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กิตติพงษ์ หนูน้อย: วิธีทางโครงข่ายใยประสาทสำหรับการแก้ปัญหาการลงทุน
และการบริโภคแบบพลวัตที่มีต้นทุนธุรกรรมและความแปรปรวนแบบสุ่ม
(A NEURAL NETWORK-BASED METHOD FOR SOLVING A
DYNAMIC INVESTMENT AND CONSUMPTION PROBLEM
WITH TRANSACTION COSTS AND STOCHASTIC VOLATILITY)
อ.ที่ปรึกษาวิทยนิพนธ์หลัก: รศ.ดร.ไทยศิริ เวทไว, 44หน้า.

งานวิจัยในอดีตพบว่าผลเฉลยของปัญหาการลงทุนและการบริโภคที่มีต้นทุนธุรกรรม
แบบสัดส่วนหรือปัญหาของเดวิสและนอร์แมน มีความเกี่ยวเนื่องกับ 3 ขอบเขต ได้แก่
ขอบเขตซื้อ, ขอบเขตนิ่งเฉย, และขอบเขตขาย โดยมีหลักปฏิบัติสำหรับนักลงทุน
ที่แตกต่างกันในแต่ละขอบเขต การค้นหานโยบายการลงทุนที่เหมาะสมมีความ
เกี่ยวเนื่องกับการค้นหาเส้นแบ่งขอบเขตเหล่านี้ อย่างไรก็ตาม การประมาณเส้นแบ่ง
ขอบเขตและผลเฉลยของปัญหาดังกล่าวมีความซับซ้อนและไม่สามารถหาผลเฉลย
โดยตรงได้ ในงานวิจัยนี้ ผู้วิจัยได้ปรับปรุงตัวแบบที่ใช้ในปัญหาดังกล่าวโดยกำหนด
ให้ความแปรปรวนของผลตอบแทนจากหุ้นมีลักษณะสุ่มโดยอาศัยตัวแบบความ
ไม่แน่นอนแบบสุ่มของเฮสตัน ซึ่งสามารถแปลงปัญหาไปสู่สมการเชิงอนุพันธ์ย่อย
สองมิติแบบไม่ทราบขอบเขตซึ่งแตกต่างจากสมการในปัญหาของเดวิสและนอร์แมน
ทำให้วิธีทางตัวเลขที่ใช้ในปัญหาดังกล่าวไม่สามารถนำมาปรับใช้ในการประมาณ
เส้นแบ่งขอบเขตและผลเฉลยสำหรับปัญหานี้ได้ ดังนั้นผู้วิจัยจึงปรับปรุงวิธีทาง
โครงข่ายใยประสาทชื่อวิธีดีพกาเลอร์คิน ซึ่งถูกพัฒนาโดยซิริงงาโน่และสปิลิโอโพลอส
และถูกตีพิมพ์ครั้งแรกในปี ค.ศ. 2018 เพื่อใช้ในการประมาณผลเฉลยและเส้นแบ่ง
ขอบเขต ผลเฉลยสังเขปที่ได้จากโครงข่ายใยประสาทชี้ให้เห็นว่าเมื่อความแปรปรวน
มีลักษณะสุ่ม อิทธิพลของระดับความแปรปรวนตั้งต้นที่มีต่อนโยบายลงทุน
ที่เหมาะสมนั้นเพิ่มสูงขึ้นเมื่อเทียบกับในกรณีของปัญหาเดวิสและนอร์แมน
อย่างไรก็ตาม ในกรณีที่การเปลี่ยนแปลงระดับความเสี่ยงมีความสัมพันธ์เชิงลบกับ
ผลตอบแทนจากหุ้น ผู้วิจัยพบว่า การเพิ่มขึ้นของอิทธิพลของระดับความแปรปรวน
ตั้งต้นที่มีต่อนโยบายลงทุนที่เหมาะสมนั้นกลับลดต่ำลงเมื่อเทียบกับกรณีที่
ปราศจากความสัมพันธ์ดังกล่าว โดยผลเฉลยที่ได้ในกรณีที่ศึกษาชี้ให้เห็นว่า
ความเสี่ยงสามารถมีอิทธิพลเหนือผลตอบแทนส่วนเกินได้ ในกรณีที่ปราศจาก
ความสัมพันธ์ระหว่างการเปลี่ยนแปลงของความแปรปรวนและผลตอบแทนจากหุ้น
นอกจากนี้ ในกรณีที่การเปลี่ยนแปลงของความแปรปรวนมีความสัมพันธ์เชิงลบกับ
ผลตอบแทนจากหุ้น เส้นแบ่งขอบเขตที่ได้แทบจะไม่เปลี่ยนแปลงเมื่อมี
การเปลี่ยนแปลงระดับความแปรปรวนตั้งต้น

ภาควิชา การธนาคารและการเงิน ลายมือชื่อนิสิต ..........

สาขาวิชา วิศวกรรมการเงิน ลายมือชื่ออ.ที่ปรึกษาหลัก ..........
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Past research highlights the dependency between the solution of the optimal
investment and consumption problem with proportional transaction costs known as
Davis & Norman problem and the three different regions: no-trade region, buy region,
and sell region, in which different actions are prescribed. As a result, discovering
the optimal investment and consumption policy is equivalent to discovering these
regions. However, obtaining the two unknown boundaries separating these regions
are not straightforward and requires indirect solution method. In this study, we
extend the model setup of the Davis & Norman problem to include stochastic
variance based on the Heston stochastic volatility model. The problem becomes
a two dimensional free-boundary partial differential equation problem in which the
numerical methods for approximating boundaries of the Davis & Norman problem
are no longer applicable. As a result, we propose a neural network-based method
inspired by the original Deep Galerkin Method (DGM) proposed by Sirignano and
Spiliopoulos (2018). Unlike the solution of the Davis & Norman problem, the
approximated solution implies that the stochastic variance can increase the effect
of the variance in the optimal policy. However, in the presence of a negative
correlation between the change in the variance and stock return, the increased effect
of the variance is less. Our numerical example shows that the variance can dominate
the excess return for the zero-correlation case, and the boundaries can be quite
insensitive to the volatility level in the negative correlation case.
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Chapter I

Introduction

Deriving intertemporal consumption from investment is challenging for an
investor who is given with a sufficiently large amount of endowment. A risk-free
asset could be a safe-haven for the fund, yet offers unsatisfactory level of return
which is, most of the time, lower than inflation rate. Therefore, stock comes into the
picture to fulfill this need. Stock, on average, yields a much higher return compared
to a risk-free asset but that comes along with uncertainty. This trade-off highlights
the importance of constructing a portfolio consisting of a stock i.e. a risky asset and
a money market account i.e. a risk-free asset. Given that consumption can only be
derived from cash i.e. dollar-amount in the risk-free asset, the question of how to
invest and consume optimally becomes naturally intriguing.

Merton (1971) is the first to study optimal investment and consumption
problem in continuous time setting. The investor in the problem aims to maximize
his expected total utility of consumption throughout infinite investment horizon. By
assuming that there are no transaction costs in the market, Merton succeeded to
provide a closed form solution to the problem. This is subsequently referred to
as Merton investment ratio i.e. proportion of dollar-amount invested in stock and
Merton consumption rate both of which can be derived from model parameters. This
suggests that by maintaining the portfolio position in the two assets at the ratio the
entire time, one would obtain the optimal investment. Nevertheless, the presence
of transaction costs in the real market makes it impossible to continuously trade in
order to always keep the portfolio at Merton ratio because doing so would incur
infinite cost. Therefore, it is intuitive that the investor would trade only when the
ratio sufficiently deviates from Merton ratio and take no action otherwise. As a
result, investment ratios are split into the three regions i.e. buy region, sell region,
and inactive or no-trade region where Merton ratio resides in the no-trade region.
For the case where the transaction costs are of proportional type, the problem is
known as Davis & Norman problem. Even if the problem is analytically unsolvable,
a bundle of research including Davis and Norman (1990) have proposed numerical
methods for approximating the boundaries between these regions.

One of the common beliefs in stock markets is high risk, high expected
return. This emphasizes the trade-off between volatility and mean return of
stocks. For a special case where excess return is linear in variance i.e. squared
standard deviation, Merton ratio becomes insensitive to volatility while both of the
approximate boundaries increase in volatility, see Figure 1. As can be seen in
Figure 1 that, for Stock A which offers low-risk/low-return, the optimal no-trade
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Figure 1: Trend of change in boundaries when volatility changed given that the
excess return is linear in variance.

region expands upward modestly from the Merton point while it expands downward
dramatically. Therefore, throughout the investment horizon, the investor is suggested
to maintain the investment ratio to be in the relatively low range i.e. not allowed to
over-invest but allowed to under-invest. On the contrary, for Stock B which offers
high-risk/high-return, the optimal no-trade region expands upward dramatically from
the Merton point while it expands downward modestly. Therefore, throughout the
investment horizon, the investor is suggested to maintain the investment ratio to be in
the relatively high range i.e. allowed to over-invest but not allowed to under-invest.
The explanation for such a phenomenon is that, the benefit from the excess return
outweighs the negative effect of volatility for both portfolios, in case of constant
variance. This becomes contradictory to the belief after all and highlights the flaw
of the model.

Another phenomenon found in the real market which receives much
attention from researchers is the stochasticity of variance. This is also regarded
as stochastic investment opportunities. A variety of research have documented the
existence and effect of it in the real markets, see Jacquier et al. (1994, 2004),
Mendoza (2011) for example. Stochastic volatility affects optimal policy because
the investor has to take into account the prospect investment opportunity set when
making a decision. Heston model is a class of stochastic volatility model which
has been widely used in many different contexts e.g. option pricing, credit risk
modeling. By letting the process governing variance be a mean-reverting square
root process, Heston model is able to mimic real market variance. Kraft (2005)
studied optimal investment problem without transaction costs under a special form
of Heston model in which the excess return is linear in variance. In this research,
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we extend the model setup in Kraft (2005) to the case with proportional transaction
costs to see whether in the presence of stochastic variance, the phenomenon, as
in Figure 1, still persists or it will be redeemed by stochasticity of the variance.
Lastly, the problem can be transformed into an HJB equation of the similar form to
that of the case with constant investment opportunity set, see Muthuraman (2007),
except for the fact that Merton point is now replaced by an optimal investment ratio
derived from the result provided by Kraft (2005). This can be regarded as a kind
of free-boundary problems of which the true boundaries are unknown and here is
where the neural network-based method comes into the picture to approximate the
solution simultaneously with its unknown boundaries.

The rest of this thesis is organized as follows. Chapter 2 presents the review
of literature relevant to the optimal investment problems, conventional solution
methods for the case without stochastic volatility, and neural network methods for
approximating solution of boundary value problems as well. Chapter 3 provides the
details of our problem while the proposed neural network-based method is described
in Chapter 4. Chapter 5 provides details pertaining to neural network training,
discussion of the obtained results from a particular set of model parameters, and the
conjectured impact of each feature of the Heston model in general cases as well.
Chapter 6 concludes this study.
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Chapter II

Literature Review

2.1 Portfolio problems without transaction costs

2.1.1 Constant investment opportunity set
Merton (1971) is the pioneer of this field of research and the first to

study optimal investment and consumption problem in continuous-time setting.
The investor is assumed to have Constant Relative Risk Aversion (CRRA) utility
function and aim to maximize his expected discounted total utility of intertemporal
consumption while given with only one money market account and one stock of
which the dynamics are as follows

dPt = rPtdt (2.1)
and

dSt = St(αdt+ σydB
y
t ). (2.2)

where Pt is principle of the money market account, St is stock price, r > 0 is
a constant continuous interest rate, α is mean return of stock, σy is volatility of
stock, and By

t is a standard Brownian motion driving stock price. Thus, the dynamics
of dollar-amounts in money market account Xt and in stock Yt become

dXt = (rXt − ct)dt (2.3)
and

dYt = Yt(αdt+ σydB
y
t ) (2.4)

where ct is instantaneous consumption rate. Thus, the wealth process can be
written as

dωt = [((α− r)πtωt + rωt − ct)dt+ πtωtσydB
y
t ] (2.5)

where 0 ≤ πt ≤ 1 is the proportion of wealth invested in stock at time t. Hence, the
objective can be expressed as

V (ω) = maxπu,cuEω[
∫∞
s
e−θ(u−s)U(cu)du] (2.6)

where s < ∞, V is a value function of the state variables in ω, U(ω) = ω1−γ

1−γ , γ >

0, 6= 1 denotes CRRA utility function, and θ denotes the impatience factor.
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The corresponding HJB equation is

maxπu,cu [ωVω(πu(α− r) + r)−Vωcu + 1
2
ω2π2

uσ
2
yVωω + c1−γu

1−γ − θV ] = 0 (2.7)

where Vω and Vωω denote first order and second order derivatives of V (ω) with
respect to ω respectively. By solving (2.7), we obtain the closed-form solution
π∗u = α−r

γσ2
y

and c∗u = Cωu. According to this, the optimal policy is to always adjust
the position in the two assets so that the proportion of wealth (πu) stays at this ratio
called Merton ratio and consume at a constant rate (C = 1

γ
[θ+(γ−1)r− (1−γ)(α−r)2

2σ2γ
])

proportional to the total wealth.

2.1.2 Stochastic investment opportunity set
Kraft (2005) considered the case where the investor who has CRRA utility

function aims to maximize his expected utility of terminal wealth. The investor is
given with two assets as in Merton (1971) but stock price follows Heston’s stochastic
volatility model as follows

dSt = St[(r + βqt)dt+
√
qtdB

S
t ] (2.8)

and
dqt = κ(δ − qt)dt+ σq

√
qtdB

q
t (2.9)

where qt is a stochastic variance of stock return, Bq
t is a standard Brownian motion

governing qt, β ∈ Rr{0} is a coefficient of market price of risk, κ > 0 is a reversion
rate of qt, δ > 0 is long-run value of qt, ρ ∈ [−1, 1] is a correlation coefficient of the
two Brownian processes By

t and Bq
t . Therefore, the dynamics of dollar-amounts in

both assets become

dXt = rXtdt (2.10)
and

dYt = Yt[(r + βqt)dt+
√
qtdB

S
t ]. (2.11)

Thus, it is straightforward to derive the wealth process as

dωt = ωt[(r + βqtπt)dt+ πt
√
qtdB

y
t ] (2.12)

and the corresponding value function is

V (s, ωs, qs) = maxπ(·)Es,ωs,qs [
ω
(1−γ)
T

1−γ ] (2.13)
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where s < t < T , γ > 0, 6= 1 is the degree of relative risk aversion. By the
Feynman-Kac representation theorem, Kraft succeeded to provide an explicit form
of optimal investment policy as

π∗t = β
γ

+ (1−γ)ρσβ2

γ2
eã(T−t)−1

−κ̃+ã+(κ̃+ã)eã(T−t) (2.14)

where κ̃ = κ− (1− γ)ρβσ, ã =
√
κ2 + 2Φ̃σ2, Φ̃ = − (1−γ)β2

2cγ
, c = γ

1−(1−γ)+ρ2(1−γ) .
For cases where γ ∈ (0, 1), which are the focus of this study, κ̃ and ã

must be positive. Besides, an extra condition β (1−γ)
γ

(κρ
σ

+ β
2
) < κ2

2σ2 must be satisfied
so that the value function and optimal policy are well defined. On the other hand,
for cases where γ > 1, the value function is always well defined.

2.2 Portfolio problems with transaction costs

According to Merton (1971) presented in the previous subsection, the
investor has to trade continuously in order to always keep his portfolio at the Merton
ratio. The presence of transaction costs of any types makes that impossible since
doing so would incur infinite cost and apparently not optimal.

2.2.1 Proportional transaction costs
Proportional transaction costs are a type of transaction costs depending on

the trading size. The larger the order size, the more cost incurred. The problem
with proportional transaction costs can be modeled by introducing two independent
non-decreasing processes representing cumulative dollar-amount paid (received) due
to buying (selling) stock. Therefore, the problem is now in a two-dimensional
domain of stock, and money market account and the dynamics of dollar-amounts in
the two assets become

dXt = (rXt − ct)dt− (1 + λ)dLt + (1− µ)dDt (2.15)
and

dYt = Yt[αdt+ σydB
y
t + dLt − dDt] (2.16)

where Lt is a non-decreasing process representing cumulative dollar amount spent
for buying stock, and Dt is a non-decreasing process representing cumulative dollar
amount received from selling stock. λ ∈ [0,∞) denotes the buying proportional
transaction cost, and µ ∈ [0, 1] denotes the selling proportional transaction cost. The
value function is
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V (x, y) = max(cu,Lu,Du)∈A(x,y)Ex,y[
∫∞
s
e−θ(u−s)U(cu)du] (2.17)

where A(·) denotes a set of all admissible policies. Thus, the corresponding
HJB equation is as follows

max(cs,Ls,Ds)∈A(x,y)[JV (s) +MV (s), LV (s), BV (s)] = 0 (2.18)

where JV (s) = 1
2
σ2
yy

2Vyy + αyVy + rxVx − θV ,
MV (s) = U(cs)− csVx,
LV (s) = (1− µ)Vx − Vy,
BV (s) = −(1 + λ)Vx + Vy.,

Vx, Vy denote the first order partial derivative of V (s) with respect to x and y

respectively, and Vyy denotes the second order partial derivative of V (s) with respect
to y.

The term JV (s) + MV (s) is the expected change of the value function
when it is optimal not to trade, while BV (s) and LV (s) are the expected changes
of the value function when it is optimal to buy and to sell respectively. The optimal
solution is characterized by three regions on the X−Y space. The first region is the
no-trade region. When the values of (X, Y ) fall into this region, it is optimal not to
trade. The other two regions are the buy and sell regions. When the value of the
dollar-amount invested in the stock is too high, the value of (X, Y ) falls into the sell
region, and makes it optimal to sell the stock just to bring the value (X, Y ) back to
the no-trade region. By the same token, when the value of the dollar-amount invested
in the stock is too low, the value of (X, Y ) falls into the buy region, and makes
it optimal to buy the stock just to bring the value (X, Y ) back to the no-trade region.

2.2.2 Fixed transaction costs
Fixed transaction costs are a type of transaction costs charged at a constant

per trade. The more often the investor trades, the more cost incurred. In the presence
of fixed transaction costs, the investor has to trade discretely, and consequently the
problem requires a different technique called stochastic impulse control to solve.
The solution is given as a set of intervention times containing both trading times
and trade sizes i.e. impulses

ν = (τ1, τ2, . . . τj, . . . ; ς1, ς2, . . . , ςj, . . . ; )j≤N , N ≤ ∞ (2.19)

where ν denotes the solution, τj denotes the jth intervention time, ςj denotes the
trade size of the jth intervention, and N denotes the total number of interventions.
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Figure 2: Optimal solution space. The Merton line represents the optimal ratio
between X and Y in the Merton problem.

The solution of the problem is characterized by the Quasi-Variational Hamilton-
Jacobi-Bellman inequality (QVI) of the value function, see Shaikhet (2003). The
optimal investment policy can be described by a graph. The portfolio domain is
separated into three regions as in the case of proportional transaction costs. The
only difference is that when it is optimal to trade, the investor has to trade until
the portfolio reaches the target boundary, which is independent of the magnitude
of the fixed costs as shown in Figure 3. The investment horizon and his wealth
composition are used to describe all the boundaries.

2.2.3 Proportional and fixed transaction costs
According to Chellathurai and Draviam (2007), portfolio problems with

both proportional and fixed transaction costs can be solved using a non-singular
stochastic control method. Instead of the trading rates or the cumulative shares, they
use the number of the stock bought and sold as decision variables. The objective
is to maximize the expected value of the discounted utility of terminal wealth.
By deriving the HJB equation and separating the control set into three regions
i.e. buy, sell, and no-trade, the optimal trading policy can be represented by three
disjoint regions similar to that of the other two types previously discussed. The only
difference is that there are four boundaries to describe the limit of the transactions,
as shown in Figure 4. Two of them are the upper and the lower boundaries of the
no-trade region while the other two are buy and sell targets. The no-trade region in
this problem is wider than that of the other types. The investor immediately transacts
when the portfolio hits buy (sell) boundary until it reaches its target boundary.
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Figure 3: Solvency region for a problem with fixed transaction costs.

Figure 4: Solvency region for a problem with proportional and fixed transaction
costs.
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2.3 Variation of Portfolio Problems with Proportional Transaction Costs

Portfolio problems with proportional transaction costs have been widely
studied. Apart from the setup shown in the previous subsection known as Davis &
Norman problem which is a major building block of our problem, portfolio problems
with proportional transaction costs are further extended in several directions by
combining with other effects existing in the real market. Therefore, this section
is devoted to reviewing some of them. Dumas and Luciano (1991) provided the
exact solution to portfolio problem with proportional transaction costs for the case
where consumption is postponed and paid at the end of investment horizon. Liu
and Loewenstein (2002) showed that the life-cycle investment advice i.e. an older
investor should hold less risky asset than a younger one, is advocated by the optimal
allocation strategy when transaction costs are of proportional type and the investor
has finite investment horizon. Liu et al. (2003) studied optimal investment problem
with proportional transaction costs and jumps in both stock price and volatility of
stock due to event risks. Framstad et al. (2006) obtained the optimal investment and
consumption policy under the model with proportional transaction costs and jump
diffusion. Jang et al. (2007) showed that under regime-switching model with infinite
investment horizon, proportional transaction costs could have first order effect on
liquidity premia. Liu and Loewenstein (2013) obtained the portfolio policy for the
case where there exists a correlation between market crashes i.e. event risks and
regime switching processes. Puopolo (2015) focused on the model with proportional
transaction costs, intertemporal consumption, and default risks and discovered that
in spite of relatively small magnitude compared to that of transaction costs, default
risks may have first order effect on investment asset allocation.

2.4 Numerical methods for approximating solution of Davis & Norman
problem

Magill and Constantinides (1976) is the first to consider optimal investment
problem with consumption and proportional transaction costs. They formulated the
problem on stock-money market plane as in Figure 2 and characterized the shape
of the no-trade region as a wedge in the middle of the solvency region based on
an economic approach. This work was much ahead of its time, in that, an essential
ingredient namely the theory of local time and reflecting diffusion was unavailable.
Therefore, this work gives no prescription on how to compute the location of the
boundaries or what the controlled process should do when reaching them. Then
Davis and Norman (1990) re-formulated the problem to make it more rigorous and
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declared conditions for which the HJB equation has a smooth solution. In addition,
they clearly prescribed actions i.e. immediate sell (buy) when the controlled policy
crosses sell (buy) boundary until it moves back to the sell (buy) boundary. Ever
since, the problem with this setup is known as Davis & Norman problem and it is
a challenging free-boundary problem to solve. However, Davis and Norman (1990)
also provided the first numerical solution method. By solving the transformed ODE
backward via numerical integration, one can eventually discover a path that crosses
both boundaries. It has been proven that this searching procedure is always successful
but computationally intensive. After that, Shreve and Soner (1994) considered a
relaxation form of the problem and used viscosity solution techniques to ensure
existence and uniqueness of the solution and also characterized the regularity of the
value function. Moreover, Janacek and Shreve (2004) studied asymptotic expansion
of the no-trade region and the value function for the case of power utility function
in the power of λ 1

3 where λ denotes the transaction cost (identical for buying and
selling). They provided the coefficient of the first term in the Taylor’s series. Besides,
Gerhold et al. (2010) extended the work of Janacek and Shreve (2004) to the case of
log-utility function. They succeeded to show that for small bid-ask spread, there is
no duality gap between the primal and the dual problems. Therefore, by considering
the dual problem in which the market is frictionless i.e. no transaction costs, terms
of arbitrary order in the power of λ 1

3 can be computed algorithmically where λ is a
sufficiently small bid-ask spread. However, this condition is quite restrictive and not
applicable to the case of power utility function.

Muthuraman (2007) considered the dimensionality-reduced form of the
problem, i.e., one-dimensional problem of z which is defined as the proportion of
dollar-amount in money market account with respect to that in stock and proposed
a fast computational scheme to approximate the boundaries and the corresponding
value function. By transforming the free-boundary problem into a series of fixed-
boundary problems and solving them iteratively, starting by guessing boundaries
with extreme values on both ends then stepping in toward Merton point with some
optimal distance derived from the previously updated solution of each iteration, one
would approach the true boundary eventually. For each iteration, the algorithm
consists of two main steps. The first one is solving the fixed boundary problem of
linear partial differential equation (approximate problem) and the second is computing
optimal moving distance of the iteration from the solution obtained in the first step.
The algorithm terminates when the difference between the boundary of the current
iteration and that of the previous, for both ends, are less than some pre-defined
tolerance level. This convergence determination method is also used in the first step
of each iteration where the maximum consumption is approximated. The boundary
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update rules i.e. outer loop, are the main contribution of this work. Nonetheless, the
convergence of it is sensitive and restricted to the approximate problem, therefore,
this computational scheme is not applicable to other classes of models including
Heston model.

2.5 Approximating solution of PDE problems using neural network

The idea of approximating solution of boundary value problems of Ordinary
Differential Equation (ODE) or Partial Differential Equation (PDE) using neural
network has long been established as early as 1997. Lagaris et al. (1997) showed
that even a simple feed forward network can be used to approximate solution of some
initial or boundary value problems. By expressing the solution as the product of the
known part satisfying initial or boundary condition and neural network part satisfying
ODE/PDE. This is applicable to several problems with boundaries of Dirichlet type
or Neumann type. Over the latest two decades, plenty of neural networks have
been invented and developed upon different underlying theories. Beck et al. (2017)
exploited the connection between PDE and Backward Stochastic Differential Equation
(BSDE) to develop a neural network-based method claimed to be available for high
dimensional fully nonlinear problems. Some of them involve HJB equation stemming
from many engineering and financial problems. Unfortunately, none of them contains
unknown boundaries.

Sirignano and Spiliopoulos (2018) invented a so-called Long Short-Term
Memory (LSTM)-inspired highway network. This type of network combines the
advantage of the famous LSTM network which is the ability to model time-series data
and that of highway network which is the ability for a node in each layer to simply
pass on information without transformation. Figure 5 illustrates the configuration
within a node of LSTM-inspired highway network.

As can be seen that the input consists of two parts i.e. non-transformed
information (x), and the transformed one (Sin) which is the output from the previous
layer. After entering the node, both of them are split into two independent streams.
The main stream which is analogous to the cell state of the typical LSTM network
contains two gate signals which are the non-linearly transformed products of the
two inputs. The transformed input (Sin) will first be gated i.e. dot operation by
the input gate signal (R) then non-linearly transformed to become the main stream
signal (H) before being gated by forget gate signal (1−G) to become a cell state.
The other stream is called highway stream which is a product of a single gated
Sin by highway gate signal (Z). The output of the node is simply the sum of the
products of the two streams. This architecture allows for the possibility that Sin

is passed on without transformation. Therefore, unlike the typical LSTM-network,
this is free from gradient sparse/explosion problem and we are enabled to stack up
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Figure 5: Operations in a DGM cell where σ(·) denotes activation function
i.e. non-linear transformation function which is suggested by the author to be
hyperbolic tangent function for this network, x denotes non-transformed input, Sin

denotes transformed input, Sout denotes output, U (·),W (·), b(·) are network weight/bias
matrices, � denotes gating operation or, mathematically, a dot operation.

multiple layers in a network. However, it is suggested by the authors that the network
consisting of three layers with 50 nodes per layer suffices to handle high-dimensional
PDE problems e.g. PDE problems with two hundred dimensions.

In addition, with this type of network, the author proposed a so called
Deep Galerkin Method (DGM). The name DGM stems from the fact that the neural
network of this type is a substitute of a basis function i.e. test functions used
in conventional Galerkin method. DGM is a natural merger of Galerkin method
and machine learning. Nevertheless, unlike conventional Galerkin method, DGM
is totally independent of forming mesh-grid which could be problematic for high-
dimensional problems. For any location i.e. an (multi-dimensional) array (x) in the
(multi-dimensional) space of a problem, the network yields an approximate value of
the solution function. As a result, one can calculate the approximate derivatives at a
particular location and also use these derivatives to train the network to satisfy the
target ODE/PDE objective terms. Over many iterations, the network will succeed to
yield the highly accurate value for the solution function at the location. A major
contribution of the DGM is an achievement in recovering the unknown boundary in
an American option free-boundary problem.

In case of an option on k stocks, the problem becomes k + 1 dimensional.
The first kth dimensions are stock prices while the last is time (t). Therefore, the
input vector contains k+2 elements including bias. In order to recover the unknown
boundary, the DGM algorithm requires three subsets of multidimensional-uniformly
sampled points. The first subset represents locations on the terminal boundary on
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which we know exactly whether a point belongs to In-the-Money region or Out-of-
the-Money region when the exercise function g(x) is known. Apart from terminal
time (T ), one cannot tell if a particular location truly belongs to which region. As a
result,after sampling, the sample points in the other two subsets need to be evaluated
in order to select/reject points based on the results yielded from the current network
to ensure that each of them satisfies the property of that region. The criterion for
In-the-Money region is that the function value must be greater than the value from
exercise function g(x) while that for Out-of-the-Money region is that the function
value must be less than the value from exercise function g(x). The Objective
function of each iteration is just the sum of the average value of the minimization
target of each subset evaluated with the current network. For more details, see step
4 in the following list. Hence, for the nth iteration, the DGM algorithm can be
described in steps as follows

1. Uniformly sample xh, h = 1, 2, ...,M , for subset 1 over the space of the first
kth dimensions while time (t) dimension is fixed at maturity time (T ).

2. Uniformly sample (xi, ti), i = 1, 2, ...,M , for subset 2 (In-the-Money) over the
space of k+ 1 dimensions, then select only ones satisfying the property of the
region which is f(xi, ti, εn) > g(xi) where xi denotes a k dimensional vector
of stock prices, εn denotes the network weight at the nth iteration .

3. Uniformly sample (xj, tj), j = 1, 2, ...,M , for subset 3 (Out-of-the-Money)
over the space of k+1 dimensions, then select only ones satisfying the property
of the region which is f(xj, tj, εn) < g(xj) where xj denotes a k dimensional
vector of stock prices, εn denotes the network weight at the nth iteration.

4. Compute gradient (with respect to the network weight) of the objective function
of the following form

J(f ; εn, Bn) = 1
|B1|Σ(xh,T )∈B1(f − g(xh))

2

+ 1

|B̃2|
Σ(xi,ti)∈B̃2 [

∂
∂t
f + µ(xi) · ∂∂xf + 1

2
σ(xi)

2 ∂2

∂x2
f − rf ]2

+ 1

|B̃3
|Σ(xj ,tj)∈B̃3max(g(xj)− f, 0)2 (2.20)

where Bn = {B1, B̃2, B̃3} and B1 is a subset of sample points representing
the terminal boundary, B̃2 is a subset of selected sample points representing
In-the-Money region, and B̃3 is a subset of selected sample points representing
Out-of-the-Money region.

5. Take a descent step with learning rate (αn) to update the network weight

εn+1 = εn − αn∇εJ(f ; εn, Bn). (2.21)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

Theoretically, for Out-of-the Money region, the property is that the solution
function is equal to the exercise function. However, this is a state-of-the-art by
which the L2 − norm of the difference will gradually be shrunken towards zero.

Note that the appropriate leaning rate for each iteration αn depends on the problem
and network architecture. It needs to be tuned by trial and error, see Sirignano and
Spiliopoulos (2018) for an example of a learning rate program suggested for this
problem. Furthermore, in practice, Adaptive moment estimation optimizer (ADAM)
is used in step 5 instead of Stochastic Gradient Descent (SGD).

It is not surprising that the algorithm succeeds to recover the boundary.
On the terminal boundary, one can simply distinguish part of it belonging to in-the-
money from the rest belonging to out-of-the-money. Since the objective function is
just the sum of the three average values representing three different regions, within
a few iterations after initialization, the first term representing terminal boundary will
be the most consistent and powerful one to drive the optimizer: ADAM toward
the minimum. Over several iterations, the first term will be settled and be able to
induce sample points belonging to the other two subsets in the neighboring area to
recover their gradient descent directions as well and consequently make the unknown
boundary gradually recovered backward. The solution of the case of single stock
option is presented in Aradi et al. (2018), in that the farther away from maturity
time, the more error the approximate solution yields. Nevertheless, one can reach
his satisfactory level of accuracy by increasing the number of iterations.
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Chapter III

Optimal Investment and Consumption Problem

The model in this study is further developed from the Heston model
presented in Kraft (2005) to include proportional transaction costs. The followings
are the required basic assumptions. The market consists of one risky asset (stock)
and one risk-free asset (money market account). The investor can only derive
intertemporal consumption from money market account. The mean return of stock
depends on the stochastic variance process. Transaction costs for buying/selling
stock are constant and of proportional type. The investor has Constant Relative
Risk Aversion (CRRA) utility function with degree of relative risk aversion γ > 1.
Thus, the CRRA utility of consumption takes the following form U(c) = c1−γ

1−γ where
γ > 1, and c denotes the consumption rate. The investor must always be solvent,
i.e. the realization of his portfolio value must always be non-negative. Lastly,
the investment horizon is infinite. According to these assumptions and the original
version of the model, see Kraft (2005), the dynamics of the money market account
Pt, stock price St, and an underlying variance process qt can be written as

dPt = rPtdt (3.1)

dSt = St[(r + βqt)dt+
√
qtdB

y
t ] (3.2)

dqt = κ(δ − qt)dt+ σq
√
qtdB

q
t . (3.3)

where r > 0 denotes interest rate of the money market account,
β > 0 denotes the coefficient of market price of risk,
κ > 0 denotes mean reversion rate of the volatility process,
δ > 0 denotes long run value of the volatility,
σq > 0 denotes constant volatility coefficient of the volatility process,
By
t denotes a standard Brownian motion governing stock price process,

Bq
t denotes a standard Brownian motion governing volatility process.

Thus, the dynamics of dollar-amount in the money market account Xt, and stock Yt
can be written as

dXt = (r − ct)Xtdt− (1 + λ)dLt + (1− µ)dDt (3.4)
and

dYt = Yt[(r + βqt)dt+
√
qtdB

y
t ] + dLt − dDt (3.5)
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where Lt denotes a non-decreasing process representing cumulative dollar-amount
spent when buying stock,

Dt denotes a non-decreasing process representing cumulative dollar-amount
earned from selling stock,

ct > 0 denotes intertemporal consumption rate at time t,
λ and µ are buying and selling proportional transaction costs respectively.

We assume that the two Brownian motions By
t and Bq

t are correlated with correlation
coefficient ρ. As mentioned earlier, this setup is based on that in Kraft (2005) which
lets the volatility process be a mean-reverting square root process, therefore, the
volatility can only take some non-negative values. The mean return of stock consists
of two parts which are constant interest rate and the excess return depending on
variance.

At initial time s, the investor is given with x dollars in the money market
account and y dollars in stock and volatility q. He must choose a consumption rate
and trading policy to maximize his objective. Consumption can only be derived
from money market account and cannot be negative. We also require that c(·) be
integrable for any finite time u > s. The solvency region is defined as

S = {(x, y, q) ∈ (0,∞)3} (3.6)

meaning that short-selling and borrowing are not allowed. A consumption-transaction
policy (cu, Lu, Du) where u > s is called admissible if Xu, Yu, and qu given by
(3.3)- (3.5) respectively lie within S for all time u > s and this will ensure that
bankruptcy does not occur in finite time. Also, let A(x, y, q) denote the set of all
admissible policies. The objective which is to maximize the expected value of total
discounted utility of lifetime consumption can be expressed in the form of value
function of the three state variables as

V (x, y, q) = max(cs,Ls,Ds)∈A(x,y,q)Ex,y,q[
∫∞
s
e−θ(u−s) (cuXu)

1−γ

1−γ du] (3.7)

where s <∞. Then, the corresponding HJB equation is

max(cs,Ls,Ds)∈A(x,y,q)[J V (s) +MV (s),LV (s),BV (s)] = 0 (3.8)

where MV (s) = (csx)1−γ

1−γ − csxVx,
J V (s) = −θV + rxVx + y(r + βq)Vy + κ(δ − q)Vq + 1

2
y2qVyy

+1
2
σ2
qqVqq + σqyqρVyq,

LV (s) = Vx(1− µ)− Vy,
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BV (s) = −Vx(1 + λ) + Vy.

The term J V (s) + MV (s) is the expected change of the value function when
it is optimal not to trade, while BV (s) and LV (s) are the expected change of the
value function when it is optimal to buy and to sell respectively.

It can be seen that the optimal consumption rate is given by cs = V
− 1
γ

x .
Due to the homothetic property of CRRA utility function and linearity in Xt and Yt,
it can be shown that the value function is of the following form

V (x, y, q) = x1−γW (z, q) (3.9)

for some function W (z, q) where z = y
x
. As a result, we also obtain

Vx = (1− γ)x−γW − x−γ−1Wzy,

Vy = x−γWz, Vyy = x−γ−1Wzz, Vyq = x−γWzq

Vq = x1−γWq, Vqq = x1−γWqq.

Hence, the HJB equation can be reduced to a two-dimensional problem as follows

max(cs,Ls,Ds)∈A(z,q)[JW (s) +MW (s),LW (s),BW (s)] = 0 (3.10)

where
MW (s) = x1−γ γ

(1−γ) [(1− γ)W − zWz]
(γ−1)
γ ,

JW (s) = x1−γ[−θW + rW − γrW − rzWz + zWz(r + βq)

+Wqκ(δ − q) + 1
2
z2qWzz + 1

2
σ2
qqWqq + σqρzqWzq],

LW (s) = x−γ([(1− γ)W − zWz](1− µ)−Wz),
BW (s) = x−γ(−[(1− γ)W − zWz](1 + λ) +Wz).

Heuristically, x is non-negative and in each region, only one of the three terms is
exactly zero while the rest are negative, we then can simply eliminate x and
re-define these terms as

MW (s) = γ
(1−γ) [(1− γ)W − zWz]

(γ−1)
γ ,

JW (s) = −θW + rW − γrW − rzWz + zWz(r + βq)

+Wqκ(δ − q) + 1
2
z2qWzz + 1

2
σ2
qqWqq + σqρzqWzq,

LW (s) = ([(1− γ)W − zWz](1− µ)−Wz),
BW (s) = (−[(1− γ)W − zWz](1 + λ) +Wz).
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Chapter IV

Modified DGM Algorithm

4.1 Intuition behind the algorithm

According to the HJB equation derived in the previous chapter, the domain
of the problem is two-dimensional. Without the stochastic volatility, the problem is
simply the Davis & Norman problem. Thus, we conjecture that in our case where
there exists an underlying stochastic volatility, at a fixed q = qm, the domain splits
into three regions in dimension z and each of them is consistent throughout i.e. no
alternation, as in that of the Davis & Norman problem. Figure 6 exemplifies the
domain corresponding to our conjecture.

Figure 6: The two-dimensional domain of the problem where π denotes the optimal
proportion of dollar-amount in stock with respect to that in money market account
in the no transaction cost case and a designated sure member of our no-trade region.

As can be seen, there are three regions with two unknown boundaries. The
problem can be regarded as a free-boundary problem and our goal is to find the
approximate solution and these two boundaries. We are inspired by the success of
the neural-network based method called DGM algorithm in recovering the boundary
and the solution of American option free-boundary problem, therefore, we modify
this method to suit our problem. However, the idea behind our algorithm is quite
different from that of the original one.

In accordance with the fast computational scheme for approximating
boundaries of the Davis & Norman problem proposed by Muthuraman (2007),
we assume that the optimal proportion of dollar-amount in stock with respect to that
in risk-free asset obtained in the no transaction cost case certainly is a member of our
no-trade (NT) region. Apart from a slight difference in the objective, our problem
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is just an extension of Kraft (2005) to the case with proportional transaction costs.
Thus, in order to derive the sure member of the no-trade region, it is compelling to
rely on the optimal investment policy in Kraft (2005)

π∗(t) = β
γ

+ ρσqβ
2 (1−γ)

γ2
eã(T−t)−1

eã(T−t)(κ̃+ã)−κ̃+ã (4.1)

where the notations are as defined earlier, see subsection 2.1.2. By taking limit
T →∞, we then obtain the sure member of no-trade region

π = πy
1−πy (4.2)

where πy = β
γ

+ (1−γ)ρσqβ2

γ2(κ̃+ã)
is the optimal portfolio weight in the Kraft (2005)’s

problem when the investment horizon is infinite. Moreover, moving away from the
point with sufficiently large distance, we can rest assured that we are no longer in
the no-trade region. Therefore, we select a very small positive number in the z-space
as a sure member of buy region and a sufficiently large number as a sure member
of sell region. It is worth noting that the sure members of the three regions are the
same and independent of the value of qm.

From this point on, we refer to a sure member of each region as the center
of it. Knowing these centers simplifies the problem dramatically. For any qm, the
locations, in dimension z, between the center of buy region and no-trade region can
only have two possibilities of being in the buy region or in the no-trade one. By the
same token, the locations, in dimension z, between the center of no-trade region and
sell region can only have two possibilities of being in the no-trade region or in the
sell one. As a result, we can partition the domain of the problem at the sure no-trade
member into two independent zones one of which contains Buy-NT boundary while
the other contains NT-Sell boundary.

In order to discover the unknown boundaries lying in the middle of these
two zones, we define three classes of intervals named as confident interval, likely
interval, and inconclusive interval. A confident interval is a preserved range with
a very small pre-determined length expanding from the center of the region. The
importance of having confident intervals is due to that neural network aims to
minimize HJB quantities which are composed of function value and/or its derivatives,
therefore, having only the center for each region is inadequate for the neural network
to properly handle derivatives of the function. Since the locations within a confident
interval is very close to the center, we have high confidence that these locations
truly belong to the anticipated region. A likely interval reflects a lower degree
of confidence that locations within it truly belong to the anticipated region. It is
defined as an interval containing locations beyond the pre-determined distance-away
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Figure 7: Required objective function components for executing a point belonging
to each interval where B denotes the center of the buy region, π denotes the center
of the no-trade region, S denotes the center of the sell region, C(·) denotes the
confident interval of (·) region, L(·) denotes the likely interval of (·) region, and
I(·,�) denotes the inconclusive interval between (·) region and (�) region, a solid
partition separates a confident interval from the adjacent likely interval, a dashed
arrow separates a likely interval from the adjacent inconclusive interval.

from the center. Besides, moving away from the center through these locations, one
must always obtain the result of maximum HJB quantity (compared between the two
candidate regions) in favor of the anticipated region i.e. none of the locations in the
middle yields the maximum HJB quantity that fails the anticipated region. The last
class which reflects the lowest degree of confidence is inconclusive intervals. An
inconclusive interval is defined as the locations beyond the likely intervals of the
two candidate regions, therefore, one can expect to see alternation of the maximum
HBJ quantity over this region.

According to the HJB equation derived in the previous chapter, the three
HJB quantities must take zero value over its region and take some negative value
otherwise. This can be achieved using the combination of two different tasks which
are regularization and L2−norm minimization. As a result, we come up with seven
objective function components by which the two tasks will be fulfilled. The first
three components are straightforward because they are simply the L2 − norm of the
three HJB quantities which serve L2 − norm minimization task:

(JW +MW )2 = 0,BW 2 = 0,LW 2 = 0.

The other four terms serve regularization task for which the three HJB quantities
and the value function must be non-positive:

max(JW +MW, 0)2 = 0,max(BW, 0)2 = 0,max(LW, 0)2 = 0,max(W, 0)2.
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The last due to the assumption on CRRA utility function with γ > 1 of the investor
by which the yielded value of utility is always negative.

Hence, when q is fixed at qm, we can split the locations, in dimension z,
into nine intervals. Figure 7 lists the required components of the neural network
objective function for a point belonging to each interval. As can be seen, unlike
an inconclusive interval, if a point belongs to a confident or a likely interval,
the objective function at the point will not only contain four penalty terms but also
L2−norm of HJB quantity representing the region as well. The benefit of doing this
is that the neural network will not be misguided during the training session because,
basically, we update the neural network model so that it satisfies regularization
conditions first and only minimize the L2 − norm of HJB terms toward zero for
those locations that we have high confidence. As a result, over many iterations, the
likely intervals will expand toward each other resulting the inconclusive interval in
the middle to vanish and the approximate solution will eventually converge to the
true solution.

4.2 Implementation details

Like a typical deep neural network model, the major concern of this method
is the high computational cost. We aim to minimize the computational intensity with
the following choices of implementation.

4.2.1 Training order
Since the 2-dimensional domain of the problem is relatively compact,

we have no trouble using a grid with some sufficiently small grid-size instead of
sampling; consequently, the set of input is always the same for every iteration. For
the sake of computational efficiency, we split the grid into blocks along dimension
q by letting q̃ denote the vector of grid values in this dimension and also exploit
the assumption of a known sure no-trade member to split the grid along dimension
z into two zones as well, see Figure 8. As mentioned in the previous section, the
buy (sell) boundary at a fixed q = qm is definitely contained in zone = 1(zone = 2).
Therefore, each block can be trained independently of one another. The challenge
remains inside each block in which we have to evaluate inputs along with discovering
the interval they belong to.

According to the definition of the three classes of intervals, the partition
between a confident interval and the adjacent likely one is set by the predetermined
small distance away from the center while the partition between a likely interval
and the adjacent inconclusive one is unsettling and depends on the first location
that yields an inferior HJB quantity compared to that of the candidate region when
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Figure 8: Training order for each block.

propagating away from the center. Given that, for the kth iteration, there still exists
an inconclusive interval in the middle of a block, there are two partitions need to be
discovered, so that every input in the block can properly be assigned to its interval.
However, such a task can be achieved by location-based sequentially training. For
each block, regardless of the zone, it is a competition of the two candidate regions.
By letting vector z̃(zone) store the grid values, in dimension z, in ascending order,
we first propagate from left to right. After reaching the left partition, we jump to
the last grid i.e. the farthest right one, then move in the opposite direction i.e. from
right to left toward the left partition previously determined.

4.2.2 Evaluation
In the previous section, we introduce two main ideas on how to tackle the

problem. The first one is the separated two tasks consisting of regularization and
L2 − norm minimization. We prioritize regularization task ahead of L2 − norm

minimization task. As a result, when an input is evaluated, those objective function
components serving this task will always be present regardless of what class of
intervals the input belongs to, revisit Figure 7 for components to be included when
evaluating an input belonging to each interval. On the contrary, those components
serving L2 − norm minimization task will be included only when an input belongs
to a confident or a likely class. Moreover, in order to emphasize the importance
of serving regularization task for every input, we magnify these regularization terms
using a multiplier (Λ) where Λ >> 1. This results in a well-behaved approximate
function throughout the training session. The other idea as important as the first
one is the difference in the level of confidence. Since the result from inputs in a
confident interval should be taken more seriously than that from a likely interval
while that from a likely interval should be taken more seriously than that from an
inconclusive interval, we then introduce the multipliers τC > τL > 1 to empower
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the evaluation result of an input from a confident and a likely interval respectively.
Hence, in mathematics, the objective of the kth iteration can be expressed as
J(W f

k ; εk, B) = Σh∈{Buy,NT,Sell}[ΣBCh
objC(qm, zn) + ΣBLh

objL(qm, zn)

+ΣBIh
objI(qm, zn)] (4.3)

where objC(qm, zn) = τC · L2 −min+ Λ · pen(qm, zn),
objL(qm, zn) = τL · L2 −min+ Λ · pen(qm, zn),
objI(qm, zn) = Λ · pen(qm, zn),
L2 −min = (BW f

k )2 if h = Buy

= (JW f
k +MW f

k )2 if h = NT

= (LW f
k )2 if h = Sell,

pen(qm, zn) = max(W f
k , 0)2 + max(JW f

k +MW f
k , 0)2

+max(LW f
k , 0)2 + max(BW f

k , 0)2,
W f
k is a neural-network approximate solution function at the iteration,

B = {BBuy ∪BNT ∪BSell} is the set of grid points in the training space,
Bh = BC

h ∪BL
h ∪BI

h where h ∈ {Buy,NT, Sell},
εk is the neural network weight at the iteration,
Λ is a coefficient of regularization terms, τC , τL denote significance coefficients

for confident intervals and likely intervals respectively.

4.2.3 Algorithm
For the kth iteration, the modified DGM algorithm consists of steps as

follows

1. Split the domain into blocks which can be trained independently.

2. Sequentially evaluate inputs contained in a block using the rules specified in
subsection 4.2.1 and the evaluation criterion expressed in (4.3).

3. Compute objective function and its gradient using the cumulative results of the
entire grid.

4. Input the gradient of the objective function and the learning rate* into ADAM
optimizer.

5. Use the result from ADAM optimizer to update network weight.

Note that the appropriate learning rate for each iteration needs to be tuned via trial
and error. The steps listed above are the main steps, for the detailed version of the
algorithm, see Figure 9.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

Figure 9: Detailed steps of the modified DGM algorithm.
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Chapter V

Training and Numerical Results

5.1 Neural Network Training

It is crucial to select model parameters that is consistent with the real
market and the proper training options for it. In this research, we follow Wang
et al (2017) who obtain Heston model parameters from S&P 500 using a Kalman
filter technique. Moreover, the investor is still assumed to possess impatience factor
(θ) of 0.1 and degree of relative risk aversion (γ) of 2 as in Muthuraman (2007).
According to this set of model parameters, we determine the two-dimensional training
space in variance (q) and proportion between dollar-amount in stock with respect
to that in money-market account (z) using 95% confidence interval by which the
range of variance between 0.04 and 0.15 and the range of z between 0.02 and 2 are
qualified. However, apart from stochastic variance, a phenomenon typically observed
in the real market is the negative correlation between changes in variance and stock
returns. Therefore, in this research, we compare two different cases with zero and
negative correlation to see the explicit effect on the boundaries of each feature. The
transaction costs i.e. buying (λ) and selling (µ) are set at 5% which is quite high
compared to what we normally encountered in the real market. This is just for the
sake of study to make the effect obvious and to ensure that the three regions i.e.
Buy, NT, Sell sufficiently span. Since the training space is relatively large, we use
a grid size of 0.01 for both dimensions in order to maintain an appropriate runtime.
Hence, the model parameters are listed in Table 1 while Table 2 contains parameters
related to the optimization problem. Moreover, the neural network of depth 1 is
proven to be able to handle our two-dimensional problem with which the penalty
coefficients and the effective learning rate schedule can be tuned and discovered
subsequently. Besides, we found that the learning rate schedule as shown in Table
3 is effective.

5.2 Fitting Results

According to equation 4.3 and by substituting the penalty coefficient (Λ)
with 10, significance coefficient for confident intervals (τC) with 5 and that for likely
intervals (τL) with 2, we obtain the objective function as follows
J(W f

k ; εk, B) = Σh∈{Buy,NT,Sell}[ΣBCh
objC(qm, zn) + ΣBLh

objL(qm, zn)

+ΣBIh
objI(qm, zn)] (5.1)

where objC(qm, zn) = 5 · L2 −min+ 10 · pen(qm, zn),
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objL(qm, zn) = 2 · L2 −min+ 10 · pen(qm, zn),
objI(qm, zn) = 10 · pen(qm, zn),
L2 −min = (BW f

k )2 if h = Buy

= (JW f
k +MW f

k )2 if h = NT

= (LW f
k )2 if h = Sell,

pen(qm, zn) = max(W f
k , 0)2 + max(JW f

k +MW f
k , 0)2

+max(LW f
k , 0)2 + max(BW f

k , 0)2,
W f
k is a neural-network approximate solution function at the iteration,

B = {BBuy ∪BNT ∪BSell} is the set of grid points in the training space,
Bh = BC

h ∪BL
h ∪BI

h where h ∈ {Buy,NT, Sell},
εk is the neural network weight at the iteration.

The fitted neural networks which were both trained over 1 million iterations yield
the minimum objective values of 1.23 and 2.99 for the case with zero and negative
correlation (between variance and stock return) respectively as shown in Table 4.
These are equivalent to the root mean square objective value per grid point of 0.0247
and 0.0383 respectively. However, the magnitude of objective function depends on
the magnitude of the penalty coefficients, see Subsection 4.2.3. Therefore, an
alternative and reliable measure of the model error is the statistics of the realized
error at each grid point. Since, over each region, the ideal solution function must
satisfy the HJB equation, it is reasonable to measure the absolute error of the
maximum HJB quantity i.e. |max(JW f

k + MW f
k , LW

f
k , BW

f
k )| at a particular grid

point. The simple statistics of the absolute error over the entire training space
(q ∈ [0.05 : 0.01 : 0.14], z ∈ [0.02 : 0.01 : 2]) are as shown in Table 4. As can
be seen that the maximum absolute error is 0.1209 and 0.1204 for the case with
zero and negative correlation respectively. This is acceptable when compared to the
error reported in Aradi et al (2018), who demonstrate implementation of the original
DGM algorithm on a one-dimensional American-put-option free-boundary problem of
which the maximum error is above 10% over some region within its training space.

5.3 Optimal Strategies

This section discusses the optimal investment strategies based on the
parameter set given in Table 1. Figure 10 shows the optimal buy and sell boundaries
of the stochastic variance model with zero correlation (solid lines) compared to those
of the Davis & Norman problem (dashed lines). According to Figure 10, it can be
seen that when the mean and variance are increased while the Merton ratio i.e. the
zero-cost optimality is fixed, the two boundaries are upward sloping in q in case
of the Davis & Norman problem. This is equivalent to suggesting the investor to
maintain relatively low proportion of wealth in stock for a portfolio consisting of
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Table 1: Model parameters.

Table 2: Optimization problem parameters.

Table 3: An effective learning rate schedule.
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Table 4: The summary statistics of neural network model error.

a low-risk/low-return stock and maintain relatively high proportion in stock for a
portfolio consisting of a high-risk/high-return stock. As a result, the principle of
risk-return tradeoff is challenged in this class of models since the benefit from the
increased return outweighs the risk due to the increased variance.

However, in our model where stochastic variance is present and with
zero correlation between the variance and stock returns, the two boundaries behave
differently as shown in Figure 10. The buy boundary is still upward sloping in q but
less steep. This indicates that even in the presence of stochastic variance, the benefit
from the excess return still outweighs the risk due to variance but with smaller effect
for this set of parameters. From another perspective, this implies that the presence of
stochastic variance does not affect the balance between (buying) trading cost and the
cost of being away from the zero-cost optimality that much since the buy boundary
does not shift evidently. On the other hand, the sell boundary is evidently downward
sloping in q for the lower range of variance (smaller than long-run value δ = 0.09)
and levels off in the higher range. It is no surprise that the effect on the sell boundary
is more obvious than that on the buy boundary because the Heston model assumes
positive mean return of stock by which the sell boundary is more likely to be crossed
and makes it more sensitive to changes in the nature of stock movement compared
to the buy boundary. The downward slope implies that in the presence of stochastic
variance, variance dominates the excess return on the sell boundary. Besides, with its
mean-reversion property, it can be conjectured that when the variance is extremely
high, it is more likely that the prospect variance will be lower, therefore, the sell
boundary for the high range of variance levels off instead of continues decreasing.
From another perspective, the fact that the sell boundary on the lower end is wider
while narrower on the upper end compared to that of the case with constant variance
highlights the effect of stochastic variance on the balance between (selling) trading
cost and the cost of being away from the zero-cost optimality. On the lower end,
stochastic variance is likely to complement the trading cost against the cost of being
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Figure 10: Comparison plot of buy and sell boundaries for the case with stochastic
variance and zero correlation compared with that of the Davis & Norman problem
where the dashed line in red (upper) denotes the sell boundary in case of the Davis &
Norman problem, the dashed line in blue (lower) denotes the buy boundary in case of
the Davis & Norman problem, the solid line in red (upper) denotes the sell boundary
in case with stochastic variance and zero correlation, the solid line in blue (lower)
denotes the buy boundary in case with stochastic variance and zero correlation, and
the horizontal solid line in black (middle) denotes our sure NT member derived from
Kraft ratio which is ,by chance, equal to Merton ratio in this setup.

away from the zero-cost optimality resulting in a wider NT region and the upward
shift of it while on the upper end, stochastic variance is likely to complement the
cost of being away from the zero-cost optimality against the trading cost resulting in
a narrower NT region and the downward shift of the boundary.

Note that in order to make it reasonable to compare the boundaries in
our model with those of the Davis & Norman problem, we select the same set of
parameters as shown in Table 1 except for reversion rate of variance (κ), long-run
variance (δ) and volatility coefficient of variance (σq) which are not present in the
model of the Davis & Norman problem. Besides, when correlation coefficient is zero,
our sure NT member approximated from Kraft ratio becomes the same as Merton
ratio.The other case of our interest is when the stochastic variance is negatively
correlated with stock return. Figure 11 compares the boundaries of the two cases
of our interest i.e. with zero and negative correlation. As can be seen that the
buy boundaries look almost exactly the same. The explanation for this is that the
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Figure 11: Comparison plot of buy and sell boundaries for the case with stochastic
variance and zero correlation compared with that of the case with stochastic variance
and negative (ρ = −0.9) correlation where the dashed line in red (upper) denotes the
sell boundary in the case with negative correlation, the dashed line in blue (lower)
denotes the buy boundary in the case with negative correlation, the solid line in
red (upper) denotes the sell boundary in the case with zero correlation, the solid
line in blue (lower) denotes the buy boundary in the case with zero correlation, the
horizontal dashed line in black (middle) denotes our sure NT member derived from
Kraft ratio for the case with negative correlation, and the horizontal solid line in
black (middle) denotes our sure NT member derived from Kraft ratio for the case
with zero correlation.

negative correlation (ρ = −0.9) in conjunction with stochastic variance is not strong
enough to leverage the stochastic part to overcome the positive mean return part
of stock return to make a difference to the boundary. On the other hand, the sell
boundary for the case with negative correlation becomes less steep particularly on
the lower end. This indicates that the presence of negative correlation in conjunction
with stochastic variance results in the less volatile stock process. This is supported
by the evidence from the simulation of variation in the final wealth in stock over the
period of 10, 20, and 30 trading days at the 95th percentile and the 5th percentile as
shown in Figure 12 and 13 respectively.

The result in Figure 12 highlights the relatively high upward volatility of
the stock when there is zero correlation between stock returns and the variance.
This supports our results that the sell boundary in case with negative correlation is
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Figure 12: Comparison plot of the 95th percentile variation in the final wealth in
stock over the period of 10,20, and 30-trading-days when the initial endowment is
$1 and variance is varied from 0.04 to 0.16 where the dashed blue line (lower pair)
denotes the 95th percentile over 10-day-period in case with negative correlation,
the solid blue line (lower pair) denotes the 95th percentile over 10-day-period in
case with zero correlation, the dashed-dotted black line (middle pair) denotes the
95th percentile over 20-day-period in case with negative correlation, the solid black
line (middle pair) denotes the 95th percentile over 20-day-period in case with zero
correlation, the dashed red line (upper pair) denotes the 95th percentile over 30-day-
period in case with negative correlation, and the solid red line (upper pair) denotes
the 95th percentile over 30-day-period in case with zero correlation.
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Figure 13: Comparison plot of the 5th percentile variation in the final wealth in
stock over the period of 10, 20, and 30-trading-days when the initial endowment is
$1 and variance is varied from 0.04 to 0.16 where the dashed blue line (lower pair)
denotes the 5th percentile over 10-day-period in case with negative correlation, the
solid blue line (lower pair) denotes the 5th percentile over 10-day-period in case with
zero correlation, the dashed-dotted black line (middle pair) denotes the 5th percentile
over 20-day-period in case with negative correlation, the solid black line (middle
pair) denotes the 5th percentile over 20-day-period in case with zero correlation,
the dashed red line (upper pair) denotes the 5th percentile over 30-day-period in
case with negative correlation, and the solid red line (upper pair) denotes the 5th

percentile over 30-day-period in case with zero correlation.
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less distant from the sure NT compared to that of the case with zero correlation.
On the other hand, the result in Figure 13 highlights the relatively high downward
volatility of the stock when there is the negative correlation between stock returns
and changes in variance. However, the difference is not as obvious as in Figure
12 and we can also see some crossovers at every period, this eventually might
explain why the buy boundaries of the two cases are indistinguishable. Nevertheless,
the approximate solution functions from the neural network still possess relatively
high absolute errors around the buy boundary for both cases i.e. zero and negative
correlations, see Figure a3 and a4 in the appendix for the error plots over the entire
training space for both cases. This can be improved with dedication of computer
resources and time but for this research, this is sufficient for us to make conclusion
on the boundaries. Note that by using Amazon Web Service’s Elastic Compute
Cloud (AWS-EC2) of the specified type m5.2xlarge with 8 virtual CPU cores (Intel
Xeon Platinum 3.1 GHz max) and 30 GiB memory, it took more than 3 weeks to
reach 1 million iterations and achieve this level of accuracy.

In summary, the results from our modified DGM method suggest that, with
this set of model parameters, an investor who assumes that the market possesses
stochastic variance with zero correlation between the variance and stock returns
should be more vigilant on when to liquidate stock than when to buy it because
the buy boundary turns out to be less steep throughout the entire range of variance
while the sell boundary still shows a big difference between both ends as shown
in Figure 10. When the variance is low, the investor is allowed to over-invest in
stock i.e. let profit run due to the elevated sell boundary while inhibited to over-
invest in stock when the variance is high due to the restrictive sell boundary on that
end. Moreover, for an investor who assumes that the market possesses stochastic
variance with negative correlation (ρ = −0.9) between the changes in variance and
stock returns, he could be carefree with the level of variance and rather stick to the
same optimal policy throughout the invest horizon because both the buy and the sell
boundaries stay almost exactly the same throughout the entire range of variance as
shown in Figure 11.

Furthermore, based on the results that we obtain, we conjecture the impact
of stochastic variance on the boundaries as follows. According to the boundaries of
the Davis Norman problem, when the model assumes constant variance, the total
volatility is solely from the randomness of stock return. The presence of transaction
costs reduces the expected profit, and to compensate for this lower profit, the expected
excess return becomes relatively more significant than the variance compared to the
case of zero transaction cost. Thus, when the variance and expected excess return
are relatively low, the loss due to small excess return has greater impact than the
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benefit from the small variance. As a result, the optimal policy is to maintain the
relatively low position in stock and that is why we see the sell boundary closer to
the zero-cost optimality (Merton ratio) compared to the buy boundary. Likewise,
when the variance and expected excess return are relatively high, the benefit from
excess return has greater impact than the risk due to the increase in variance. As a
result, the optimal policy is to maintain the relatively high position in stock and that
is why we see the buy boundary closer to the zero-cost optimality (Merton ratio)
compared to the sell boundary.

However, when the model includes stochastic variance, the randomness in
investment opportunity set would increase the total volatility, then the significance
of the excess return over the variance would eventually be reduced. As a result, the
boundaries would become less sensitive to variance compared to those in constant
variance case. Moreover, the mean-reversion assumption as in the Heston model
also plays a role in the transformation of the boundaries. When the variance is
extremely low, it is highly likely that the prospect variance will be higher and the
investor would eventually obtain the benefit from the bigger excess return. That is
why the optimal policy suggests the investor to maintain relatively high portfolio
weight in stock as can be seen that both of the boundaries are higher than those in
constant variance case on the lower end. Likewise, when the variance is extremely
high, it is highly likely that the prospect variance will be lower and by the same
token, the investor would eventually lose the benefit from the big excess return. That
is why the optimal policy suggests the investor to maintain relatively low portfolio
weight in stock as can be seen that both of the boundaries are lower than those in
constant variance case on the upper end. On the contrary, in the presence of negative
correlation between the change in the variance and stock return, the total volatility is
reduced. Therefore, the empowered impact of the variance against the excess return
due to stochastic variance is smoothed out. As a result, the two boundaries become
less sensitive to the variance compared to those in case with zero correlation.
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Chapter VI

Conclusion

The objective of this study is to find the optimal investment and consumption
policy for an investor who possesses CRRA utility function and aims to maximize the
expected value of total discounted utility of intertemporal consumption throughout
infinite investment horizon, given that there exist only one risk-free asset and one
risky asset in the market where proportional transaction costs and stochastic variance
are present. The obtained HJB equation is originally three-dimensional. However,
by homothetic property of CRRA utility function, we reduce dimensionality of the
problem to two i.e. the proportion between initial dollar-amount in stock with
respect to that in money market account and the current level of the variance of the
stock return. As a result, the problem becomes two-dimensional with two unknown
boundaries. This can be regarded as a free-boundary problem which is analytically
intractable. Therefore, a neural-network based method is proposed for approximating
solutions together with the unknown boundaries. This is inspired by the success
of the original DGM algorithm proposed by Sirignano and Spiliopoulos (2018) in
recovering the unknown boundary of American option free-boundary problems.

The approximated solutions highlight the importance of taking into account
stochastic variance because even in the presence of stochastic variance alone i.e. no
correlation between the variance and stock returns, the optimal investment policy
is clearly different from the case with constant variance i.e. the Davis & Norman
problem. Unlike the optimal policy in the problem of Davis & Norman in which
the benefit of the excess return dominates the risk from the variance, the stochastic
variance can balance the effect of the excess return and variance on the buy boundary,
resulting in a less steep boundary compared to that of the Davis & Norman problem.
Besides, based on the set of model parameters that we used, stochastic variance
completely gains the dominance over the excess mean return on the sell boundary
making it downward-sloping. That is, the sell boundary decreases when the variance
level is increased. The other case of our interest reflecting a more realistic situation
in the market is when there is the negative correlation between the stochastic variance
and stock returns. Surprisingly, with this set of model parameters, the presence of
negative correlation can barely affect the buy boundary while reduces the relative
effect of the variance, causing the sell boundary to be less steep.
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APPENDIX

Figure a1: Solution function derived from the fitted neural network for the case with
zero correlation.

Figure a2: Solution function derived from the fitted neural network for the case with
negative correlation (ρ = −0.9).
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Figure a3: Absolute error over the training space for the case with zero correlation.

Figure a4: Absolute error over the training space for the case with negative
correlation (ρ = −0.9).
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Table a1: Simulation results of 10-trading-day-variation of the final wealth in stock
with the total of 10,000 repetitions when the initial wealth in stock is 1 and variance
is varied from 0.04 to 0.16.

Table a2: Simulation results of 20-trading-day-variation of the final wealth in stock
with the total of 10,000 repetitions when the initial wealth in stock is 1 and variance
is varied from 0.04 to 0.16.
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Table a3: Simulation results of 30-trading-day-variation of the final wealth in stock
with the total of 10,000 repetitions when the initial wealth in stock is 1 and variance
is varied from 0.04 to 0.16.
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