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ABSTRACT (THAI) 
 นภสัวรรณ ปลาบู่ทอง : การศึกษาผลของสารตา้นการท างานของเอนไซม ์trehalase , 

validamycin A , ต่อการเจริญของเช้ือ Aspergillus flavus. ( THE EFFECT OF A 
TREHALASE INHIBITOR, VALIDAMYCIN A, ON THE GROWTH  OF 
ASPERGILLUS FLAVUS) อ.ท่ีปรึกษาหลกั : ดร. นพ.อาสา ธรรมหงส์, อ.ท่ีปรึกษาร่วม : ดร. 
นพ.ดิเรกฤทธ์ิ เช่ียวเชิงชล 

  
Aspergillus flavus เป็นเช้ือท่ีสามารถพบไดใ้นส่ิงแวดลอ้ม สามารถก่อโรคติดเช้ือทางตา ทาง

ผิวหนงั ทางโพรงจมูก และโรคติดเช้ือท่ีปอดแบบลุกลามในมนุษยไ์ด ้ส าหรับการรักษาในปัจจุบนั มี
การใชย้าตา้นเช้ือราในการยบัย ั้งการเจริญเติบโตของเช้ือ แต่อย่างไรก็ตามยาตา้นเช้ือรา ส าหรับเช้ือ A. 
flavus ลว้นมีผลขา้งเคียงต่อมนุษย ์ ขณะเดียวกนัในเช้ือราส่วนใหญ่ พบวา่มี trehalase ซ่ึงเป็นเอนไซมท่ี์
ท าหน้าท่ีในการย่อย trehalose เป็นกลูโคสสองโมเลกุลและ trehalose มีความส าคญัในการก่อให้เกิด
โรคของเช้ือราหลายชนิด ในการศึกษาน้ีจึงไดน้ า  validamycin A ซ่ึงเป็น trehalase inhibitor  และมีฤทธ์ิ
ย ับย ั้ งการเจริญของเช้ือราท่ีก่อโรคในต้นข้าว คือ Rhizoctonia solani มาศึกษาผลการยับย ั้ งการ
เจริญเติบโตของเช้ือ A. flavus  โดยพบว่า validamycin A เพ่ิมระดับของ trehalose ในสปอร์อย่างมี
นัยส าคัญ และสามารถลดการเจริญของสปอร์ (germination) ของเช้ือ A. flavus ได้ นอกจากน้ียงัได้
ตรวจสอบผลการท างานร่วมกันของ validamycin A กับยาต้านเช้ือรา amphotericin B โดยใช้วิธี 
checkerboard assay ทดสอบกับเช้ือ A. flavus ATCC 204304 และเช้ือ A. flavus ท่ีได้มาจากตัวอย่าง
ผูป่้วยท่ีมีค่า minimum inhibitory concentrations (MICs) ของ amphotericin B ท่ีสูงกว่ามาตรฐาน และ
พบว่า ในการยบัย ั้งการเจริญของเช้ือ A. flavus ท่ีได้มาจากตัวอย่างคนไข้นั้ น validamycin A และ 
amphotericin B นั้นมีผลเสริมฤทธ์ิซ่ึงกนัและกนั (Synergistic effect) อีกทั้งยงัพบวา่ validamycin A นั้น
ไม่มีความเป็นพิษต่อ human bronchial epithelial cells จากผลการศึกษาดังกล่าว สามารถสรุปได้ว่า 
validamycin A สามารถยบัย ั้งการเจริญเติบโตของเช้ือ A. flavus ได้ โดยหน่ึงกลไกเบ้ืองหลงัในการ
ท างานของ validamycin A คือการลดการเจริญของสปอร์  (Delayed germination) ของเช้ื อ  A. 
flavus นอกจากน้ี validamycin A ยงัมีฤทธ์ิเสริมกนักบัยาตา้นเช้ือรา amphotericin B โดยไม่มีผลกระทบ
ต่อ human bronchial epithelial cells อยา่งมีนยัส าคญั 
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ABSTRACT (ENGLISH) 
# # 6087288520 : MAJOR MEDICAL MICROBIOLOGY 
KEYWORD: Trehalase enzyme Aspergillus flavus validamycin A 
 Napasawan Plabutong : THE EFFECT OF A TREHALASE INHIBITOR, 

VALIDAMYCIN A, ON THE GROWTH  OF ASPERGILLUS FLAVUS. Advisor: ARSA 
THAMMAHONG, M.D., PhD Co-advisor: DIREKRIT CHIEWCHENGCHOL, M.D., 
Ph.D. 

  
Aspergillus flavus is a fungus found in the environment causing keratitis, cutaneous 

infections, sinusitis, invasive pulmonary aspergillosis in humans. Although this fungus can be treated 
with antifungal agents, these main antifungal agents have many side effects. Trehalase is an enzyme 
for digesting trehalose into two glucose subunits and is essential for virulence in many fungi. A 
trehalase inhibitor, called validamycin A, has been used effectively against a rice fungal pathogen, 
Rhizoctonia solani. In this study, we observed that validamycin A increased trehalose levels 
significantly in A. flavus spores and delayed the germination of those spores. In addition, to further 
investigate the combinative effect of validamycin A with an antifungal agent, amphotericin B, the 
checkerboard assay was performed with A. flavus ATCC204304 and A. flavus clinical isolates with 
high minimum inhibitory concentrations (MICs) of amphotericin B. We observed that validamycin A 
and amphotericin B had a synergistic effect with these A. flavus clinical isolates.  The cytotoxicity of 
validamycin A to human bronchial epithelial cells was not observed in this study. In conclusion, this 
study showed that validamycin A was able to inhibit the growth of A. flavus. One of the mechanisms 
behind the effect of validamycin A was to delay the germination of A. flavus spores. Furthermore, 
validamycin A also possessed a combinative effect with amphotericin B without significant cytotoxic 
effect on human bronchial epithelial cells. 
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CHAPTER I INTRODUCTION 

Background information and rationale 

Currently, patients with impaired immune status have increased in number every year, 

such as AIDS patients, patients with organ transplantation receiving 

immunosuppressive agents, cancer patients receiving chemotherapy or radiotherapy, 

and hematological cancer patients, including patients with abnormal immune status 

from complications or side effects from medications., e.g. diabetic patients, who 

cannot control their blood sugar levels and SLE (Systemic Lupus Erythematosus) 

patients, who take steroids (1). This increase would result in an increased incidence of 

opportunistic infections, including bacteria, e.g. Mycobacterium avium complex 

(MAC); viruses, e.g. Cytomegalovirus, Varicella Zoster Virus; fungi, e.g.  Aspergillus 

spp., Cryptococcus neoformans, and parasites, e.g. Toxoplasma gondii (1). These 

infections are generally non-pathogenic in immunocompetent hosts. 

Furthermore, these opportunistic infections are clearly increasing in many 

countries, including in Japan (2), India (3), Australia (4), and Thailand (5-8). Candida 

species are the most common cause of the opportunistic yeast infections, while 

Aspergillus species are the most common cause of mold infections. At King 

Chulalongkorn Memorial Hospital, from 2006 to 2011, Aspergillus infections had an 
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increased rate of infections every year. For invasive mold infections, A. fumigatus was 

the main causative agent, followed by A. flavus (9-11). Nevertheless, in non-HIV and 

non-burn patients, Aspergillus flavus caused  infections more than other Aspergillus 

species (10). 

Aspergillus flavus is a fungus that can be found in the environment. This 

fungus can also produce aflatoxins, which are toxins contaminated in many 

agricultural crops may lead to a liver cancer in humans (12). Furthermore, A. flavus is 

able to grow at high temperatures and can cause a wide variety of disease spectra in 

humans, i.e., keratitis, cutaneous infections, sinusitis, and invasive infections (10, 13, 

14). Although A. fumigatus is the most common cause of invasive aspergillosis in the 

United States, A. flavus is a more common cause of cutaneous infections and invasive 

sinusitis infections in India (13, 14). However, the study of epidemiology and 

pathogenesis of A. flavus infections in humans is still limited in comparison to other 

Aspergillus species (3). 

 For the treatment of invasive aspergillosis from Aspergillus flavus, 

voriconazole is the drug of choice together with surgery (15). Voriconazole, however, 

has many adverse reactions, e.g. the transient visual disturbances, hepatotoxicity, 

tachyarrhythmias and QT interval prolongations (16). For superficial skin infections 
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from A. flavus, topical ketoconazole is not active, and the recurrent infections are 

common (10). Nonetheless, itraconazole also has many drug-drug interactions, e.g. 

with some chemotherapeutic agents (cyclophosphamide and vincristine) and causes 

hepatotoxicity and prolonged QTc interval (16). Amphotericin B is an antifungal drug 

which is used to treat severe fungal infections. However, amphotericin B has serious 

side effects on nephrotoxicity (17). 

 In addition, even if the patient is receiving antifungal drugs as standard, 

patients with invasive aspergillosis had a high mortality rate in the range of 45-80% 

( 1 8 ) . Thus, the discovery of novel antifungal agents and fewer side effects to the 

patients are the most important for the treatment of Aspergillus fungal infections. As 

mentioned above, many main antifungal agents have a lot of side effects. Therefore, 

the disruption of virulence factor or metabolic pathway specific to the fungus, not in 

humans, maybe an alternative way to develop new antifungal agents that are specific to 

the fungus and reduce unwanted side effects in humans (19, 20). Thus, this study has 

the ultimate goal to develop a novel but a less toxic antifungal agent that will be 

specific to only fungi. 
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Hypothesis 

Validamycin A inhibits trehalase enzyme affecting the growth of Aspergillus 

flavus. 

Objectives 

1. To study the effect of validamycin A (a trehalase inhibitor) on the growth of 

Aspergillus flavus. 

2. To study the additive/synergistic effect of validamycin A and amphotericin B, 

a fungicidal antifungal agent. 

3. To study the toxicity of validamycin A to human cell lines. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II   LITERATURE REVIEW 

1. Aspergillus flavus 
Aspergillus flavus is in the family Trichocomaceae of the order Eurotiales  of 

Ascomycetes (13). A. flavus is a saprophytic fungus found in the environment. It is in 

A. flavus complex mainly consisting of A. flavus, A. oryzae, A. avenacus, A. tamari, A. 

alliaceus, and A. nomius (13). Many species in this complex, including A. flavus, can 

produce aflatoxins, e.g. aflatoxin B1, which is the most toxic and causes a liver cancer 

in humans (12, 13, 21). However, in this complex, only A. flavus is the main fungus 

causing diseases in both humans, animals, and plants (13, 22).  

A. flavus is able to grow at high temperatures and causes many infection forms 

in humans, i.e. keratitis, cutaneous infections, sinusitis, and invasive aspergillosis (10, 

13, 14). Although Aspergillus fumigatus is the most common cause of invasive 

aspergillosis in the United States, A. flavus is a common cause of cutaneous infections 

and sinusitis in South Asia, e.g. India, Sri Lanka (13, 14). However, epidemiological 

and pathogenesis studies of A. flavus infections in humans is still limited in 

comparison to other Aspergillus species (3).  
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1.1 Epidemiology of Aspergillus flavus 
A. flavus is a ubiquitous fungus found in air, soil, dust, and environment (13, 22). 

It is also found in contaminated crops, e.g. peanuts, grains, and corn (23). In some 

developing countries, e.g. India, Sri Lanka, A. flavus was isolated at higher frequency 

from invasive sino-orbital aspergillosis or Aspergillus eye infections/skin infections. In 

India, many studies reported that A. flavus is the most common mold infections in 

fungal rhinosinusitis and fungal keratitis (24-28). In Taiwan, A. flavus was the most 

common mold isolated from invasive sinusitis in patients with hematological 

malignancy. A. flavus is also common invasive mold infections in the Middle East and 

Africa (15, 29). In Thailand, for invasive aspergillosis, A. fumigatus is the most 

common followed by A. flavus (30). Nonetheless, the epidemiological study of A. 

flavus in Thailand is still limited. Therefore, further epidemiological studies of a wide 

variety of A. flavus infections in humans are still necessary. 

1.2 Microbiology of Aspergillus flavus 
Macroscopic colonies of A. flavus are granular to powdery in texture with 

radial grooves. Colony surface color is yellow to yellowish green depending on age of 

A. flavus. A. flavus has a hyaline septate hyphae with rough conidiophore (up to 800 

µm long and 15-20 µm wide) and globose vesicle (20-45 µm) with radiations (15). It 
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can be uniseriate attaching to vesicle directly or biseriate attaching to metulae 

(supporting cells) (15). The A. flavus conidia are about 2-5 µm in diameter (15). 

Sclerotia may be observed and can be used to identify A. flavus in some special media, 

e.g. Czapek Dox media (15). It can grow on Sabouraud dextrose agar, Czapek Dox, 

and malt extract agar at 37oC  (15). 

1.3 Pathogenesis and virulence factors of Aspergillus flavus 
For the pathogenesis of A. flavus in human infections, it is believed to be 

similar to A. fumigatus because of the lack of solid evidence in A. flavus (13, 15). In A. 

fumigatus, conidia are inhaled into alveoli of immunocompromised patients and then 

conidia may germinate and penetrate out of alveoli into blood vessels to cause an 

invasive infection (31). For A. flavus, other sites of infections, e.g. cutaneous 

infections, rhinosinusitis, keratitis, usually occur in patients with skin or epithelial 

barrier defects, e.g. burn patients, long term corticosteroid usage, or 

immunocompromised patients (13, 15) 

 For virulence factors of A. flavus, it possesses many virulence factors similar to 

other Aspergillus species (13, 15). Extracellular proteinases, e.g. secreted aspartyl 

proteinase (SAP), serine proteinase (SP), metalloproteinase (MP), and alkaline 

proteinase, are common important virulence factors found in many Aspergillus species 
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including A. flavus for absorbing nutrients and playing a role in A. flavus infections 

(32-35). Aflatoxins cause a liver cancer in humans and they also inhibit neutrophil 

functions that may lead to an infection (36). For the pigments, they may play a role 

indirectly to protect the fungus from the environment, e.g. heat, UV light, pH, 

oxidative stress, free oxygen radicals (13, 15). However, the role of these virulent 

factors and other potential virulent factors in A. flavus still needs to be further 

investigated including both in vitro and in vivo models. 

1.4 Diseases 
Aspergillus species is a fungus that can be found in the environment. It can 

cause a wide variety of infections in humans, e.g. allergic bronchopulmonary 

aspergillosis, aspergilloma, invasive aspergillosis. Invasive aspergillosis form is the 

most invasive form and cause high morbidity and mortality rates in 

immunocompromised patients. This invasive aspergillosis form is mainly caused by an 

inhalation of Aspergillus conidia into the lungs, in which healthy people do not 

develop the disease but for people with immunosuppressive conditions, it can cause an 

invasive infection leading to high mortality rates.  

The risk factors of invasive aspergillosis are organ transplantation receiving 

immunosuppressive agents, hematopoietic stem cell transplantation (HSCT), long-term 
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corticosteroid use, and AIDS (37, 38).  In which most clinical symptoms are found in 

the lungs, therefore, resulting in a high risk of high mortality rate.  The clinical 

manifestation of Aspergillus species is spread from the lungs to the bloodstream. The 

symptoms may not be specific, such as fever, cough, coughing up blood, or chest pain 

in the respiration, and can cause infection of various organs throughout the body (39, 

40). 

1.5 Diagnosis of invasive aspergillosis 
The diagnosis of invasive aspergillosis uses the criteria set by the EORTC / 

MSG which is divided into a proven diagnosis, probable diagnosis, and possible 

diagnosis (Table 1) (41, 42). 

 Table  1. The diagnosis of invasive aspergillosis using EORTC/MSG        

(38, 39, 42-44) 

Diagnosis of 
invasive aspergillosis 

 (EORTC/MSG) 

 

Criteria for diagnosis 

 

Proven  diagnosis Microscopic analysis: There will be a histopathological 
examination of tissue invading by septate hyphae into the 
body. 
Culture:  
Sterile material: Recovery of a mold or “black yeast” by 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 

Diagnosis of 
invasive aspergillosis 

 (EORTC/MSG) 

 

Criteria for diagnosis 

 

culture of a specimen obtained by a sterile procedure from a 
normally sterile and clinically or radiologically abnormal 
site consistent with an infectious disease process, excluding 
bronchoalveolar lavage fluid, a cranial sinus cavity 
specimen, and urine 
Blood: Blood culture that yields a mold such as Fusarium 
species in the context of a compatible infectious disease 
process. 
Serological analysis: CSF -> Not applicable 
PCR with sequencing from formalin-fixed paraffin-
embedded tissue 
 

Probable diagnosis Host factors: - Recent history of neutropenia (<500 
neutrophils /mm3 for >10 days) 
- Receipt of an allogeneic stem cell transplant 
- Prolonged use of corticosteroids at a  dose of 0.3 
mg/kg/day of prednisone equivalent for >3 weeks 
-Treatment with other recognized T or B cell 
immunosuppressants, such as cyclosporine, TNF-α 
blockers, specific monoclonal antibodies  or nucleoside 
analogues during the past 90 days 
- Inherited severe immunodeficiency or acute graft-versus-
host disease grade III or IV 
Clinical criteria: Patients must undergo a CT scan at least 
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Diagnosis of 
invasive aspergillosis 

 (EORTC/MSG) 

 

Criteria for diagnosis 

 

once and must show 1 in 4 of the following signs: A) Dense, 
well-circumscribed lesions(s) with or without a halo sign, B) 
Air-crescent sign, 
C) Cavity D) Wedge-shaped and segmental or lobar 
consolidation 
Mycological criteria: 
- Direct test (cytology, direct microscopy, or culture): Mold 
in bronchoalveolar lavage fluid, sputum indicated by 1 of the 
following: 
a) Presence of fungal elements indicating a mold 
b) Recovery by culture of Aspergillus spp. 
-  Indirect tests (detection of antigen or cell-wall 
constituents):  
The ELISA test was used to detect galactomannan in 
bronchoalveolar lavage fluid, plasma, CSF or serum and 
Aspergillus PCR. 

Possible diagnosis Host factor and clinical criteria without mycological criteria  
 

1.6 Treatment of invasive aspergillosis 
For the treatment recommendation in invasive aspergillosis, that is commonly 

used in primary therapy is voriconazole. Alternative therapy is liposomal amphotericin 

B (L-AMB), isavuconazole, amphotericin B lipid complex (ABLC), amphotericin B, 
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posaconazole, itraconazole, caspofungin, micafungin, anidulafungin (45-48). In 

developing countries including Thailand, amphotericin B is often the first option to 

treat invasive aspergillosis due to socioeconomic status and drug availability (30, 49). 

 Amphotericin B is commonly used to treat many severe invasive fungal 

infections including invasive aspergillosis (50, 51). Mechanisms of action of 

amphotericin B are the binding property to ergosterol on the plasma membrane and 

increasing membrane permeability (52-54). There are four available formulations, i.e. 

amphotericin B deoxycholate (ABD), amphotericin B colloidal dispersion (ABCD), 

amphotericin B lipid complex (ABLC), and liposomal amphotericin B (LAMB) (50, 

51, 55). Nephrotoxicity is a common side effect of ABD causing from a direct 

vasoconstrictive effect on afferent renal arterioles (56). This side effect is also 

depending on the dose of the drug (57). Wasting of potassium, magnesium, 

bicarbonate, and decreased erythropoietin production are also side effects of ABD. 

However, using lipid-associated formulations reduces these toxicities (58). Although 

the lipid-associated formulations have less undesirable side effects, the cost and the 

availability of the drug is still the problems for developing countries with poor 

socioeconomic status. 
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1.7 Antifungal resistance in Aspergillus flavus 
Previously, the resistance mechanisms of the Aspergillus species have been studied. In 

most cases, there are the following resistance mechanisms, such as decreased drug 

concentrations, drug target alteration, and drug efflux (59). In this study, it was studied 

in A. fumigatus and A. terreus (60). In azole-resistant strain A. fumigatus, the mutation 

and overexpress of the cyp51 gene is a gene resistant by cyp51 encode to 14-α-sterol 

demethylase-ergosterol, which is the main component of the fungal cell wall (61).  

When the structure of 14-α-sterol demethylase changes, the drug will show reduced 

efficiencies due to the increased production of 14-α-sterol demethylase, changes in 

(+/- conformational changes). Additionally, the drug is reduced due to increased efflux 

pump activity (62). In A. terreus, which was found to be resistant to amphotericin B, it 

was found up-regulation of the synthesis of ergosterol gene (ERG5, ERG6 and ERG25) 

which are resistant to amphotericin B (60). Furthermore, upregulation of oxidative 

stress response may play a major role in the amphotericin B resistance of A. terreus 

(63). 

For A. flavus clinical isolates, MICs of these isolates to amphotericin B are 

usually two-fold higher than A. fumigatus clinical isolates and these results are also 

associated with clinical treatment failure (64-67). This is believed to be due to A. 
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flavus intrinsic resistance to amphotericin B (15). This intrinsic resistance was believed 

to be from an altered cell wall of A. flavus, higher alpha 1,3-glucan levels on the cell 

wall (15, 68). The result of this change was that amphotericin B may poorly penetrate 

into the fungus leading to  decreased accumulation of amphotericin B inside A. flavus 

(68). Nevertheless, few studies were investigated in this A. flavus intrinsic resistance 

and further investigation needs to be done.  

2. Trehalose pathway and fungal pathogens 
Trehalose is a disaccharide from two glucose molecules, conjugated with α α-1 ,1 -

glycosidic linkage, found in both bacteria, plants, insects, and invertebrate, except 

mammals, including humans (69). Trehalose pathway is important in the pathogenesis 

of fungal pathogens such as Candida albicans, Cryptococcus neoformans, Aspergillus 

fumigatus (70-76). Trehalose is an important source of fungal energy, conidia survival 

and germination. It is responsible for the prevention of fungus from environmental 

conditions such as cold, heat, dryness, etc. (76-78)   
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Figure 1. Trehalose metabolic pathway. 

Trehalose, also known as a disaccharide from two glucose molecules, conjugated with 

α,α-1 ,1 -glycosidic linkage, and giving in the formal name is α-D-glucopyranosyl-

(1→1)-α-D-glucopyranoside (C12H22O11, anhydride). In addition, because the general 

energy of the glycosidic bond is thermodynamically and kinetically the most stable, it 

can help fungi survive at high temperatures, even under acidic conditions (79). 

Trehalose biosynthesis in the fungus consists of five pathways (69, 70, 80). The 

first pathway is a common pathway found in bacteria, fungi, insect, and plants. It 

involves two enzymes, trehalose-6-phosphate synthase (Tps1) and trehalose-6-

phosphate phosphatase (Tps2). Tps1 is the enzyme that changes UDP-glucose and 

glucose 6-phosphate into trehalose 6-phosphate (69).    Tps2 is the enzyme that 
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removes phosphate from trehalose 6-phosphate to form trehalose (69) (Figure 1).  The 

second pathway is the trehalose synthase found in bacteria. Which consists of the α1-

α4  linkage of maltose into the α1-α1 linkage of trehalose (70, 81) (Figure 2A). The 

third pathway is related to change maltooligosaccharides to trehalose with the 

synthesis of trehalose are catalyzed by two enzymes, maltooligosyl trehalose synthase 

(TreY), leading to maltooligosylttrehalose and accelerating reaction with maltooligosyl 

trehalose trehalohydrolase (TreZ) into trehalose (70, 82) (Figure 2B). The fourth 

pathway is trehalose phosphorylase (TreP), an enzyme that transfers glucose to 

Glucose 1-phosphate and releases the remaining glucose to trehalose (83, 84) (Figure 

2C). The fifth pathway involves trehalose glycosyl transferring synthase (TreT), an 

enzyme produced by accelerating the formation of trehalose reversed from ADP-

glucose and glucose by trehalose glycosyl transferring synthase. In conclusion, TreT 

enzyme transfers glucose from ADP-glucose to trehalose (85) (Figure 2D). 
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Figure 2. The trehalose biosynthetic pathways 

(A) TS pathway, (B) TreY/TreZ pathway, (C) TreP pathway, (D) TreT pathway(80). 

Trehalose is also an important element in the spores of fungi. Trehalose 

degradation is an important event at the beginning of germination and is assumed to 

act as a source of carbon for synthesis and glucose for energy (86). For example, in 

Schizosaccharomyces pombe, deletion of the neutral trehalase gene causes slow spore 

germination rates compared to wild type (87). It is also responsible for the prevention 

of fungi from environmental conditions such as cold, heat, dryness, etc. (76-78)      
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From many studies, they showed that the enzymes in trehalose pathway are 

important for the growth and pathogenesis of Candida albicans, Cryptococcus 

neoformans, Aspergillus fumigatus (76, 77). For example, in Aspergillus fumigatus, the 

mice were inoculated intranasally with wild type, ∆orlA (TPS2 homolog) and orlA 

reconstituted strain of Aspergillus fumigatus. The results showed that mice infected 

with ∆orlA have a higher survival rate compared to mice that are infected with wild 

type and orlA reconstituted strain. It suggests that orlA affects the virulence of 

Aspergillus fumigatus (77).   In Aspergillus fumigatus, the deletion of tpsA/tpsB gene 

(TPS1 homolog) had an effect of delayed conidial germination at 37∘C. This study 

showed that the deletion of tpsA/tpsB gene was important for spore germination and 

heat stress (76). 

 In Candida albicans, lack of Tps1  affected the normal growth at 37°C and 

under other stress conditions, including decreased virulence in mouse models (75). In 

Cryptococcus neoformans, the deletion of tps1 affected the survival of mice in murine 

inhalational cryptococcosis with H99 (wild type strain) model (72). In Cryptococcus 

gattii, the tps1 deletion mutant reduced virulence in both murine and Caenorhabditis 

elegans models (88). 
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Lack of Tps2 protein in Candida albicans, Cryptococcus gattii and Aspergillus 

fumigatus, the growth of the fungi decreased at temperatures above 37°C and 

decreased virulence in mouse models (72, 76, 88). For example, in Candida albicans, 

tps2∆/tps2∆ strain was resistant to stress tolerance growth and decreased the growth 

at a temperature of 44°C compared to wild type and heterozygous strain (74). In mouse 

models, mice infected with tps2∆/tps2 ∆ strain had a higher survival rate compared to 

wild type and heterozygous strain (74). In Saccharomyces cerevisiae, disruption of the 

TPS2 gene caused temperature-sensitive growth by stopping the growth at 40 °C (89). 

                 There are also other targets in the trehalose pathway which are regulatory 

subunits. In Saccharomyces cerevisiae has two additional proteins in the complex 

(Tps3p/Tsl1p) (90). Tps3p is a regulatory subunit of trehalose-6-phosphate and 

trehalose-6-phosphate phosphatase. There are involved in the synthesis and storage of 

trehalose. The expression is caused by stress conditions (90). Tsl1p is a large subunit 

of this regulatory subunit and it contributes to survival of fungi from heat stress (90, 

91). In fungi without TPS3 and TSL1, they could not grow at high temperatures (90, 

91). Furthermore, lack of both TPS3 and TSL1 affected trehalose synthase activity (90, 

91). 
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3. Trehalase enzymes  
In addition to Tps1p and Tps2p, trehalase is a trehalose hydrolyzing enzyme 

responsible for degrading trehalose into two glucose molecules (92). There are two 

types of trehalase found in Saccharomyces cerevisiae (93), which are neutral trehalase 

and acid trehalase (Figure 3). Neutral trehalase (Nth1p) found in cytosol and Nth1p 

worked at an optimum pH of 7.0 (92, 94). Acid trehalase (Ath1p) found in the vacuole 

and worked at an optimum pH of 5.0 (95-97). 

 

Figure 3. Localization of trehalase enzymes 

 The pathway is shown on the localization of acid trehalase and neutral trehalase. 

(Ath1p: acid trehalase, Nth1p: neutral trehalase) 
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Trehalase enzyme in fungi is important for virulence in mouse models and 

survival under the heat stress. For example, in Candida albicans, deletion of acid 

trehalase gene showed more survival in the mouse model compared to other strain 

(98). In Aspergillus niger, they performed the heat stress experiment with Aspergillus 

niger trehalase-deletion mutant at 55 ◦C at different time-points. At 40 minutes, 

Aspergillus niger trehalase-deletion mutant showed less CFU, compared to the wild 

type and the complement strains.  This study showed that the deletion of the trehalase 

gene is important for the survival of Aspergillus niger under heat stress (99).  

4. Validamycin A and fungal pathogens    

There is a trehalase inhibitor, called validamycin A (100-102) (Figure 4A-B). 

Originally, validamycin A was first used to inhibit Rhizoctonia solani, rice fungal 

pathogen  (102). It was shown to inhibit the branching of this fungus at the 

concentration of 200 g/mL (102, 103). Moreover, validamycin could inhibit conidial 

production of Fusarium culmorum at the concentration of 100 M (103).    

 

A: Trehalose structure 
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Figure  4. Structure of trehalose and validamycin A. 

(A) Structure of trehalose. (B) Structure of validamycin A. It is used as an inhibitor of 

trehalase. Validamycin A is a competitive inhibitor of trehalase enzyme. 

For human fungal pathogens, validamycin A at 0.1 mg / mL significantly 

inhibited the growth of Candida albicans  (101) . Additionally,  validamycin A was 

not irritating to the skin of rabbits (105). In 90-day feeding trials of validamycin A, 

rats receiving 1000 mg/kg/day and mice receiving 2000 mg/kg-day showed no toxic 

effects (105). However, there is still limited data on the effectiveness of validamycin A 

on other fungal pathogens, including Aspergillus flavus. Although there were some 

studies on the toxicity of validamycin A, it has never been performed in human cell 

lines. Therefore, the effectiveness against other fungal pathogens and the toxicity to 

humans are still unclear. Thus, the main objective of this study is to understand the 

effect of validamycin A on the growth of A. flavus and to study the combinative effect 

B: Validamycin A 
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of validamycin A and amphotericin B together while evaluating the toxic effect of 

validamycin A to human cell lines. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III MATERIALS AND METHODS 

1.  Fungal strain, media, and conditions  
Aspergillus flavus ATCC 204304 was cultured on Sabouraud Dextrose Agar (SDA, 

Oxoid, Thermo Fisher Scientific) at 37°C for three days before harvesting using sterile 

distilled water with 0.01% tween 80. Briefly, 5 mL of sterile distilled water with 

0.01% tween 80 was utilized to harvest A. flavus on SDA petri-dish plates using cell 

scrapers. The mixture between distilled water and A. flavus spores was filtered using 

miracloth. A number of spores were counted from filtrate using a hemocytometer.  

Then, 103 spores were inoculated into each culture medium (106): glucose peptone 

agar (peptone 10 g, glucose 20 g, agar 20 g, distilled water 1000 ml, pH 6.8–7.0), 

trehalose peptone agar (peptone 10 g, trehalose 10 g, agar 20 g, distilled water 

1000 ml, pH 6.8–7.0), and peptone agar (peptone 10 g, agar 20 g, distilled water 

1000 ml, pH 6.8–7.0), at 37°C for 2 and 5 days to measure the radial growth of these 

fungal growths on days 2 and 5. This experiment was performed in a biological 

triplicate manner. A. flavus strains from 20 clinical isolates from patients (sinus, 

sputum, skin, nail, including sterile sites) and ATCC204304 were utilized and all the 

isolates were stored in the stock - 80 °C. All clinical isolates were obtained from the 

Department of Microbiology, Faculty of Medicine, Chulalongkorn University and 

King Chulalongkorn Memorial Hospital in 2019. Patient characteristics were retrieved 

from King Chulalongkorn Memorial Hospital records. Patients with invasive 

aspergillosis (IA) were classified as proven, probable, and possible invasive 

aspergillosis, according to EORTC/MSG criteria (41). 
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2.  Trehalose measurement 
To study trehalose levels of Aspergillus flavus ATCC 204304, spores from 5-day 

cultures in Sabouraud dextrose media and trehalose peptone media in the media with 

or without 1 g/mL validamycin A were collected.  Trehalose levels were measured 

from A. flavus conidia, as previously described (107). Briefly, 2 × 108 conidia were 

boiled at 100oC for 20 minutes and cell-free extracts were obtained from centrifuging 

at 11,000xg for 10 minutes. The supernatant was used to measure trehalose levels 

using the glucose oxidase assay protocol (Sigma; GAGO20). These tests were 

performed in biological triplicates.  

 

3.  Germination assay 
1×108 spores of Aspergillus flavus ATCC 204304 were collected and incubated in 10 

mL Sabouraud dextrose broth at 37°C in an orbital shaker at 200 rpm (Forma Orbital 

Shaker, Thermo Scientific, USA). 500 L of each culture was used for counting 

germling percentage at each time point. Each strain was cultured for 24 hours at 37°C 

in three biological replicates (108).  
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4.  XTT assay  
To measure the metabolic activity and viability of Aspergillus flavus ATCC 204304 

after incubating with validamycin A, XTT assays (sodium 2,3 -bis (2-methoxy-4-nitro-

5-sulfophenyl) -5- [(phenylamino) -carbonyl] -2H-tetrazolium) were performed (109, 

110). Briefly, 103 spores of A. flavus ATCC 204304 were incubated with different 

culture media or with validamycin A for 18 hours at 37°C. XTT solution (0.5 mg/mL 

in PBS) was added to each well, and the plate was further incubated for 15 minutes at 

37°C. Then, the plate was centrifuged, and the supernatant was collected to measure 

the OD at 490nm using a spectrophotometer (Lambda 1050+ UV/Vis/NIR, 

PerkinElmer, USA).  

5.  Broth microdilution assay and checkerboard assay 
 The CLSI broth microdilution M38 method was performed to observe the minimum 

inhibitory concentrations (MICs) of amphotericin B in Aspergillus flavus ATCC 

204304 and clinical isolates  (111). After that, the additive/synergistic effect of 

validamycin A and amphotericin B was studied using the checkerboard assays (112). 

To determine the additive and synergistic effect, the fractional inhibitory concentration 

index (FICI) was calculated for each antifungal drug in each combination using the 

following formula (112):  FIC A (MICA/MICA+B) + FIC B (MICB/MICA+B) = FICI and 
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the following FICI results were determined as synergy: <0.5; additivity: 0.5-1; 

indifference: >1-4; and antagonism: >4. 

6.  Time-kill kinetics assay  
103 spores of A. flavus with high amphotericin B (AMB) MIC strains were prepared, 

and liquid cultures in Sabouraud dextrose broth were performed at a concentration of 

0.5 × MIC from validamycin A (0.125µg/ml) and amphotericin B (2 µg/ml). Cultures 

were placed on the shaker at 200 rpm and incubated at 37°C. At each time point (4, 8, 

12, 24, and 48 h), 100 µl of cultures was plated on SDA plates at 37 °C for 48 h. The 

time-killing curves were determined by a count of colony-forming units (CFU/mL), at 

each time point (113-115). 

7.  Cell lines and culture 

BEAS-2B (Human bronchial epithelial cell line) (ATCC CRL9609TM) was cultured 

in bronchial epithelial cell growth media, and tissue culture flasks were coating using 

0.01 mg/mL fibronectin, 0.03 mg/mL bovine collagen type I, and 0.01 mg/mL bovine 

serum albumin (BSA) dissolved in the culture medium. Cell cultures were incubated at 

37ºC in a humidified environment with 5% CO2 (116). 
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8.  Cytotoxicity assay 
The cytotoxicity test was performed to observe the toxicity of validamycin A to human 

epithelial cell lines using Lactate Dehydrogenase (LDH)-Cytotoxicity Colorimetric 

Assay Kit II (Biovision Inc, CA, USA).  Briefly, 1 x 104 BEAS-2B cells were 

incubated with 50 µl of DMEM in a pre-coating 96-well plate and then validamycin A 

will be added at the different concentrations (1µg/mL - 1mg/mL), for each time point. 

LDH reaction mixture was added and incubated at 37°C for 30 minutes. Then ODs 

were measured at 450 nm using a spectrophotometer. Later, the percentage of the 

cytotoxicity was calculated using the following formula:  

Cytotoxicity (%) = 
 (test sample - low control) x 100

( high control - low control) 
 

Test sample: cell lines with media and test sample 

Low control: cell lines with media alone 

High control: cell lines with media and 10 % lysis solution  

9.  Statistical analysis 
All statistical analyses were conducted with Prism 8 software (GraphPad Software, 

Inc., San Diego, CA). Error bars represent standard errors of the means. Student's t-test 

for differences and *, P-value < 0.05; **, P-value < 0.01; ***, P-value < 0.001 

showed that the difference was statistically significant.  
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10.  Ethics statement 
This study has been approved by the Institutional Review Board (IRB No. 546/60), 

Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV RESULTS 

1.  Trehalase homologs exist in Aspergillus flavus 
  To identify Aspergillus flavus trehalase enzyme homologs, a BLASTp search 

was performed on the Saccharomyces cerevisiae and Aspergillus fumigatus compared 

to Aspergillus flavus. We compared the protein data using FungiDB database and 

Simple Modular Architecture Research Tool (SMART) to compare the putative protein 

domain of trehalase proteins in S. cerevisiae (Sc), A. fumigatus (Afu), A. flavus (Afla) 

(Database: https://fungidb.org, http://smart.emblheidelberg.de/). AFLA_090490 

protein  possesses one signal peptide at positions 1-18 and two O-glycosyl hydrolase 

domains (EC 3.2.1) at positions 70-339 and positions 407-638, which are similar to S. 

cerevisiae and A. fumigatus acid trehalase proteins (Figure 5A). In addition, 

AFLA_052430 protein possesses a neutral trehalase calcium binding domain at 

positions 105-134 and an O-glycosyl hydrolase domain (EC 3.2.1) at positions 162-

725 similarity to S. cerevisiae, A. fumigatus neutral trehalase proteins (Figure 5B). 

From these data, it suggests that A. flavus has at least two trehalase enzymes similar to 

S. cerevisiae and A. fumigatus. 
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Figure  5. Aspergillus flavus possesses trehalase homologs.  

A) From BLASTp analyses, percentages of identity and similarity of ScAth1p 

(YPR026W) : AFLA_090490 (B8NLC2) and  Afu3g02280 (Q4WFG4) : 

AFLA_090490 (B8NLC2) are identity (29%), similarity (46%) and identity (68%), 

A) 

B) 
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similarity (81%), respectively. ScAth1p:  Saccharomyces cerevisiae acid trehalase 

protein; Afu: Aspergillus fumigatus; AFLA: Aspergillus flavus; Glycosyl hydrolase 

family 65 (Glyco_hydro_65N; Glyco_hydro_65m). (Adapted from SMART analyses 

(http://smart.embl-heidelberg.de/). 

B) From BLASTp analyses, percentages of identity and similarity of ScNth1p 

(YDR001C) : AFLA_052438 (B8NS12) and Afu4g13530 (Q4WQP4) : AFLA_052438 

(B8NS12)  are identity (55%), similarity (69%) and identity (81%), similarity (88%), 

respectively.  ScNth1p:  Saccharomyces cerevisiae neutral trehalase protein; Afu: 

Aspergillus fumigatus; AFLA: Aspergillus flavus; Trehalase_Ca-bi: Neutral trehalase 

calcium binding domain; Trehalase:  Trehalose hydrolysis domain. (Adapted from 

SMART analyses (http://smart.embl-heidelberg.de/). 

 

To study the ability of A. flavus to utilize trehalose as a sole carbon source, A. 

flavus was grown on trehalose peptone media, which contained trehalose as a sole 

carbon source. The radial growth and viability of A. flavus ATCC204304 was then 

measured. As a result, we observed that the growth of A. flavus on glucose peptone 

media and trehalose peptone media was similar compared to peptone media alone 

(Figure 6A). Furthermore, the viability of A. flavus on glucose peptone media and 
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trehalose peptone media using XTT assays was also similar compared to peptone 

media alone (Figure 6B). These data supports that A. flavus utilizes trehalose as a sole 

carbon source, which implies that A. flavus degrades extracellular trehalose into 

glucose for the growth of the fungus, possibly using trehalase enzymes. 
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Figure  6. Aspergillus flavus utilizes trehalose as a sole carbon source similar to 

glucose.  

A) Aspergillus flavus ATCC 204304 was incubated at 37°C on glucose peptone, 

trehalose peptone, and peptone alone media. The radial growth of these fungal growths 

was measured on the second day. Data are presented as means  SE from three 

biological replicates. *, P-value < 0.05; **, P-value < 0.01 (unpaired two-tailed 

Student’s t-test compared to the peptone media control). B) Aspergillus flavus ATCC 

204304 was incubated at 37°C on glucose peptone, trehalose peptone, and peptone 

alone liquid media for 24 hours. The viability tests using XTT assays were performed. 

Data are presented as means  SE from three biological replicates. *, P-value < 0.05 

(unpaired two-tailed Student’s t-test compared to the peptone media control). 

 

2.  Validamycin A inhibits the growth of Aspergillus flavus and increases conidial 

trehalose levels with delayed conidial germination 

From previous experiments, we found that A. flavus possessed trehalase enzymes from 

the BLAST and SMART search and it utilized these trehalase enzymes to digest 

extracellular trehalose in the trehalose peptone media. Next, we utilized validamycin 

A, a trehalase inhibitor, to observe the minimal inhibition concentration (MIC) of 
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validamycin A against A. flavus ATCC 204304 using broth microdilution assays. We 

observed that MIC of validamycin A against A. flavus was at 1 g/mL (Table 2). 

Next, to observe the effect of validamycin A at the concentration of 1 g/mL 

on the viability of A. flavus ATCC204304 using XTT assays, we observed that 

validamycin A inhibited the viability of A. flavus ATCC 204304 significantly at 1 

g/mL compared to validamycin A at 0.5 g/mL and amphotericin B at 0.25 g/mL 

(Figure 8A).   

To observe the effect of validamycin A on trehalose levels, we grew A. flavus 

ATCC 204304 in Sabouraud dextrose media and trehalose peptone media with or 

without 1 g/mL validamycin A and collected conidia of each group to measure 

trehalose levels in the conidia. We observed that conidia collected from validamycin 

A-contained media had higher trehalose levels than conidia from control media 

significantly (Figure 8B). This result suggests that validamycin A inhibits trehalase 

enzymes in the conidia leading to increased trehalose levels. In trehalose peptone 

media, overall conidial trehalose level was decreasing. However, there was no 

difference in trehalose level of conidia from trehalose peptone media with or without 

validamycin A (Figure 8C). This result suggests that there may be a trehalose 
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transporter and validamycin A has a major inhibitory effect on acid trehalase but 

partially inhibits neutral trehalase (Figure 7). Therefore, with the supplementation of 

trehalose in the media, trehalose level inside conidia would not increase as much as in 

the glucose media in the presence of validamycin A. 

 

Figure  7. The hypothesis of the mechanism of validamycin against acid trehalase 
and neutral trehalase. 

To further study the effect of validamycin A behind the decreased growth of A. 

flavus, we performed germination assays to observe the rate of conidial germination in 

the presence of 1 g/mL validamycin A. We observed that validamycin A delayed the 
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conidial germination of A. flavus ATCC 204304 significantly at 10 hours and 12  hours 

(Figure 8D). This data suggests that the effect of validamycin A on trehalase enzymes 

results in delayed conidial germination. 
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Figure  8. Validamycin A inhibits the growth and increases trehalose level in 

Aspergillus flavus conidia with delayed conidial germination.  
A) Aspergillus flavus ATCC204304 was cultured at 37°C on RPMI media in 24-well 

plate for 18 hours. Fungal viability was measured by XTT assays at 490 nm. Unpaired 

t-test was used to compare the fungal growths. Amp: Amphotericin B at 0.25 µg/mL, 

Data are presented as means  SE from three biological replicates. *, P-value < 0.05; 

**, P-value < 0.01; ***, P-value < 0.001 (unpaired two-tailed Student’s t-test 

compared to the control or amphotericin B). B) Aspergillus flavus ATCC 204304 was 

cultured at 37⁰C on Sabouraud dextrose agar for five days with or without 1 µg/mL 

validamycin A. Trehalose assays were performed to measure trehalose levels in the 

conidia using glucose oxidase assays. Data are presented as means  SE from three 

biological replicates. **, P-value < 0.01 (unpaired two-tailed Student’s t-test 

compared to the control). C) Aspergillus flavus ATCC 204304 was cultured at 37⁰C 

on trehalose peptone agar for five days with or without 1 µg/mL validamycin A. 

Trehalose assays were performed to measure trehalose levels in the conidia using 
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glucose oxidase assays. Data are presented as means  SE from three biological 

replicates. ns: no significance (unpaired two-tailed Student’s t-test compared to the 

control).  D) Aspergillus flavus ATCC 204304 was cultured at 37⁰C in Sabouraud 

dextrose broth with or without 1 µg/mL validamycin A in an orbital shaker at 200 

rpm. Spore germination at each time point was counted and calculated. Data are 

presented as means  SE from three biological replicates. **, P-value < 0.01 

(unpaired two-tailed Student’s t-test compared to the control). 

3.  Validamycin A has a synergistic effect with amphotericin B in A. flavus clinical 

isolates with high MICs of amphotericin B  

Next, we hypothesize that validamycin A may have a combination effect with 

antifungal agents, amphotericin B. To test our hypothesis, the antifungal susceptibility 

assays of A. flavus ATCC 204304 was performed to find minimum inhibitory 

concentrations  (MICs) according to the CLSI broth microdilution method, CLSI M38 

(2017). The results showed that the MIC of amphotericin B against A. flavus ATCC 

204304 was at 4 µg/mL (Table 2). Furthermore, checkerboard assays were performed 

to observe the combination effect between validamycin A and amphotericin B. The 

fractional inhibitory concentration index (FICI) was calculated for validamycin A and 

amphotericin B in each combination. As a result, the additive effect between 

validamycin A and amphotericin B was observed with the FICI at 0.625 in A. flavus 
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ATCC204304. The MICs in the combination of validamycin A and amphotericin B 

were at 0.125 µg/mL and 2 µg/mL, respectively (Table 2).  

 Additionally, three A. flavus clinical isolates with high MICs of amphotericin 

B, which were higher than Epidemiological Cutoff Value (ECV) of amphotericin B in 

A. flavus (4 µg/mL) (Table 2), were chosen to perform checkerboard assays to observe 

the combination effect of validamycin A and amphotericin B. All isolates came from 

the lower respiratory tract including the sinus cavity with the diagnosis of invasive 

aspergillosis (Table 2). None of these patients had exposure to amphotericin B before. 

Interestingly, the FICI of validamycin A and amphotericin B of these clinical isolates 

was about 0.25-0.28 with synergistic effects (Table 2).  
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Figure  9. Validamycin A has a synergistic effect with amphotericin B against A. 
flavus clinical isolates.  
103 spores of A. flavus with high amphotericin B (AMB) MIC strain was incubated at a 
concentration of 0.5 × MIC of validamycin A (0.125 µg/mL) and amphotericin B (2 
µg/mL). The A. flavus clinical isolate was then exposed to no drug (control, black 
circle), validamycin A at 0.125 µg/mL (blue square), amphotericin B at 2 µg/mL 
(yellow triangle), the combination of validamycin A at 0.125 µg/mL and amphotericin 
B at 2 µg/mL (red triangle).  

These synergistic effects were again confirmed by time-kill assays (Figure 9). 

The effect of inhibiting the growth of the A. flavus clinical isolate was at the peak at 48 

hours between the control and the combination of amphotericin B and validamycin A, 

and the amount of colony-forming units was significantly different at 2 log10 

decreases in CFU /ml between the control and the combination of amphotericin B and 

validamycin A. 
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4.  Validamycin A has no cytotoxicity to human bronchial epithelial cells 

To observe the toxicity of validamycin A on human bronchial epithelial cells, BEAS-

2B, we performed LDH cytotoxicity assays using LDH-Cytotoxicity Colorimetric 

Assay Kit II. The results showed that 0.125 µg/mL of validamycin A, 2 µg/mL of 

amphotericin B, and the combination of validamycin A and amphotericin B did not 

cause significant toxicity to human bronchial epithelial cells (Figure 10). 
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Figure  10. Validamycin A and the combination of validamycin A and 

amphotericin B have no cytotoxic effect on human bronchial epithelial cells.  

The cytotoxicity test was performed to observe the toxicity of validamycin A on 

BEAS-2B using lactate dehydrogenase (LDH)-Cytotoxicity Colorimetric Assay Kit II. 
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Cell cultured were incubated at 37ºC in a humidified environment containing 95% air-

5% CO2. After 24 hours, Using LDH reaction mixture was added for the volume of 25 

µl, incubated at 37°C for 30 minutes. Then ODs were measured at 450 nm using a 

spectrophotometer. Data are presented as means  SE from three biological replicates. 

There was no statistical significance (unpaired two-tailed Student’s t-test compared to 

the control). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V DISCUSSION AND CONCLUSION 

Trehalose pathway is apparently important for the growth and pathogenesis of 

pathogenic fungi while the significance of trehalase enzymes in pathogenic fungi is 

still unclear (70-76). Our study utilized a trehalase inhibitor, validamycin A, to study 

the effect on the growth and the combinative effect on amphotericin B against a 

pathogenic fungus, Aspergillus flavus. Validamycin A is firstly produced by 

Streptomyces hygroscopicus (117, 118). It is a trehalase inhibitor of fungi, plants, and 

insects (100-102). Validamycin A was previously demonstrated to inhibit the growth 

of Rhizoctonia solani, rice fungal pathogen, and Fusarium culmorum (102, 103). For 

human fungal pathogens, Candida albicans, validamycin A at 0.1 mg/mL inhibited 

growth significantly compared to amphotericin B and controls (101).  

In this study, A. flavus possessed trehalase homologs compared to 

Saccharomyces cerevisiae and Aspergillus fumigatus. We observed that A. flavus was 

able to grow on trehalose peptone media similar to glucose peptone media (Figure 6A, 

B). These results support that A. flavus has trehalase enzymes for utilizing trehalose as 

a sole carbon source. To further observe the effect of validamycin A, which inhibits 

trehalase enzymes, on the growth of A. flavus, we utilized XTT assays to observe the 
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growth of A. flavus. We found that validamycin A decreased the growth of A. flavus 

significantly (Figure 8A). These results imply indirectly that trehalase activity is 

important for A. flavus. Nevertheless, further genetic approaches, i.e., generating 

trehalase gene-deletion mutants, is crucial to discover the function and importance of 

trehalase enzymes in A. flavus.   

Validamycin A was reported to increase trehalose levels in a pathogenic 

fungus, Candida albicans (101). We also observed similar results that validamycin A 

was able to increase trehalose levels of A. flavus conidia (Figure 8B). However, the 

trehalase activity assay is also necessary to confirm the effect of validamycin A.  

Trehalose pathway is vital for conidial germination (76, 77, 119). Normal trehalose 

metabolism helps the early stages of the conidial germination process (86). Therefore, 

the disruption of enzymes in the trehalose pathway affects conidial germination. We 

further observed similar effects from the inhibition of trehalase enzymes using 

validamycin A that A. flavus conidia in the presence of validamycin A delayed 

germination at 10-12 hours (Figure 8C). Furthermore, inhibition of trehalase enzymes 

in the trehalose pathway would affect the production of trehalose degradation, which 

are glucose 6-phosphate (G6P) and UDP-glucose (UDP-G). These building blocks are 

essential for other metabolic pathways, e.g., glycolysis pathway, glycogen synthesis 
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pathway, which would lead to impaired ATP generation and imbalance of 

NADH/NAD+ ratio. ATP generation and NADH/NAD+ levels are important for the 

fungal growth and fungal pathogenesis (108, 120, 121). Therefore, ATP and 

NADH/NAD+ levels are necessary to be further investigated to observe other effects 

from trehalase enzyme inhibition. Nonetheless, we observed that at 24 hours, the 

conidial germination in the presence of validamycin A caught up with the control. This 

result suggests that A. flavus may use alternative pathways, e.g., mannitol pathway 

(122, 123), to assist the germination and cope with increased trehalose levels while 

decreasing building blocks, G6P and UDP-G. From this data, it also suggests that 

validamycin A may have a fungistatic effect on A. flavus. 

In addition, we further observed that validamycin A had a combinative effect 

with amphotericin B. A. flavus ATCC204304, which is a standard strain for the 

antifungal susceptibility test, showed an additive effect of validamycin A and 

amphotericin B. For clinical isolates with high MICs of amphotericin B, more than 4 

g/mL, in the CLSI reference, it did not indicate the cutoff value of MIC for the 

resistance of amphotericin B in A. flavus, but Barchiesi F, et al. suggested that an A. 

flavus clinical isolate with MIC of amphotericin B  2 g/mL should be considered 

as a resistant strain (111, 124). Interestingly, in these A. flavus clinical isolates, we 
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observed that there were synergistic effects between validamycin A and amphotericin 

B. Previously, in A. fumigatus, disruption of trehalose enzymes, TpsA/B and OrlA, or 

a regulatory-like subunit, TslA, affects the cell wall structure and components, glucan 

and chitin (76, 77, 107). We hypothesize that disruption of trehalase enzymes may 

affect the cell wall structure and components leading to increasing effects of antifungal 

agents, i.e. amphotericin B. However, changes on A. flavus cell wall in the presence of 

validamycin A or in A. flavus mutants without trehalase enzymes need further 

investigation. Furthermore, we also hypothesize that different combinative effects of 

these agents between strains may be from the difference of cell wall structure and 

components in each clinical isolate with high MICs of amphotericin B. A previous 

study showed that amphotericin B resistant strains of A. flavus had similar sterol 

content while on the cell wall (1,3)--D-glucan content was higher in resistant strains 

(68). Therefore, the cell wall structure and components of these isolates need to be 

further studied. Moreover, more clinical isolates and animal models are also necessary 

to study this synergistic effect between validamycin A and amphotericin B. 

 Additionally, for the cytotoxic effect of validamycin A, we observed that 

validamycin A had no cytotoxic effect with human bronchial epithelial cells (Figure 

10). However, we only utilized one human cell line, which may not represent the 
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overall cytotoxic effect on humans. However, acute toxicity in rodents, Lethal dose at 

50 percentage (LD50), was found in a very high dose manner 

(https://pubchem.ncbi.nlm.nih.gov/compound/Validamycin-A). More animal studies 

are warranted to observe the toxicity of validamycin A in vivo.  

 In conclusion, validamycin A, a trehalase inhibitor, was able to inhibit the 

growth of A. flavus. One of the mechanisms behind the effect of validamycin A was to 

delay the germination of A. flavus spores. In addition, validamycin A also possessed 

synergistic effects with amphotericin B, a fungicidal antifungal agent, in amphotericin 

B-resistant clinical isolates. The cytotoxicity of validamycin A to human bronchial 

epithelial cells was not observed. This validamycin A could be one of the potential 

combinatorial agents for future treatment of amphotericin B-resistant A. flavus clinical 

isolates   (Figure 11). 
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 APPENDIX I 
Aspergillus flavus and Aspergillus fumigatus are able to utilize trehalose as a sole 
carbon source. 

Aspergillus flavus ATCC 204304 and Aspergillus fumigatus ATCC 204305 

were cultured on Sabouraud Dextrose Agar (SDA) at 37°C for three days before 

harvesting using sterile distilled water. Then, 103 spores were inoculated into each 

culture medium: glucose peptone agar, trehalose peptone agar, and peptone alone agar 

at 37°C for 2 and 5 days to measure the radial growth of these fungi. These 

experiments were performed in a biological triplicate manner 

In this study, the results showed that Aspergillus flavus and Aspergillus 

fumigatus grew normally on trehalose peptone media. The growth of Aspergillus flavus 

on glucose peptone media was similar to trehalose peptone media (Figure 1). This 

preliminary data supports that Aspergillus flavus could utilize trehalose as a sole 

carbon source, which implies that Aspergillus flavus can degrade trehalose into glucose 

for the growth of the fungus using trehalase enzyme. 
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Figure 1. Aspergillus fumigatus and Aspergillus flavus grow normally on both glucose 

and trehalose peptone media on the second day and fifth day. Aspergillus fumigatus 

ATCC204305 and Aspergillus flavus ATCC204304 were cultured at 37°C on different 

media, glucose and trehalose  peptone media. The radial growth of these fungi was 

measured on the second day. Unpaired t-test was used to compare the radial growth. 

These experiments were performed in a biological triplicate manner. 
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APPENDIX II 
Validamycin A inhibits the growth of Aspergillus flavus. 

10 3spores of Aspergillus flavus ATCC 204304 strain were grown on glucose 

peptone media with or without validamycin A at concentration of 20 µg/mL at 37 °C. 

Radial growth was measured at 2 and 5 days (Figure 1) 

The results show that validamycin A could inhibit the radial growth of 

Aspergillus flavus. The preliminary result showed that validamycin A inhibited the 

radial growth of A. flavus significantly at the second and fifth day (Figure 1). 
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Figure 1. Validamycin inhibits the growth of A. flavus. Aspergillus flavus 

ATCC204304 was cultured at 37°C on glucose peptone media with or without 20 
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µg/mL validamycin A. We measured the radial growth on the second and fifth day. 

Unpaired t-test, three biological replicates, * p-value < 0.05; ** p-value < 0.01 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX III 
1.  Validamycin A has combinative effects against Aspergillus flavus ATCC204304 

and Aspergillus flavus  clinical isolates 
  The broth microdilution method (CLSI M38) was performed to observe the 

minimum inhibitory concentrations (MICs) of amphotericin B in Aspergillus flavus 

ATCC 204304 and clinical isolates  (111). After that, the additive/synergistic effect of 

validamycin A and amphotericin B were studied using the checkerboard assays (112). 

To determine the additive and synergistic effect, the fractional inhibitory concentration 

index (FICI) was calculated for each antifungal drug in each combination using the 

following formula (112):  FIC A (MICA/MICA+B) + FIC B (MICB/MICA+B) = FICI and 

the following FICI results were determined as synergy: <0.5; additivity: 0.5-1; 

indifference: >1-4; and antagonism: >4. 

Table 1 shows the results of checkerboard assays that were performed to 

observe the combination effect between validamycin A and amphotericin B. The 

fractional inhibitory concentration index (FICI) was calculated for validamycin A and 

amphotericin B in each combination  of Aspergillus flavus clinical isolates  

(Interpretation: A: additive; S: synergistic) and patient characteristics.
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2.  Time-kill kinetics assay  
Time kill assay was performed using the CLSI M26-A method. 103 spores of A. 

flavus with high amphotericin B (AMB) MIC strains were prepared, and liquid 

cultures in Sabouraud dextrose broth were performed at a concentration of 0.5 × MIC 

from validamycin A and amphotericin B. Cultures were placed on the shaker at 200 

rpm and incubated at 37°C. At each time point (4, 8, 12, 24, and 48 h),100 µl of 

cultures were plated on SDA plates at 37 °C for 24-48 h. The time-killing curves were 

determined by a count of colony-forming units (CFU/mL), at each time point (113-

115). 

The results showed that validamycin A had a synergistic effect with 

amphotericin B in A. flavus clinical isolates with high MIC of amphotericin B, and 

these synergistic effects were again confirmed by time-kill assays. The time-kill assay 

test found that when using a concentration of 0.5 × MIC from validamycin A (0.125 

µg/mL) and amphotericin B (2 µg/mL) to inhibit the growth of Aspergillus flavus 

clinical isolates. It could enhance the effect of inhibiting the growth of the Aspergillus 

flavus clinical isolates that was the best for 24 hours and the amount of colony-forming 

units was significantly different at 2 log decreases in CFU/mL (Figure 1A- C).  
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C) 

A.flavus sinus 2431
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Figure 1. Validamycin has a synergistic effect with amphotericin B against A. flavus 

clinical isolates. Time kill assay was performed using the CLSI M26-A method. 103 

spores of A. flavus with high amphotericin B (AMB) MIC strains were incubated at a 

concentration of 0.5 × MIC of validamycin A (0.125 µg/mL) and amphotericin B (2 

µg/mL). Each isolate was exposed to no drug (control, black circle), validamycin A at 

0.125 µg/mL (blue square), amphotericin B at 2 µg/mL (yellow triangle), the 

combination of validamycin A at 0.125 µg/mL and amphotericin B at 2 µg/mL (red 

triangle). (A) SP7183, B) SP 2252.3, C) sinus 2431) 
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APPENDIX IV 
Validamycin A has no cytotoxicity to human bronchial epithelial cell lines 

              BEAS-2B (Human bronchial epithelial cell line) (ATCC CRL9609TM) was 

cultured in bronchial epithelial cell growth media, and tissue culture flasks were 

coating with 0.01 mg/mL fibronectin, 0.03 mg/mL bovine collagen type I, and 0.01 

mg/mL bovine serum albumin (BSA) dissolved in the culture medium. Cell cultures 

were incubated at 37ºC in a humidified environment with 5% CO2 (116). 

The cytotoxicity test was then performed to observe the toxicity of validamycin 

A to human epithelial cell lines using Lactate Dehydrogenase (LDH)-Cytotoxicity 

Colorimetric Assay Kit II (Biovision Inc, CA, USA).  Briefly, 1 x 104 BEAS-2B cells 

were incubated with 50 µl of DMEM in a pre-coating 96-well plate and then 

validamycin A will be added at the different concentrations, for each time point. LDH 

reaction mixture was added and incubated at 37°C for 30 minutes. Then ODs were 

measured at 450 nm using a spectrophotometer. Later, the percentage of the 

cytotoxicity was calculated using the following formula: 

Cytotoxicity (%)= 
 (test sample - low control) x 100

( high control - low control) 
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The results showed that 0.5, 1 µg/mL validamycin A and 0.5, 1 µg/mL 

amphotericin B did not cause significant toxicity to human bronchial epithelial cells. 

(Figure 1) 
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Figure 1. Validamycin A and amphotericin B have no cytotoxic effect on human 

bronchial epithelial cells. The cytotoxicity test was performed to observe the toxicity 

of validamycin A on BEAS-2B using lactate dehydrogenase (LDH)-Cytotoxicity 

Colorimetric Assay Kit II. Cell cultured were incubated at 37ºC in a humidified 

environment containing 95% air-5% CO2. After 24 hours, Using LDH reaction 

mixture was added for the volume of 25 µl, incubated at 37°C for 30 minutes. Then 

ODs were measured at 450 nm using a spectrophotometer. Data are presented as 
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means  SE from three biological replicates. NS: not significant (unpaired two-tailed 

Student’s t-test compared to the control). 
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