			Silica	18
		3.2.2.2	Admicellar Polymerization	18
÷		3.2.2.3	Extraction and Characterization of	
			Polymer	19
IV	RESULT	S AND E	DISCUSSION	21
	4.1 Chara	cterizatio	n of Rice Husk Silica	21
	4.1.1	Chemica	l Analysis of Silica from Rice Husk	21
	4.1.2	Particle	Size and Particle Size Distribution	22
	4.1.3	Scanning	g Electron Micrographs of Rice Husk	
		Silica an	d Commercial Silica	24
	4.1.4	X-ray D	iffraction Patterns of Rice Husk Silica	29
	4.1.5	BET Spe	ecific Surface Area, Specific Pore	
		Volume	and Specific Pore Diameter of Rice	
		Husk Sil	ica	30
	4.2 Modi	fication o	f Silica Surface via Admicellar	
	Polyn	nerizatior	l	32
	4.2.1	Adsorpti	on Isotherm of CTAB on Silica from	
		Rice Hu	sk	32
	4.2.2	The For	nation of Polystyrene on Modified	
		Silica		34
	4.2.3	Thermog	gravimetric Analysis	39
	4.2.4	Molecul	ar Weight Measurement	48
	4.2.5	Morphol	ogy of Modified Silica	48

3.2.2 Surface Modification via Admicellar

CHAPTER

PAGE

V	CONCLUSIONS AND RECOMMENDATIONS	51
	5.1 Conclusions	51
	5.2 Recommendations	52
	REFERENCES	53
	APPENDICES	56
	Appendix A CTAB adsorption measurement	56
	Appendix B Calculation of CTAB adsorption isotherm	59
	Appendix C Calculation of amount of CTAB, styrene,	
	and AIBN for admicellar polymerization	60
	Appendix D Data of gel permeation chromatography	61

CURRICULUM VITAE

64

LIST OF TABLES

TABLE

2.1	Main compositions in rice husk	5
2.2	X-ray fluorescence analysis of calcined rice husk samples	6
2.3	BET specific surface area (S_{BET}) and specific pore volume	
	of calcined rice husk samples	7
4.1	Amounts of silica and other metal compounds in the ash	
	obtained from calcination of rice husk with and without	
	acid pretreatment	22
4.2	BET surface area, pore volume and pore size of	
	unmodified silica	31
4.3	$\overline{M_n}$, $\overline{M_w}$, and MWD of extracted polystyrene from	
	modified silica	48
4.4	BET surface area, pore volume and pore size of modified	
	silica	49
A1	Data from adsorption isotherm of CTAB on rice husk silica	
	at pH 8, 30°C	56
A2	Data from adsorption isotherm of CTAB on commercial	
	silica (Hi-Sil [®] 255) at pH 8, 30°C	57
C1	CTAB loading calculation	60
C2	Styrene and AIBN loading calculation at ratio of	
	CTAB: styrene: AIBN = 1: 2: 2	60

PAGE

LIST OF FIGURES

FIGURE

2.1	The inside view of a rice grain	4
2.2	Variation of surface area of rice husk ash with heating	
	temperature and different times of heating	8
2.3	Weight loss-temperature curve of rice husk	9
2.4	S-shaped adsorption isotherm for an ionic surfactant	
	on an oppositely charge substate	12
2.5	The admicellar polymerization process for the formation	
	of a ultra-thin polymer film	13
4.1	The percentage fine and diameter curves of rice husk silica	
	and commercial silica	23
4.2	Size distribution curves of rice husk silica and commercial	
	silica	23
4.3	SEM micrographs of untreated rice husk with the size of	
	212 μm	24
4.4	SEM micrographs of acid pretreatment with 0.4 M HCl	25
4.5	SEM micrographs of rice husk silica after calcination at	
	600°C for 6 h with pretreatment with 0.4 M HCl at	
	a) 5000X magnification, b) 2000X magnification	26
4.6	SEM micrographs of rice husk silica after calcination at	
	800°C for 6 h with pretreatment with 0.4 M HCl at	
	a) 5000X magnification, b) 2000X magnification	27
4.7	SEM micrographs of commercial silica, Hi-Sil [®] 255 at	
	a) 2000X magnification, b) 200X magnification	28
4.8	XRD powder patterns of silica samples a) rice husk silica after	
	calcination at 800°C for 6 h without pretreatment,	
	b) rice husk silica after calcination at 600°C for 6 h	
	without pretreatment, c) rice husk silica after calcination	

PAGE

FIGURE

	at 800°C for 6 h with pretreatment with 0.4 M HCl, and	
	d) rice husk silica after calcination at 600°C for 6 h with	
	pretreatment with 0.4 M HCl, and (e) commercial silica	
	(Hi-Sil [®] 255)	30
4.9	CTAB adsorption isotherm on silica from rice husk at pH 8 and 30 $^{\circ}\mathrm{C}$	32
4.10	CTAB adsorption isotherm on commercial silica (Hi-Sil [®] 255)	
	at pH 8 and 30°C	33
4.11	FTIR spectra of (a) unmodified rice husk silica,	
	(b) modified rice husk silica, (c) polystyrene standard, and (d) CTAB	35
4.12	FTIR spectra of (a) unmodified Hi-Sil [®] 255,	
	(b) modified Hi-Sil [®] 255, (c) polystyrene standard, and (d) CTAB	36
4.13	FTIR spectra of (a) polystyrene standard and (b) extracted material	
	from modified rice husk silica	37
4.14	FTIR spectra of (a) polystyrene standard and (b) extracted material	
	from Hi-Sil [®] 255	38
4.15	TGA traces of unmodified silica	
	a) Rice husk silica, and b) Hi-Sil [®] 255	41
4.16	TGA trace of polystyrene (STYRON™ 656D)	42
4.17	TGA trace of CTAB	43
4.18	TGA traces of adsorbed CTAB on silica surface	
	a) Rice husk silica, and b) Hi-Sil [®] 255	44
4.19	TGA traces of modified silica before extraction	
	a) Rice husk silica, and b) Hi-Sil [®] 255	45
4.20	TGA traces of extracted polystyrene from modified silica	
	a) Rice husk silica, and b) Hi-Sil [®] 255	46
4.21	TGA traces of modified silica after extraction	
	a) Rice husk silica, and b) Hi-Sil [®] 255	47
4.22	SEM micrographs of modified silica	
	a) Rice husk silica, and b) Hi-Sil [®] 255	50

.

FIGURE

PAGE

Calibration curve of CTAB solution by Total Organic Carbon	
analyzer (TOC)	56
GPC result of extracted polystyrene from rice husk silica	61
GPC result of extracted polystyrene from commercial silica	
(Hi-Sil [®] 255)	62
	Calibration curve of CTAB solution by Total Organic Carbon analyzer (TOC) GPC result of extracted polystyrene from rice husk silica GPC result of extracted polystyrene from commercial silica (Hi-Sil [®] 255)