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Most time series data can be characterized by a linear process via the autoregressive

integrated moving average model requiring a three-component vector which are the au-

toregressive, differencing, and moving average orders before fitting coefficients. A model

identification which determines those orders is analyzed via the partial autocorrelation

function to identify the autoregressive order, the autocorrelation function to identify the

moving average order and an extended sample autocorrelation function to identify both

orders which is a challenging problem for statisticians. Accordingly, the auto-ARIMA

model was proposed to automatically vary those orders and estimates their correspond-

ing coefficients. This thesis proposes three architectures of convolutional neural networks.

They are widened to build the seasonal autoregressive integrated moving average model

and the autoregressive conditional heteroskedasticity model. From the experiments, the

proposed deep learning models outperform the auto-ARIMA model in the cases of iden-

tifying ARIMA order and the SARIMA order via precision, recall and f1-scores.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Forecasting a time series data is a challenging problem for professional researchers

[1–3]. It helps to analyze many problems in various fields such as planning investments,

analyzing the risk, etc. Nevertheless, studying the characteristics of the data from the

time series, like prediction, is difficult due to the complicated relationships of the data

which are sensitive to their own internal dynamics. [4, 5] Moreover, there are some time

series according to nonlinear and non-stationary which are difficult to analyze. In other

words, the time series has large swings and non-constant variances [6]. Therefore, it is

difficult to predict the fluctuation of future values accurately and reliably. Consequently,

the time series is needed to be analyzed via the concept of the time series analysis to

understand the structure of the time series for forecasting the future values.

Generally, the time series analysis can be divided into two approaches which are

the non-parametric approach and the parametric approach. The non-parametric approach

includes the spectral analysis and estimating the covariance of the process without assum-

ing any particular structure. The spectral analysis [7] is based on building the spectral

density in the form of a cosine function. The spectral density is calculated from the

weighted sum of cyclical components corresponding to a frequency in the interval [−π, π].

Then, the sample spectral density is estimated by sample autocovariance from the time

series data, called the periodogram [8]. In 2011, Tchrakian et al. [9] applied the spectral

analysis to forecast the real-time traffic flow. In the same year, Afshar and Bigdeli [10]

used the singular spectral analysis to forecast the short term of the electricity market in

Iran. In 2017, Du et al. [11] applied the spectral analysis and the discrete wavelet trans-

form to build the artificial neural network model to forecast the Indian monthly rainfall.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

However, this process requires complex mathematical background such as Fourier analy-

sis [12]. Alternatively, the parametric approach is introduced. It assumes that the time

series data comes from the stationary stochastic process which it can be described using

some parameters. Normally, the stochastic time series analysis based on a linear process

begins with the basic models such as the autoregressive integrated moving average model

(ARIMA) and the seasonal autoregressive integrated moving average model (SARIMA)

by Box and Jenkins in 1970 [13] and drives to more complex models such as the au-

toregressive conditional heteroskedasticity model (ARCH) by Engle in 1983 [14] and the

generalized autoregressive conditional heteroskedasticity model (GARCH) by Bollerslev

in 1990 [15].

The process of building the ARIMA model for forecasting time series composes of

(1) the model identification and (2) the Box-Jenkins estimation to obtain the best model.

The key components of these models are the autoregressive or AR component, the differ-

encing component and the moving average or MA component. Statisticians who study

the time series analysis define the MA order from the sample autocorrelation function

(ACF) and the AR order from the sample partial autocorrelation function (PACF) via

visualizing their plots [16]. Nonetheless, they may obscure one another. Therefore, the

extended sample autocorrelation function or ESACF is introduced by Tsay and Tiao [17]

and Chenoweth et al. in 2000 [18] for identifying the AR order and the MA order using

a single plot.

The ACF plot, the PACF plot and the ESACF plot may be difficult for a statisti-

cian to extract the appropriate ARIMA order visually. Recently, to avert human analy-

sis, analysts use the auto-ARIMA model to automatically determine the ARIMA order

and the best coefficients according to the Akaike Information Criterion or AIC [19], the

Bayesian Information Criterion or BIC [20] and the Hannan Quinn Information Criterion

or HQIC [21]. The main advantage is that it requires no human interaction. However,

its residuals may deviate from a white noise process which causes the forecast values to

deviate so much from the actual ones. At present, these methods are still used in various

fields, such as stochastic wind power generation by Chen et al. [22] in 2009, water quality



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

series by Faruk [23] in 2010 and daily and monthly average global solar radiation in Seoul,

South Korea by Alsharif et al. in 2019 [24].

There are many researchers proposing methods to identify the appropriate ARIMA

order because it is an important part of fitting the ARIMA model. Lee and Oh in 1996 [25]

used the ANN-driven decision tree classifier to identify the ARMA order and suggested

that most time series data uses the ARMA order less than 5. Chenoweth et al. in 2000 [18]

used the extended sample autocorrelation function or ESACF to identify the orders of AR

and MA at the same time. Then, Al-Qawasmi et al. in 2010 [26] applied the identification

of the ARIMA order with the concept of a special covariance matrix and used the MEV

criterion for selecting the best ARIMA model.

At present, deep learning is used to apply to several problems successfully includ-

ing the time series analysis. In 2016, Amini and Karabasoglu [27] used the improved

ARIMA model by optimizing the diffrencing order and the autoregressive order to pre-

dict the electric vehicle charging demand for stochastic power system operation. In 2017,

Guarnaccia et al. [28] used the seasonal ARIMA time series models and the deterministic

decomposition to predict the airport noise at Nice international airport in France. In

2018, Fukuoka et al. [29] used LSTM and CNN having one dimension of the filter matrix

for the input time series data to predict the wind speed. In 2019, Kim et al. [30] proposed

the LSTM-CNN model merging features of the time series data consisting of stock time

series and stock chart images to forecast the stock prices of SPDR, S&P500, and ETF. In

addition, the deep learning concept is applied to recognize the ARMA order for building

the ARMA model by Tang and Röllin [31] in 2018. The method is constructed based on

ResNet50 using the time series data directly as its input. Their results showed that, for

the low-order ARMA model, ResNet50 outperformed the auto-ARIMA model in terms of

speed and accuracy.

The main purpose of identifying the ARIMA order is to select the order and estimate

the parameters to forecast the time series data accurately. The model identification via the

Box-Jenkins method is a conventional method for identifying their orders but it requires
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an analyst to visualize multiple plots. Although the problem can be automated using the

auto-ARIMA model to identify the order, the results of the order may still be poor due

to the leftover autocorrelation in residuals.

Even though the structure describing the ARIMA model is not difficult and simple

to interpret, it may not be able to fit the time series having the nonlinear structure like

the financial time series data. Consequently, the nonlinear time series data may not be

suitable to be applied by a linear process. In the nonlinear time series analysis, many

aspects are considered such as instability of variance or nonlinearity relationship. Many

approaches which occur in this field attempt to capture the nonlinear characteristics of

the time series data such as ARCH and GARCH family. The interesting conventional

approach is the autoregressive conditional heteroskedasticity model or the ARCH model

using for capturing the non-constant variance via the autoregressive process and it is

commonly applied in modeling the financial time series data.

Consequently, to improve the limit of the order identification from the auto-ARIMA

model, this research attempts to combine the concept of the time series analysis and deep

learning together to identify the ARIMA order via training the ACF plot, the PACF

plot, the ESACF plot and the time series images. this research starts by proposing the

three methodologies to improve the model identification of the ARIMA order and the

SARIMA order using the deep learning model and adapt this concept with the ARCH

model for applying to the financial time series data having the non constant variance.

Our research starts on the model identification of the AR and MA orders ignoring trends.

So the training time series data will be simulated from the AR model and the MA model.

This training time series data is used to train the deep learning model to identify the

ARMA order. Then the training time series data simulated from the AR model and the

MA model is accumulated for being the time series data having the effect of trends. This

time series data is used to train the deep learning model to identify the differencing order.

Hence, the first methodology begins with building the deep learning model, called the self-

identification deep learning model or the SID model using the basic of the convolutional

neural networks. It is split to pq-SID model to identify the ARMA order in the range of
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0-5 and d-SID model to identify the differencing order in the range of 0-2. For beginning,

the range of identifying the ARMA order is set according to the research of Lee and

Oh [18] which they claimed that the most time series uses the ARMA order less than

5. The SID model is constructed by training the charasteristic of ACF, PACF and series

images. Then the SID model is improved using the ResNet architecture which it can

improve the convergence of the weights of the deep learning model. The extended model

is called the self-identification ResNet-ARIMA model or the SIRO model also splitting to

the pq-SIRO model and the d-SIRO model. The SIRO model is constructed by training

ACF, PACF and time series images taking differencing from d = 0 to 2. Moreover, to use

ESACF as inputs, the ACF-PACF-ESACF convolutional neural network ARIMA order

identification or the APEA model is introduced. it is spit into the pq-APEA model and

the d-APEA model. The pq-APEA model is constructed by training the characteristic

of ACF, PACF, ESACF and differencing time series images to identify the ARMA order

in the range of 0-7 while the d-APEA model is constructed by training ACF or PACF

taking differencing from 0 to 3 to identify the differencing order in the range of 0-3.

Next, for the second methodology, the APEA model is extended to identify the

SARIMA order, called the ACF-PACF-ESACF convolutional neural network seasonal

ARIMA order identification model by using the concept of the spectral analysis to find

the length of season and using the concept of aggregating the time series data to identify

the seasonal order. Then the SARIMA order from the model is used to fit coefficients

of the time series model via the Box-Jenkins method, called the enhancing SARIMA

forecasting via the deep learning algorithm.

The last methodology is to adapt the first methodology and the second methodology

to build the ARCH model for applying with the financial time series data, called the

automatic ARCH forecasting via the deep learning algorithm. The algorithm uses the

deep learning to identify the SARIMA order and build the SARIMA model. Then the

residuals of forecasting the time series data are applied to the deep learning model for

identifying the ARCH order to build the ARCH model.
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1.2 Objectives of the dissertation

This dissertation aims to (1) present the deep learning model for identifying the

orders of the ARIMA model, (2) present the algorithm for identifying the SARIMA order

by applying the deep learning model and for building the SARIMA model to forecast the

future values and (3) present the methodology for improving identifying the ARCH order

and for building the ARCH model to forecast the financial time series data.

1.3 Structure of the dissertation

Generally, to forecast the time series data accurately, the time series data must be

analyzed via the concept of the time series analysis. Moreover, identifying the ARIMA

order and the SARIMA order using common criteria, such as AIC, may not find the

appropriate orders. Consequently, this research uses the deep learning model to identify

the ARIMA order and the SARIMA order and build the forecasting model to forecast the

time series data.

• This research presents the deep learning model applying with ACF, PACF, ESACF

and differencing time series as inputs to identify the ARIMA order.

• This research presents the algorithm to identify the SARIMA order by applying to

the deep learning model and build the SARIMA model to forecast future values.

• This research uses the deep learning model to apply with the ARCH model for

forecasting the financial time series data.

The remainders of this dissertation are organized as follows. Chapter 2 and Chapter

3 describe the basic knowledge of time series analysis and deep learning. Chapter 4

explains the details of the methodology to identify the ARIMA order including the SID

model, the SIRA model and the the APEA model. Chapter 5 explains the details of the

ACF-PACF-ESACF convolutional neural network seasonal ARIMA order identification

model to identify the SARIMA order and the enhancing SARIMA forecasting via deep
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learning algorithm to build the SARIMA model and forecast the future values. Chapter

6 explains the details of the automatic ARCH forecasting via deep learning algorithm to

apply to the financial time series. Chapter 7 is the conclusion and discussion.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE OF TIME

SERIES ANALYSIS

This chapter states the necessary background knowledge of the time series used

in this dissertation. Firstly, the background knowledge of the time series analysis is

illustrated in Section 2.1. Secondly, the time series models for the linear process and the

nonlinear process are explained in Section 2.2. Thirdly, the concept of the auto-ARIMA

model is described in Section 2.3. Lastly, the model measurements of forecasting time

series and the statistical test are introduced in Section 2.4 and Section 2.5.

2.1 Time series analysis

In this section, the fundamental concepts of the time series that are necessary

for this dissertation are introduced consisting the stochastic process, the autocorrelation

function and the partial autocorrelation function, respectively.

2.1.1 Stochastic process and time series definitions

The basic of stochastic process and its definition are stated below.

Definition 2.1. Let {Xt}t∈T be a stochastic process, where T be an index set and Xt is

a random variable indexed by t ∈ T .

Definition 2.2. A discrete-time stochastic process is a family of time indexed random

variable {Xt}t∈T , where T is discrete time index set.

Next, the time series in this dissertation is defined by the stochastic process.

Definition 2.3. A time series is a realization or a sample function from a certain stochas-

tic process.
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For example, let {Xt}t∈{0,1,2,...,100} be a random variable where Xt ∼ U(−1, 1).

Hence, the realization of {Xt}t∈{0,1,2,...,100} can be plotted as Figure 2.1.

Figure 2.1: The example of the realization of the uniform time series data

Definition 2.4. Consider the index set as the set of all integers. A finite set of random

variables from a stochastic process {Xt}t∈{...,−2,−1,0,1,2,...} is represented by {Xt1 , Xt2 , . . . , Xtn}.

The n-dimensional distribution function is defined by

FXt1 ,Xt2 ,...,Xtn
(x1, . . . , xn) = P{Xt1 ≤ x1, . . . , Xtn ≤ xn},

where each xi, i = 1, . . . , n, is a real number.

Definition 2.5. A process is called first-order stationary in distribution if FXt1
(x1) =

FXt1+k
(x1) for any integers t1 and k.

Moreover, a process is called second-order stationary in distribution if FXt1 ,Xt2
(x1, x2) =

FXt1+k,Xt2+k
(x1, x2) for any integers t1, t2,and k.

For nth-order stationary in distribution,

FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = FXt1+k,Xt2+k,...,Xtn+k

(x1, x2, . . . , xn)

for any integers t1, t2, . . . , tn and k.
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Definition 2.6. A process is called strictly stationary if

FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = FXt1+k,Xt2+k,...,Xtn+k

(x1, x2, . . . , xn)

is true for any n = 1, 2, . . . .

Definition 2.7. For a given real-valued process {Xt}t∈{...,−2,−1,0,1,2,...}, the mean function

of the process is

µt = E(Xt),

the variance function of the process is

σ2
t = E(Xt − µt)

2,

the covariance function between Xt1 and Xt2 is

γ(t1, t2) = E(Xt1 − µt1)(Xt2 − µt2),

and the correlation function between Xt1 and Xt2 is

ρ(t1, t2) =
γ(t1, t2)√
σ2
t1

√
σ2
t2

.

Since the distribution function of the strictly stationary process is the same for all

t, the mean function µt = µ is a constant and the variance function σ2
t = σ2 is a constant.

The covariance function is

γ(t1, t2) = γ(t− k, t) = γ(t, t+ k) = γk,

and the correlation function is

ρ(t1, t2) = ρ(t− k, t) = ρ(t, t+ k) = ρk,
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where and t1 = t− k and t2 = t.

Definition 2.8. For a given real-valued process {Xt}t∈{...,−2,−1,0,1,2,...}, the process is

weakly stationary or covariance-stationary if

1. The first moment of Xt is independent of t or E(Xt) = µ, where µ is a constant

for all t.

2. The second moment of Xt is finite for all t or E(X2
t ) < ∞ for all t.

3. The cross moment or covariance of Xt1 and Xt2 depends only on t1 − t2 = k or

γ(t1, t2) = γk.

In this dissertation, any stationary process is referred to the weakly stationary

process since most time series data will not satisfy the strong stationary one.

2.1.2 The autocovariance and autocorrelation function

Definition 2.9. For a weakly stationary process {Xt}, the mean function is E(Xt) = µ

and the variance function V ar(Xt) = σ2, where µ and σ2 are constant. The covariance

between Xt and Xt+k is

γk = Cov(Xt, Xt+k) = E(Xt − µ)(Xt+k − µ)

and the correlation between Xt and Xt+k is

ρk =
Cov(Xt, Xt+k)√

V ar(Xt)
√

V ar(Xt+k)
=

γk
γ0

γk is called the autocovariance function and ρk is called the autocorrelation function or

ACF.

Theorem 2.1. For a given observed time series {X1, X2, . . . , Xn}, the sample ACF is
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defined as

ρ̂k =
γk
γ0

=

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄)

n∑
t=1

(Xt − X̄)2
,

k = 0, 1, . . . , n− 1 where X̄ =

n∑
t=1

Xt

n
is the sample mean of the series.

Example 1. : Let {X1, X2, . . . , X10} be the time series data. It is shown in Table 2.1.

t 1 2 3 4 5 6 7 8 9 10

Xt 13 8 12 11 5 4 14 9 15 13

Table 2.1: Time series data X1, X2, . . . , X10

The sample mean of the time series data is

X̄ =

n∑
t=1

Xt

10
=

13 + 8 + 12 + 11 + 5 + 4 + 14 + 9 + 15 + 13

10
= 10.4

Then, ACF of the time series data can be computed as

ρ̂1 =

9∑
t=1

(Xt − X̄)(Xt+1 − X̄)

10∑
t=1

(Xt − X̄)2

=
(13− 10.4)(8− 10.4) + (8− 10.4)(12− 10.4) + · · ·+ (15− 10.4)(13− 10.4)

(13− 10.4)2 + (8− 10.4)2 + · · ·+ (13− 10.4)2

= −0.003
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ρ̂2 =

8∑
t=1

(Xt − X̄)(Xt+2 − X̄)

10∑
t=1

(Xt − X̄)2

=
(13− 10.4)(12− 10.4) + (8− 10.4)(11− 10.4) + · · ·+ (9− 10.4)(13− 10.4)

(13− 10.4)2 + (8− 10.4)2 + · · ·+ (13− 10.4)2

= −0.057

ρ̂3 =

7∑
t=1

(Xt − X̄)(Xt+3 − X̄)

10∑
t=1

(Xt − X̄)2

=
(13− 10.4)(11− 10.4) + (8− 10.4)(5− 10.4) + · · ·+ (14− 10.4)(13− 10.4)

(13− 10.4)2 + (8− 10.4)2 + · · ·+ (13− 10.4)2

= −0.047

Other ρ̂k can be calculated correspondingly.

2.1.3 The partial autocorrelation function

Definition 2.10. For a weakly stationary process {Xt}, let the mean function be E(Xt) =

µ and the variance function V ar(Xt) = σ2, where µ and σ2 are constant. The partial

autocorrelation function ϕk between Xt and Xt+k is

ϕk = Corr(Xt, Xt+k|Xt+1, . . . , Xt+k−1).

Theorem 2.2. For a given observed time series {X1, X2, . . . , Xn}, sample PACF for lag

k is defined as

ϕk+1 ≈ ϕ̂k+1,k+1 =

ρ̂k+1 −
k∑

j=1

ϕ̂kj ρ̂k+1−j

1−
k∑

j=1

ϕ̂kj ρ̂j
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and

ϕ̂k+1,j = ϕ̂kj − ϕ̂k+1,k+1ϕ̂k,k+1−j ,

for j = 1, 2, . . . , k.

From example 1 in Section 2.1.2, PACF of the time series data can be computed as

ϕ̂11 = ρ̂1 = −0.003

ϕ̂22 =
ρ̂2 − ρ̂21
1− ρ̂21

=
−0.057− (−0.003)2

1− (−0.003)2
= −0.057

ϕ̂21 = ϕ̂11 − ϕ̂22ϕ̂11 = −0.003− (−0.057)(−0.003) = −0.003

ϕ̂33 =
ρ̂3 − ϕ̂21ρ̂2 − ϕ̂22ρ̂1

1− ϕ̂21ρ̂2 − ϕ̂22ρ̂1
=

−0.047− (−0.003)(−0.057)− (−0.057)(−0.003)

1− (−0.003)(−0.057)− (−0.057)(−0.003)

= −0.047

Other ϕ̂kk can be calculated correspondingly.

2.1.4 White noise process

A process {ϵt} is called a white noise process if the process is a sequence of un-

correlated random variables from a fixed distribution. Normally, the white noise process

{ϵt} has the constant mean E(ϵt) = 0 and the constant variance V ar(ϵt) = σ2
ϵ and

γk = Cov(ϵt, ϵt+k) for all k ̸= 0.

By definition, a white noise process {ϵt} is stationary with the autocovariance func-

tion

γk =

 σ2
ϵ if k = 0

0 if k ̸= 0
,

the autocorrelation function

ρk =

 1 if k = 0

0 if k ̸= 0
,
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and the partial autocorrelation function

ϕkk =

 1 if k = 0

0 if k ̸= 0
.

A white noise process is Gausian if its joint distribution is normal.

2.2 Time series models for a linear process and a nonlinear process

In this section, the basic of the time series models for a linear process and a nonlin-

ear process are demonstrated. The linear process includes the autoregressive model, the

moving average model, the autoregressive moving average model, the the autoregressive

integrated moving average model and the seasonal autoregressive integrated moving av-

erage model. The nonlinear process includes the autoregressive conditional heteroskedas-

ticand model and the generalized autoregressive conditional heteroskedastic model. The

details are described as follows.

2.2.1 Time series models for a linear process

The concept of the time series models based on a linear process is an important

part for understanding the time series data.

The autoregressive process or the AR process of the time series analysis of p order

can be explained by

xt =

p∑
i=1

ϕixt−i + ϵt. (2.1)

Next, the backward shift operator is defined as xt−1 = Bxt. For example, xt−2 =

Bxt−1 = B(Bxt) = B2xt. Then Equation 2.1 can be rewritten as
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xt −
p∑

i=1

ϕixt−i = ϵt (2.2)

xt − ϕ1xt−1 − ϕ2xt−2 − ...− ϕpxt−p = ϵt (2.3)

xt − ϕ1Bxt − ϕ2B
2xt − ...− ϕpB

pxt = ϵt (2.4)

(1− ϕ1B − ϕ2B
2 − ...− ϕpB

p)xt = ϵt (2.5)

ϕp(B)xt = ϵt, (2.6)

where xt and ϵt are the time series data and random error at time t. ϕ1, ϕ2, . . . , ϕp are the

coefficients of the AR process and ϕp(B) = 1−ϕ1(B)−ϕ2(B
2)− ...−ϕp(B

p). To explain

the stationary of the AR process, the root of ϕp(B) = 0 where B is treated as the variable

of this polynomial must be outside of the unit circle [16] to prevent the divergence of the

coefficients in the model.

The moving average process or the MA process of q order can be explained by

xt = ϵt −
q∑

i=1

θiϵt−i (2.7)

or

xt = θq(B)ϵt, (2.8)

where θ1, θ2, ..., θq are the coefficients of the MA process and θq(B) = 1−θ1(B)−θ2(B
2)−

... − θq(B
p). In the concept of MA process, the stationary is explained in the name of

invertibility according that the root of θq(B) = 0 where B is treated as the variable of

this polynomial must be outside of the unit circle [16].

Then, the extension of the AR process and the MA process is built as the autore-

gressive moving average or the ARMA process, expressed as follows
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ϕp(B)xt = θq(B)ϵt (2.9)

To confirm that the ARMA model has the property of stationary and invertibility,

the roots of ϕp(B) = 0 and θq(B) = 0 have to be outside of the unit circle [16], respectively.

To deal with the time series trend, the differencing part is also applied to the

ARMA process creating the autoregressive integrated moving average or ARIMA process,

expressed as follows

ϕp(B)▽dxt = θq(B)ϵt (2.10)

where d is the number of differencing and ▽xt = xt − xt−1.

Generally, the seasonal effect is applied to the ARIMA process defining the seasonal

period to be s. The process is called the seasonal autoregressive integrated moving average

or the SARIMA process of order (p, d, q)×(P,D,Q).

ΦP (B
s)ϕp(B)(1−B)d(1−Bs)Dxt = ΘQ(B

s)θq(B)ϵt (2.11)

where

ϕp(B) = 1− ϕ1(B)− ϕ2(B
2)− ...− ϕp(B

p)

θq(B) = 1− θ1(B)− θ2(B
2)− ...− θq(B

q)

ΦP (B
s) = 1− Φ1(B

s)− Φ2(B
2s)− ...− ΦP (B

Ps)

ΘQ(B
s) = 1−Θ1(B

s)−Θ2(B
2s)− ...−ΘQ(B

Qs).

P is the order of seasonal autoregressive term, Q is the order of moving average

term and D is the number of seasonal differencing which Φ1,Φ2, ...,ΦP represent the
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coefficients of seasonal AR and Θ1,Θ2, ...,ΘQ represent the coefficients of seasonal MA.

2.2.2 Identifying the ARIMA order via ACF and PACF

To identify the ARIMA order, the concepts of ACF and PACF are presented which

can be calculated by formulae from the previous section. The AR order is identified by

the cut off at the first PACF lag. Similarly for the MA order is recognized by the cut off

at the first ACF lag. The differencing order will be determined by considering the lowest

positive integer of the ACF lag that its plot decays rapidly to zero, either from above

or below. For example, the sample ACF and PACF of the AR(2) are shown in Figure

2.2 and Figure 2.3 and the sample ACF and PACF of the ARIMA(1, 1, 1) are shown in

Figure 2.4 and Figure 2.5.

Figure 2.2: ACF of the AR(2)
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Figure 2.3: PACF of the AR(2)

Figure 2.4: ACF of the ARIMA(1, 1, 1)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

Figure 2.5: PACF of the ARIMA(1, 1, 1)

2.2.3 Identifying the ARIMA order via ESACF

Moreover, there is a tool which is used to identify the AR order and the MA order

at the same time. The extended sample autocorrelation function or ESACF which was

proposed by Tsay and Tiao in 1984 [17]. Generating ESACF is the process based on

iterated least squares estimates of the autoregressive order or the AR order. The ESACF

value is represented by r
(m)
j computing via sample ACF of residual which occurs from the

time series fitted by AR(m) where mth-row, m = 0, 1, 2, 3, . . . , is the number of the AR

order which is used to fit with the time series data and jth, j = 1, 2, 3, . . . , is the number

of the ACF lag.
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AR/MA 0 1 2 3 …

0 r
(0)
1 r

(0)
2 r

(0)
3 r

(0)
4 …

1 r
(1)
1 r

(1)
2 r

(1)
3 r

(1)
4 …

2 r
(2)
1 r

(2)
2 r

(2)
3 r

(2)
4 …

3 r
(3)
1 r

(3)
2 r

(3)
3 r

(3)
4 …

... ... ... ... ... . . .

Table 2.2: General ESACF table for the ARMA(p, q)

The ESACF values are represented via Table 2.2. for considering the pattern to

identify the ARMA order. From Table 2.2, the first row corresponding with r
(0)
j for

j = 1, 2, 3, . . . gives standard sample ACF with lag j of time series data. The next row

and subsequence row give sample ACF which is from residuals of time series data fitted

by the AR model. The ARMA order can be identified via Table 2.2 by letting the row be

the number of the AR order and the column be the number of the MA order.

Moreover, the ESACF values in Table 2.2 can be transformed to the symbols with

“O” representing values greater than or less than ±2 standard deviations and “X” for

values within mean±2 standard deviations. The pattern of ARMA(1,1) represented via

the ESACF table is shown in Table 2.3.
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AR/MA 0 1 2 3 4 5 …

0 X X X X X X …

1 X O O O O O …

2 X X O O O O …

3 X X X O O O …

4 X X X X O O …

5 X X X X X O …
... ... ... ... ... ... . . .

Table 2.3: General ESACF table for the ARMA(1, 1)

2.2.4 Time series models for the nonlinear process

To build a time series model for a nonlinear process, an analyst applies the concept

of the autoregressive conditional heteroskedasticity process and the generalized autore-

gressive conditional heteroskedasticity process. Commonly, both processes are used to

capture the non-constant variance of the time series data. The details of these processes

are described as follows.

The autoregressive conditional heteroskedasticity process or the ARCH process of

order q of the time series data can be explained below. Let ϵt be the error terms, σt be

the standard deviation of the error terms and zt ∼
iid

N(0, 1) be a Gaussian white noise

process. The ARCH model can be defined as follows

ϵt = σtzt (2.12)

and

σ2
t = α0 + α1ϵ

2
t−1 + ...+ αqϵ

2
t−q. (2.13)

Given all information It−1 = {ϵt−1, ϵt−2, ..., ϵ1}, the conditional variance of ϵt can
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be written as

V ar(ϵt|It) = E(ϵ2t |It) (2.14)

= E(σ2
t z

2
t |It) (2.15)

= E(σ2
t )E(z2t |It) (2.16)

= E(σ2
t ) · 1 (2.17)

= E(σ2
t ) (2.18)

= E(α0 + α1ϵ
2
t−1 + ...+ αqϵ

2
t−q).

Hence, the error terms ϵt can be forecasted by the following AR process of order

q [16].

Then, if the ARMA process is applied to variance σt, the process is called generalized

autoregressive conditional heteroskedasticity or GARCH.

The GARCH process of p and q orders can be defined as follows.

ϵt = σtzt (2.19)

where

σ2
t = α0 + α1ϵ

2
t−1 + ...+ αqϵ

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + ...+ βpσ

2
t−p. (2.20)

2.3 The concept of the auto-ARIMA model

The auto-ARIMA model [32] is the popular method for fitting the best ARIMA

model based on some criteria. The concepts of using the auto-ARIMA model are divided

into the likelihood concept part and the automatic identifying order (p, d, q) of the ARIMA

model by the criteria part. The details are shown as follows.
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2.3.1 The maximum likelihood concept

Next, the concept of the maximum likelihood method is described as follows.

Let x1, x2, . . . , xT be independent random samples from population X which be-

longs to a family of distribution functions governing by unknown parameter θ of the form

f(x; θ) where θ ∈ Γ.

The likelihood function, L(θ;x1, x2, ..., xt) or L(θ), can be written as

L(θ) =

T∏
i=1

f(xi; θ). (2.21)

The L(θ) can be simplified to the log-likelihood function as follows.

lnL(θ) =

T∑
i=1

ln f(xi; θ). (2.22)

Note θ̂ that maximizes the likelihood function L(θ) is called the maximum likelihood

estimator of θ. It can be written as

θ̂ = arg max
θ∈Γ

lnL(θ) (2.23)

where Γ is the parameter space of θ.

The next example demonstrates the transformation of parameters of the AR(1)

model.

Consider the AR(1) model:

xt = c+ ϕxt−1 + ϵt, ϵt ∼
iid

N(0, σ2)
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or

ϵt = xt − (c+ ϕxt−1), ϵt ∼
iid

N(0, σ2)

for t = 1, 2, 3, ..., T and θ = (c, ϕ, σ2), |ϕ| < 1, where ϵt satisfies a normal distribution with

zero mean and constant variance and has the properties of independent and identically

distributed.

Given ϵt having a normal distribution, its probability density function is

f(ϵt; θ) =
1

σ
√
2π

e
−
1

2

(ϵt
σ

)2
(2.24)

=
1

σ
√
2π

e
−
1

2

(
(xt − (c+ ϕxt−1)− 0

σ

)2

(2.25)

=
1

σ
√
2π

e
−
1

2

(
(xt − (c+ ϕxt−1)

σ

)2

.

Hence, the log likelihood function of the AR(1) model can be derived as

lnL(θ) =

T∑
i=1

ln

 1

σ
√
2π

e
−
1

2

(
(xt − (c+ ϕxt−1)

σ

)2
 (2.26)

=
T − 1

2
ln(2π)− T − 1

2
ln(σ2)− 1

2σ2

T∑
i=1

(xt − (c+ ϕxt−1)
2.

The log-likelihood function is a non-linear function of the parameters θ which all

coefficients of the AR(1) model can be found by maximizing lnL(θ). there are various

methods to solve the non-linear function, such as Newton’s method and the Steepest

Descent method.

2.3.2 Automatic identifying orders of the auto-ARIMA model by AIC

The main concept to automatically identify the ARIMA order is to use a criterion

that can distinguish a good and a bad forecasting model. One such criteria is the Akaike
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information criterion or AIC defining as follows

AIC = −2 ln(L) + 2(p+ q + k). (2.27)

where p is the autoregressive order and q is the moving average order. k = 1, if there is

an intercept or constant in the ARIMA model and 0 otherwise. ln(L) is the maximized

log likelihood function fitted by the model.

AIC in Equation (2.28) comprises of two parts including the error from the log

likelihood function and the number of parameters. The best model for this method

should have the minimum AIC value which it means that the errors of the model should

be satisfied with the white noise process which causes the log likelihood function value to

be high. Nevertheless, AIC also consists of a penalty which is an increasing function of the

number of estimated parameters. The penalty in AIC is represented via the parameters

part to prevent overfitting. AIC is useful in choosing the ARIMA model automatically.

The best model is obtained by minimizing the AIC varying the AR order and the MA

order.

The popular method to identify the minimum AIC is to perform the grid search.

From the example, thirty six ARMA models varying p order from 0-5 and q order from

0-5 are generated. There are ARMA(1,1), ARMA(1,2), ARMA(1,3), ..., ARMA(5,4) and

ARMA(5,5). The table of AICs performing using the grid search is shown in Table 2.4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

The AR(p) order

0 1 2 3 4 5

0 3588.66 3588.47 3589.88 3591.62 3592.18 3593.31

1 3588.61 3584.68 3586.26 3599.26 3590.17 3592.00

2 3590.03 3586.26 3588.32 3590.25 3590.73 3594.10

3 3591.88 3589.08 3583.76 3593.01 3589.64 3591.00

4 3592.88 3590.16 3592.25 3594.10 3583.88 3586.88

The MA(q) order

5 3594.05 3590.79 3594.07 3596.02 3586.78 3587.79

Table 2.4: The table of AIC generated from the grid search

From Table 2.4, the minimum AIC of the ARMA model is at order p = 2 and order

q = 3. It means that the ARMA(2,3) model is the best model having less parameters and

maintaining the minimal residual.

2.4 The model measurements for the forecasting time series

To assess the model performance, the mean absolute percentage error, the symmet-

ric mean absolute percentage error, the root mean square error and the mean absolute

error are used as the model measurements. Their formulae are described next.

Let xi, x̂i be the actual data and the forecasting data, respectively and N be the

number of the forecasted data.

The mean absolute percentage error or MAPE is the average of the relative differ-

ence between the actual time series value and its forecast. It can be written as

MAPE =
1

N

N∑
i=1

|xi − x̂i|
|xi|

.

The symmetric mean absolute percentage error or SMAPE is the average of the

difference between the actual time series value and its forecast divided by the middle

value of those two absolute values. It can be written as
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SMAPE =
1

N

N∑
i=1

|xi − x̂i|
|xi|+ |x̂i|

2

.

The root mean square error or RMSE is the square root of the average of the squared

difference between the actual time series value and its forecast. It can be written as

RMSE =

√√√√ N∑
i=1

(xi − x̂i)2

N
.

The mean absolute error or MAE can is the average of the absolute difference

between the actual time series value and its forecast. It can be written as

MAE =

N∑
i=1

|xi − x̂i|
N

.

The next example shows how to use these model measurements to evaluate the

forecasting time series. Consider ten forecasting values from three time series models as

shown in Figure 2.6.

Figure 2.6: The plot of the actual time series data and the three forecasting data
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From Figure 2.6, the actual values is A = {xi|i = 1, 2, ..., 10} = {-1.0023, -0.2429,

0.9521, 0.7095, 1.4091, -0.0929, 0.0907, 0.1378, -1.8593, -0.163}, the forecasting values

of Model 1 is F1 = {x̂(1)i |i = 1, 2, ..., 10} = {-1.0023, -0.2429, 0.9521, 0.7095, 1.4091, -

0.0929, 0.0907, 0.1378, -1.8593, -0.163}, the forecasting values of Model 2 is F2 = {x̂(2)i |i =

1, 2, ..., 10} = {-0.7959, -0.3235, 0.8604, 0.4019, 0.8428, -0.0733, -0.2893, 0.2813, -0.7882,

-0.7461 } and the forecasting values of Model 3 is F3 = {x̂(3)i |i = 1, 2, ..., 10} = {-2.9722,

0.1051, 1.5629, 2.366, 2.2047, -1.1296, 1.0722, 0.1012, -3.2793, 1.5384}.

To measure the accuracy of forecasting the time series data, MAPE, SMAPE, RMSE

and MAE of Model 1 can be calculated as follows.

MAPE =
1

10

10∑
i=1

|xi − x̂
(1)
i |

|xi|
(2.28)

=
1

10

(
| − 1.0023− (−1.0023)|

| − 1.0023|
+

| − 0.2429− (−0.2429)|
| − 0.2429|

+ ...

)
(2.29)

= 0.92

SMAPE =
1

10

10∑
i=1

|xi − x̂
(1)
i |

|xi|+ |x̂(1)i |
2

(2.30)

=
1

10

(
| − 1.0023− (−1.0023)|

|−1.0023|+|−1.0023|
2

+
| − 0.2429− (−0.2429)|

|−0.2429|+|−0.2429|
2

+ ...

)
(2.31)

= 0.94
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RMSE =

√√√√ 10∑
i=1

(xi − x̂
(1)
i )2

10
(2.32)

=

√(
(−1.0023− (−1.0023))2

10
+

(−0.2429− (−0.2429))2

10
+ ...

)
(2.33)

= 0.27

MAE =

10∑
i=1

|xi − x̂
(1)
i |

10
(2.34)

=

√(
| − 1.0023− (−1.0023)|

10
+

| − 0.2429− (−0.2429)|
10

+ ...

)
(2.35)

= 0.27

For Model 2 and Model 3, MAPE, SMAPE, RMSE and MAE can be calculated

similar to Model 1. By following these model measurements, MAPE, SMAPE, RMSE

and MAE of Model 1, 2 and 3 are shown in Table 2.5.

MAPE SMAPE RMSE MAE

Model 1 0.92 0.94 0.27 0.24

Model 2 1.59 1.07 0.61 0.52

Model 3 4.27 1.27 1.11 1.0

Table 2.5: MAPE, SMAPE, RMSE and MAE of forecasting time series data

The best forecasting model should provide the smallest value of MAPE, SMAPE,

RMSE and MAE, From Table 2.5, it can be concluded that Model 1 is the best in

forecasting the time series data.
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2.5 The statistical test of the forecasting time series

To confirm the performance of the forecasting time series model, the Ljung-Box

test is introduced to test the correlation within the residuals after fitting the time series

model. The Ljung–Box test, introduced by Greta M. Ljung and George E. P. Box, is

a statistical test of whether autocorrelations of time series data are different from zero.

The Ljung–Box test is widely used in econometrics and other applications of time series

analysis for testing the residuals of forecating the time series. The Ljung–Box test can be

defined as:

• H0: The data are independently distributed or the correlation in the population

from the sample is 0.

• H1: The data are not independently distributed; their correlations are not equal

to 0.

The test statistic of the Ljung-Box test is defined as

Q(h) = n(n+ 2)

h∑
k=1

ν̂2k
n− k

where n is the sample size, ν̂k is the sample autocorrelation of the residual at lag

k, and h is the number of lags being tested. For significance level α, the null hypothesis

H0 is rejected when Q(h) > χ2
1−α,h. For the alternative way to test the hypothesis, the

p-value can be used which it is generated from the Chi-squared table. H0 is rejected when

the p-value < α.

Next, the example of the Ljung-Box test to test the residual of forecasting time

series is shown. From the example, there are two residuals occurring from forecasting by

two time series models as shown in Figure 2.7 and Figure 2.8.
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Figure 2.7: Residual 1 plot

Figure 2.8: Residual 2 plot

Both residuals can be evaluated independent by calculating sample ACF as shown

in Section 2.1. The ACF plots of two residuals are shown in Figure 2.9 and Figure 2.10.
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Figure 2.9: The ACF plot of residual 1

Figure 2.10: The ACF plot of residual 2

From Figure 2.7 and Figure 2.8, sample ACF of residual 1 and 2 for 20 lags is

ACF (1) = {ν(1)k |k = 0, 2, ..., 19} = {1.0, 0.0002, 0.0358,−0.0313, 0.0059, 0.072,−0.1284,

− 0.0168, 0.0149, 0.1485, 0.0216,−0.1478, 0.0132,−0.0896, 0.0162, 0.1588, 0.081, 0.1415,

0.0063, 0.0201, 0.0127} and ACF (2) = {ν(2)k |k = 0, 2, ..., 19} = {1.0,−0.1201,−0.0081,

−0.0557, 0.0474, 0.071, 0.069, 0.0715,−0.1016,−0.1456,−0.0571, 0.1835,−0.1594, 0.0041,

− 0.1719, 0.0574,−0.0356,−0.0403,−0.0,−0.069,−0.0255}, respectively.
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Next, the statistical test of Ljung Box is used to test independent of residual 1

and 2 from sample ACF. For the statistical values, (Q(1)(h)), of the Ljung Box test from

residual 1 can be calculated as follows.

Q(1)(1) = 100(100 + 2)

1∑
k=1

(ν
(1)
k )2

100− k
(2.36)

= 0

Q(1)(2) = 100(100 + 2)

2∑
k=1

(ν
(1)
k )2

100− 2
(2.37)

= 0.13325

Q(1)(3) = 100(100 + 2)

3∑
k=1

(ν
(1)
k )2

100− 3
(2.38)

= 0.236

For the statistical values, (Q(2)(h)), of the Ljung Box test from residual 2 can be

calculated as follows.

Q(2)(1) = 100(100 + 2)

1∑
k=1

(ν
(2)
k )2

100− k
(2.39)

= 1.41307
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Q(2)(2) = 100(100 + 2)

2∑
k=1

(ν
(2)
k )2

100− 2
(2.40)

= 2.91687

Q(2)(3) = 100(100 + 2)

3∑
k=1

(ν
(2)
k )2

100− 3
(2.41)

= 10.46637

Each statistical value, Q(h), can be checked by the Chi-squared test with signifi-

cance level α and h degrees of freedom. The null hypothesis is rejected at Q(2)(3) since

Q(2)(3) > χ2
1−α,3. It means that residual 2 is dependent when sample ACF is accumulated

after lag 3. It can be concluded that the model that generates residual 2 is not good for

forecasting.

For the alternative test of the hypothesis, the p-value generating by the Chi-squared

table is introduced. H0 is rejected when the p-value < 0.05. The p-values of each Q(h)

are plot in Figure 2.11 and Figure 2.12.
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Figure 2.11: The p-values plot of residual 1

Figure 2.12: The p-values plot of residual 2

From Figure 2.11 and Figure 2.12, It is shown that p-values from residual 1 is above

0.05 for every lag of ACF whereas p-values from residual 2 is below 0.05 after lag 3 of

ACF. It can be concluded that the model giving residual 1 is more powerful in forecasting

than the model giving residual 2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

BACKGROUND KNOWLEDGE OF DEEP

LEARNING

This chapter demonstrates the necessary background knowledge of deep learning

using in this dissertation. Firstly, the concept of deep learning is demonstrated in Section

3.1. Secondly, the process of updating weights by the backpropagation is explained in

Section 3.2. Thirdly, a review on convolutional neural networks is demonstrated in Section

3.3. Fourthly, the convolutional neural network concept and the pooling concept are

explained in Section 3.4. Lastly, the model measurements for the classification problems

are introduced in Section 3.5.

3.1 The concept of deep learning

Deep learning is a part of machine learning methods based on an artificial neural

network or ANN which is inspired by information processing and distributed communi-

cation nodes in biological brain systems. The definition of deep learning is introduced by

Deng and Yu [33] in 2014. The quote definition of deep learning is “a class of machine

learning algorithms that uses multiple layers to progressively extract higher level features

from the raw input. For example, in image processing, lower layers may identify edges,

while higher layers may identify the concepts relevant to a human such as digits or letters

or faces”. Moreover the deep learning models arise from the combination of ANN and

the concept of the convolutional neural networks or CNN. In deep learning, each layer

attempts to learn for transforming the input data to extract the features which are in the

inputs. In general, deep learning is applied to the image classification which the input

data is a matrix of pixels.

The basic structure of ANN comprises of three parts which are the input layer, the
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hidden layer and the output layer. The nodes in each layer of ANN are connected by

edges along their weights. The basic structure of ANN is shown in Figure 3.1.

Figure 3.1: The structure of ANN

The structure in each node in the hidden layer is demonstrated via the example

in Figure 3.2. All inputs x1, x2, x3 are sent to the node in the hidden layer while the

sum of the products between inputs and weights is sent to the activation function before

submitting the output y.

Figure 3.2: The structure of a node in the hidden layer



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

In an artificial neural network, the activation function is used to define the output.

Next, two popular activation functions are described which are the sigmoid function and

the relu function.

The sigmoid funcion is a function having a characteristic “S”-shaped curve defined

as follows

f(x) =
1

1 + e−x

The domain of the sigmoid function is all real numbers. The values of the sigmoid

function in range 0-1 are shown in Figure 3.3.

Figure 3.3: The sigmoid function

Next, the relu function is defined as follows

f(x) = max{0, x},

f(x) is set to be 0 when x is a negative value and f(x) is equal to x when x is a

positive value or 0 as shown in Figure 3.4.
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Figure 3.4: The relu function

3.2 The backpropagation concept

This section covers the method for training an artificial neural network to update

weights in the deep learning model. The method is called the backpropogation which uses

the gradient of the error function with respect to the neural network’s weights to update

the new weights. The whole process is shown via the example next.

The neural network is defined by two inputs, one hidden node and one output. The

input values of x1 and x2 are set to be 0.1 and 0.3, respectively. The initial weights w1

and w2 are set to be 0.2 and 0.6, respectively and the target of output is 0.5. The process

is shown in Figure 3.5.
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The goal of backpropagation is to optimize the weights of this neural network. This

process is divided into three parts including “The Forward Pass”, “Calculating the Total

Error”,and “The Backward Pass”.

The Forward Pass

From Figure 3.5, it begins with calculating x in the hidden layer as follows:

x = w1 × x1 + w2 × x2 (3.1)

= 0.2× 0.1 + 0.6× 0.3 (3.2)

= 0.2

Then, the output yout can be calculated by the activation function. For this exam-

ple, the sigmoid function is applied as follows:

yout = f(x) (3.3)

= f(0.2) (3.4)

=
1

1 + e−0.2
(3.5)

= 0.55

After this step, the output yout is obtained from the hidden layer.

Calculating the Total Error
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After the previous step, the output yout is used to calculate the error as follows:

E = Error (3.6)

= (ytarget − yout)
2 (3.7)

= (0.5− 0.55)2 (3.8)

= 0.0025

The Backward Pass

The goal with backpropagation is to update each weight in the neural network. For

this example, the weights w1 and w2 are updated as follows:

Consider w1, the effect of w1 to the error can be considered by the partial derivative

of E or ∂E
∂w1

where E is the composite function of yout and x which are differentiable. By

applying this with the chain rule, ∂E
∂w1

can be calculated as follows:

∂E

∂w1
=

∂E

∂yout
× ∂yout

∂x
× ∂x

∂w1

where

∂E

∂yout
=

∂(ytarget − yout)
2

∂yout
= −2(ytarget − yout),

∂yout
∂x

=
∂yout
∂x

=
∂ 1
1+ex

∂x
= x(1− x)

and

∂x

∂w1
=

∂(w1 × x1 + w2 × x2)

∂w1
= x1
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.

Hence, ∂E
∂w1

can be calculated as follows:

∂E

∂w1
=

∂E

∂yout
× ∂yout

∂x
× ∂x

∂w1
(3.9)

= −2(ytarget − yout)× x(1− x)× x1 (3.10)

= −2(0.5− 0.55)× 0.2(1− 0.2)× 0.1 (3.11)

= 0.0016

To decrease the error, the weights of the neural network have to be updated.

wnew = wold − α
∂E

∂wold

where α represents the learning rate. For this example, α is set to be 0.5. Therefore,

weight w1 can be updated as follows:

wnew
1 = wold

1 − α
∂E

∂wold
1

= 0.2− 0.5× 0.0016 = 0.1992

Then, weight w2 can be calculated the same way as weight w1. The process of

updating w1 and w2 is repeated by the backpropagation concept until the error of the

neural network converges to 0.

3.3 A review on convolutional neural networks

Afterward, a convolutional neural network or CNN is applied to the deep learning

model to increase the efficiency of images classification. There are several convolutional

neural networks or CNN architectures appearing in the current research.
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In 1983, LeCun et al. proposed the LeNet architecture to classify digits as review

in [34]. Emerging architectures are proposed due to a large benchmark collection from

ImageNet [35]. AlexNet was introduced by Krizhevsky et al. in 2012 [34]. This architec-

ture consists of 5 convolutional layers using 96 filter matrices of size 11 × 11 and 3 fully

connected layers. Later, VGGNet was proposed by Simonyan and Zisserman in 2014 [36].

The number of layers of VGGNet can vary depending on the type of the VGGNet mod-

els. For example, VGG16 has 16 layers of convolutional layers and max-pooling layers.

The size of filter matrices of this model is 3×3 and the model uses only non-overlapping

max-pooling. Then GoogLeNet was proposed in 2014 by Google [37]. This model is

built from the inspiration of LeNet but added the new concept of CNN, called inception

module to improve feature extraction of the model. Moreover, ResNet was introduced

by Kaiming He et al [34] in 2015 which it uses the concept of skip connection which is

gated recurrent units in RNN and applies batch normalization in the convolutional layers.

However, their basic structure of CNN is similar. The basic structure of CNN is called the

convolutional block consisting of the convolutional layer and the pooling layer. Finally,

the fully connected layer is used according to the concept of the artificial neural network

for computing the outputs. The whole process of the deep learning model applying with

the CNN is shown Figure 3.6.
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Presently, CNN has been used in the classification of time series and time series

forecasting. In 2018, Liu et al [38] used the multivariate convolutional neural network

models for time series classification of the prognostics and health management. In the

same year, Koprinska et al [39] used the convolutional neural network model for forecasting

four solar and electricity time series from Australia, Portugal and Spain. In 2020, Wang

et al [40] introduced the new recurrent convolutional neural network model to forecast

photovoltaic solar power and electricity load for the next day. This research uses the

concept of CNN to identify the ARIMA order and the SARIMA order using ESACF,

PACF, ACF and differencing time series as inputs.

3.4 The convolutional neural network concept and the pooling concept

The concept of convolutional layer is to learn features from the input images which

is composed of several convolutional kernels or filter matrices. Consider the following

example in Figure 3.7.

Figure 3.7: The convolution concept

From Figure 3.7, the values in the image matrix are multiplied with the filter matrix

of size 3×3 with known elements and add them together as the output, called a receptive

field.

Then, the concept of pooling is applied for reducing the resolution of the images
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and pulling out the distinctive features of the image. In practice, the concept of max-

pooling is popularly used as shown in Figure 3.8 which will replace a block of the matrix

by the largest values on the receptive field. The output of the max-pooling layer is called

a feature map. In this example, the max-pooling size is set to 2×2.

Figure 3.8: The max-pooling concept

3.5 The model measurements for the classification problems

The model measurements for the classification problems using in this dissertation

consist of the precision, the recall and the f1-score describing as follows.

Before describing the formulae of the precision, the recall and the F1-socre, the

confusion matrix is introduced as follows.

Predicted class

Class = Yes Class = No

Class = Yes True Positive False NegativeActual class

Class = No False Positive True Negative

Table 3.1: The confusion matrix

where
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• True Positives or TP: When the value of the actual class is yes and the value of the

predicted class is also yes.

• True Negatives or TN: When the value of the actual class is no and the value of

the predicted class is also no.

• False Positives or FP: When the actual class is no and the predicted class is yes.

• False Negatives or FN: When the actual class is yes but the predicted class is no.

Therefore, the precision, the recall and the f1-score can be calculated as follows

precision =
TP

TP + FP

recall =
TP

TP + FN

f1− score = 2× precision× recall

precision+ recall

For the example, the confusion matrices of model 1 and 2 are set as Table 3.2 and

3.3.

Predicted class

Class = Yes Class = No

Class = Yes 30 10Actual class

Class = No 5 55

Table 3.2: The confusion matrix of model 1
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Predicted class

Class = Yes Class = No

Class = Yes 35 5Actual class

Class = No 25 35

Table 3.3: The confusion matrix of model 2

The precision, the recall and the f1-score of model 1 can be computed as follows

precision =
TP

TP + FP
=

30

30 + 5
= 0.87

recall =
TP

TP + FN
=

30

30 + 10
= 0.75

f1− score = 2× precision× recall

precision+ recall
= 2× 0.87× 0.75

0.87 + 0.75
= 0.80

.

The precision, the recall and the f1-score of model 2 can be computed as follows

precision =
TP

TP + FP
=

35

35 + 25
= 0.58

recall =
TP

TP + FN
=

35

35 + 10
= 0.77

f1− score = 2× precision× recall

precision+ recall
= 2× 0.58× 0.77

0.58 + 0.77
= 0.66

.
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A good model for the classification problem should have both the high precision

and the high recall. From the experimental results of this example, model 2 has the high

recall but has the low precision while model 1 has the high scores of both the precision and

the recall. Therefore, it can be concluded that model 1 is more effective in classification

than model 2. Moreover, when considering the average score between the precision and

the recall by using the f1-score, model 1 clearly has the higher f1-score.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

METHODOLOGY TO IDENTIFY THE

ARIMA ORDER

This chapter explains the process to build the deep learning models for identify-

ing the ARIMA order. The first section covers the deep learning architecture and the

training process of the self-identification deep learning model or the SID model using

simulated time series data. Then, the SID model is extended to the self-identification

ResNet-ARIMA model or the SIRA model by using the architecture of ResNet which is

explained in the second section. The third section is to describe the ACF-PACF-ESACF

convolutional neural network ARIMA order identification model or the APEA model

using ESACF as a part of inputs.

4.1 The self-identification deep learning model

This section covers the motivation and the process of constructing the SID model

and its experimental results. The details are shown as follows.

4.1.1 The architecture of the SID model

In the time series analysis, the ARIMA model is normally used for forecasting the

time series data. It is built via two important steps which are (1) the model identification

to recognize the ARIMA order and (2) the fit coefficients of the ARIMA model. To

apply the deep leaning model to the model identification, the deep learning model must

learn a large number of the time series inputs having the correct ARIMA order. The

simulated ARIMA time series data are synthesized for training the deep learning model.

Nevertheless, using the raw time series data as the inputs may not help the deep learning

model to identify the ARIMA order accurately. Therefore, the ACF plot and the PACF
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plot are used. In this research, the raw time series data are used to generate the ACF

plot and the PACF plot before submitting to the deep learning model.

In constructing a deep learning model, the first step begins with assigning the input

data for training the deep learning model and their labels. In this research, the simulated

ARMA time series data are used for training the pq-SID model to learn the ARMA

order. After the pq-SID model is constructed, the training time series data are reused

for differencing to learn the differencing order. Consequently, this subsection explains the

architecture of the SID model and its training process using simulated time series data.

The SID model is split into two parts which are the pq-SID model using for identifying the

ARMA order from 0-5 and the d-SID model using for identifying the differencing order

from 0-2.

Identifying the ARMA order requires the PACF plot and the ACF plot instead of

the time series data alone. In the time series analysis, PACF and ACF are useful for

identifying the ARMA order where PACF is used for identifying the AR order and the

ACF is used for identifying the MA order. Therefore, the inputs of the pq-SID model

comprise of three channels of 50×50 black and white images. The first channel is an image

of the ACF plot, the second channel is an image of the PACF plot and the third channel

is the time series image. The pq-SID model consists of 6 convolutional layers applying the

max-pooling layer over two adjacent convolutional layers. The convolutional layers have

64 of 3×3 filter matrices with the stride = 1 and the max-pooling layer has a size matrix

of 2×2 and the stride is set to 2. It is followed by two fully connected layers having 512

and 1024 nodes, respectively. Finally, the final layer is softmax applied with all possible

orders of p from 0-5 and q from 0-5.

For the case of identifying the differencing order, the deep learning architecture

of the d-SID model is used only the inputs of differencing. Since, in identifying the

differencing order, ACF can be used to indicate the trends within the time series data.

Therefore, the d-SID model consists of 3 channels of the ACF plots from time series

taking differencing to time series from d = 0 to 2. For the final layer, softmax is applied.
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The architectures of the pq-SID model and the d-SID model are shown in Figure 4.1 and

Figure 4.2.
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In the training process of these SID models, all simulating time series data are

converted to their corresponding images which are split to the training data, the validating

data and the testing data. The training data is used for updating weights of the deep

learning model. The validating data is used for evaluating the accuracy occurring in

training the deep learning model. The weights in the deep learning model are updated

until the accuracy of the training data and the validating data converge. After finishing

training the deep learning model, the testing data is used to measure the performance of

the obtained SID model.

In this research, the simulated time series data for training the pq-SID model are

generated from the ARMA process by varying p from 0 to 5 and q from 0 to 5. More-

over, all coefficients of the process must be randomly generated to satisfy the stationary

property and the invertibility property from the uniform distribution within range -1 to 1.

If the stationary property or invertibility property is not satisfied, all coefficients will be

regenerated. The number of the time series data in the training data, the validating data

and the testing data are 7200, 3600 and 720, respectively. The process and the example

of time series are shown in Figure 4.3.

Figure 4.3: The process of the simulated time series data of the ARMA order and
the example of the time series data.
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In the process of simulated time series for the differencing order to train the d-SID

model, the time series data are simulated by Equation (4.1)

yt+1 = xt + yt (4.1)

where xt is the simulated data from the ARMA process and yt is the simulated data

having differencing d = 1. The initial value y0 is random from the uniform distribution

within range -1 to 1.

Next, to prove that yt satisfies to the ARIMA(p, 1, q) process. Let xt be the time

series satisfying the ARIMA(p, 0, q) process and yt be the time series satisfying with

Equation (4.1). Hence, xt can be written as

ϕp(B)xt = θq(B)ϵt (4.2)

where xt and ϵt are the time series data and random error at time t. From Equation

(4.1), it can be rewritten as

xt = yt+1 − yt = ▽yt (4.3)

Substitute ▽yt into the xt in Equation (4.2).

ϕp(B)▽yt = θq(B)ϵt (4.4)

From Equation (4.4), yt is the time series satisfying with the ARIMA(p, 1, q).

To calculate yt having differencing d = 2, xt is set to be the simulated data having

differencing d = 1. The example of simulating time series data having d = 1 is shown as
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follows.

Let X = {xt|t = 0, 1, 2, ..., 19} = {0.63,−0.45,−0.38, 0.02, 0.22, 0.66,−0.14, 0.86

,−0.27,−0.05, 0.33, 0.83, 0.06,−0.41, 0.46,−0.08,−0.32, 0.69, 0.43,−0.83} be the simu-

lated time series data from the ARMA process and Y = {yt|t = 0, 1, 2, ..., 19} be the

simulated data having differencing d = 1 and the initial value y0 be 0.66. The elements

in Y can be calculated as follows.

y1 = x0 + y0 (4.5)

= 0.63 + 0.66 (4.6)

= 1.29

y2 = x1 + y1 (4.7)

= −0.45 + 1.29 (4.8)

= 0.84

y3 = x2 + y2 (4.9)

= −0.38 + 0.84 (4.10)

= 0.46

For the rest of elements in Y can be generated similarly. Hence, Y is {0.66, 1.29,

0.84, 0.46, 0.48, 0.7, 1.36, 1.22, 2.08, 1.81, 1.76, 2.09, 2.92, 2.98, 2.57, 3.03, 2.95, 2.63,

3.32, 3.75, 2.92}. The time series plot of this example is shown in Figure 4.4.
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Figure 4.4: The example of time series having differencing d = 0, 1, 2.

For this case, the process is repeated two times to simulate time series data having

the differencing order d from 0 to 2. Hence, the number of the time series data in

the training data, the validating data and the testing data are 21600, 10800 and 2160,

respectively. The processes are shown in Figure 4.5.
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Figure 4.5: The processes of simulated time series data of the differencing orders.

After the simulating time series data is generated, ACF and PACF are generated

and are converted to the ACF image, the PACF image and the time series image which

are black and white. The generating processes of ACF and PACF images are described

in Figure 4.6 and Algorithm 1. For the ACF images, the process begins to calculate the

ACF values of the time series data. Then, the ACF values are put into two sets which

are P (the set of positive values) and N (the set of negative values). Next, P is used to

build the upper image of the ACF plot by marking the point according to the size of the

ACF value in P. For N, it is used to build the lower image. For the PACF images can

be done similarly as the ACF plot. For converting the time series data to the time series

image, the process is described in Figure 4.7 and Algorithm 2. The time series data is

transformed into the two-dimensional image according to the size of the image as shown

in Figure 4.7. For this example, the size of the image is set to be 10×10. Then, the

two-dimensional image of the time series data is normalized to be in the range 0 to 1.
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Figure 4.6: The example of generating the ACF image.

Algorithm 1 : Pseudo code for generating images of ACF/PACF
Input: ACF/PACF, k = the maximum lags of ACF/PACF

1: Define the image size as k × k
2: Split ACF/PACF values to P if the ACF/PACF value is non-negative and to

N otherwisw.
3: Generate the upper image(positive part)
4: for lag i=1 to k do
5: Plot points with height of P[i]
6: Generate the lower image(negative part) similar to step 3-5 using N instead

of P
7: Merge the upper image and the lower image together
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Figure 4.7: The example of generating the series image.

Algorithm 2 : Pseudo code for generating time series images
Input: time series data, image size = k

1: Define the image size as k × k
2: Generate the image
3: Reshape 1 dimension of the time series having length of k2× 1 to 2 dimension

image having size of k × k
4: Normalize the image into range 0-1

4.1.2 Experimental results of the SID model

This section shows the experimental results of identifying the ARIMA order via the

SID model which are divided into three cases: (1) the cases of identifying the AR order

from 0-5, (2) the cases of identifying the MA order from 0-5 and (3) the case of identifying

the differencing order from 0-2. The settings of each model having different channels are

demonstrated in Table 4.1.
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Case: identify p Case: identify q Case: identify d
Model

Channel(s) Channel(s) Channel(s)

Model S1 SID
1 channel:

PACF images

1 channel:

ACF images

3 channels: ACF images

with d = 0, 1 and 2

Model S2 SID

2 channels:

PACF and ACF

images

2 channels:

PACF and ACF

images

None

Model S3 SID

3 channels:

PACF, ACF and

time series images

3 channels:

PACF, ACF and

time series images

None

Model R ResNet50 Series Series None

Model L
auto-ARIMA

(AIC criteria)
Series Series Series

Table 4.1: Description of each channel in the models for identifying the ARIMA order

The different input images come from their uses for identifying the ARMA order

in the time series analysis. S1 uses the PACF images because PACF is used to identify

the p order in the ARIMA model. In addition, S2 also uses the ACF image as the input

since it also identifies the q order with the different characteristics. Moreover, S3 uses

the time series images as inputs to add more information to the deep learning model.

Two candidate models which are the ResNet50 model and the auto-ARIMA model are

referred using their abbreviations as shown in Table 4.1. The SID model is called S1, S2

and S3 according to the inputs. R and L are represented as the ResNet50 model and the

auto-ARIMA model.

Results of identifying the p order of the SID model

Figure 4.8 summarizes the scores of all models corresponding to the precision, the

recall and the f1-score, respectively. From the results, S1, S2 and S3 are the best scores

for all measurements having scores close to 1. The performance of S1, S2 and S3 is quite

similar but S1 is the best. Both R and L give inferior performance.
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Figure 4.8: The precisions, the recalls and the f1-scores of the models identifying p

Results of identifying the q order of the SID model

From Figure 4.9, S2 and S3 give the best the precision, the recall and the f1-score.

All scores of S2 are highest with respect to other models. R has trouble predicting q with

the low values of the precision, the recall, the f1-score. L is better than R yet it is inferior

than S1, S2, S3 for all measures.
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Figure 4.9: The precisions, the recalls and the f1-scores of the models identifying q

Results of identifying the d order of the SID model

Figure 4.10 shows the precision, the recall and the f1-score between S1 and L which

it is clear that S1 gives the best values of the precision, the recall and the f1-score.
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Figure 4.10: The precisions, the recalls and the f1-scores of the models identifying d

4.1.3 The conclusion of the SID model

For the conclusion of the SID model, the SID is constructed by training the PACF

images and the ACF images as the inputs to identify the ARIMA order. The SID model

is separated into the pq-SID model to identify the ARMA order and the d-SID model to

identify the differencing order. The results of the SID model demonstrates the suitable

ARIMA order measuring via the scores of the precision, the recall and the f1-score whereas

the auto-ARIMA model fails to give the suitable ARIMA order. The outcome from

this experiments confirms that using of ACF and PACF via visualizing as images is still

more appropriate for model identification than the auto-ARIMA model and the ResNet50

model using the time series as inputs directly. Next, to improve the performance of the

SID model, the SID model is adapted to the very deep network based on the architecture

of ResNet. The details are shown in the next section.
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4.2 The self-identification ResNet-ARIMA model

This section demonstrates the the process of constructing the SIRO model which

is extended from the SID model using the architecture of ResNet to identify the ARIMA

order and its experimental results. The details are shown as follows.

4.2.1 The architecture the SIRO model

In the deep learning architecture, ResNet is one of the popular deep learning archi-

tecture. It is built to help learning of very deep network which has the problem of updated

weights. For a deep learning model with a long chains of the convolutional layers, it has

the vanishing gradient problem where the gradient in the backpropagation process for

updating the weights is getting smaller and closer to 0 inside the network. To fix this

problem, the ResNet architecture is introduced using the concept of skipping the CNN

layers. This section explains the architecture of the SIRO model based on the ResNet

architecture. The model is split into two parts including the pq-SIRO model using for

identifying the ARMA order from 0-5 and the d-SIRO model using for identifying the

differencing order from 0-2.

The pq-SIRO model for identifying the ARMA order is constructed based on the

ResNet architecture. The inputs of the pq-SIRO model comprise of five channels of

50×50 black and white images. The first channel is an image of the ACF plot, the second

channel is an image of the PACF plot and the rest are images of the time series image

taking differencing from d = 0 to 2. The pq-SIRO model consists of 14 convolutional

layers applying the concept of skip connections over two adjacent convolutional layers.

The first six convolutional layers have 64 of 3×3 filter matrices with the stride = 1 and

the next eight convolutional layers have 128 of 3×3 filter matrices with the stride = 1.

The next layer is the max-pooling layer of the filter of size 2×2 and the stride is set to 2.

It is followed by a fully connected layer having 512 nodes, respectively. Finally, the final

layer is softmax applied with all possible orders p from 0-5 and q from 0-5.

For the case of identifying the differencing order, the deep learning architecture of
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the d-SIRO model is similar to the case of identifying the ARMA order but the inputs

are different. The d-SIRO model of this case consists of 3 channels of the ACF plots from

time series taking differencing to time series from d = 0 to 2 or the time images from time

series taking differencing to time series from d = 0 to 2. For the final layer, softmax is

applied with possible d from 0-2. The architectures of the pq-SIRO model and the d-SIRO

model are shown in Figure 4.11 and Figure 4.12.
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In this research, the simulated time series data are generated from the ARMA

process as in Section 4.1 by varying p from 0 to 5 and q from 0 to 5. All coefficients

of the process must be randomly generated to satisfy the stationary property and the

invertibility property from the uniform distribution within -1 to 1. The number of the

time series data in the training data, the validating data and the testing data are 7200,

3600 and 720, respectively.

In the process of simulated time series for the differencing order, the simulated time

series data from the ARMA process is accumulated by varying d from 0 to 2, respectively.

The number of the time series data in the training data, the validating data and the

testing data are 21600, 10800 and 2160. The processes of simulating time series and

generating images are the same as Section 4.1.1.

4.2.2 Experimental results of the SIRO model

This section is to explain the experimental results of identifying the ARIMA order

via the SIRO model which are divided into three cases including the cases of identifying

the AR order from 0-5, the cases of identifying the MA order from 0-5 and the case of

identifying the differencing order from 0-2. The settings of each model having different

channels are demonstrated in Table 4.2.
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Case: identify p Case: identify q Case: identify d
Model

Channel(s) Channel(s) Channel(s)

Model S1 SIRO
1 channel:

PACF images

1 channel:

ACF images

3 channels: ACF images

with d = 0, 1 and 2

Model S2 SIRO

2 channels:

PACF and ACF

images

2 channels:

PACF and ACF

images

3 channels: time series

images with d = 0, 1, 2

Model S3 SIRO

3 channels:

PACF, ACF and

time series images

with d = 0

3 channels:

PACF, ACF and

time series images

with d = 0

None

Model S4 SIRO

4 channels:

PACF, ACF and

time series images

with d = 0, 1

4 channels:

PACF, ACF and

time series images

with d = 0,1

None

Model S5 SIRO

5 channels:

PACF, ACF and

time series images

with d = 0, 1, 2

5 channels:

PACF, ACF and

time series images

with d = 0, 1, 2

None

Model R ResNet50 Series Series None

Model L
auto-ARIMA

(AIC criteria)
Series Series Series

Table 4.2: Description of each channel in the models for identifying the ARIMA order

To explain the experimental results, the SIRO model and the candidate models

which are the ResNet50 model and the auto-ARIMA model are called via the abbre-

viations as shown in Table 4.2. The SIRO model is called via S1, S2, S3, S4 and S5

according to the setting inputs. R and L are represented to the ResNet50 model and the

auto-ARIMA model.

Results of identifying the p order the SIRO model

The measures of all models including the precision, the recall and the f1-score are

shown in Figure 4.13. From this experiment, the models having the top-five scores are S1,

S2, S3, S4 and S5. All scores are close to 1. Although the results of S1, S2, S3, S4 and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74

S5 provide similar scores of the precision, the recall and the f1-score, S1 gives the best

performance. For the worst case, L provides the scores around 0.5 to 0.6 in the precision,

the recall and the f1-score. For the case of model R, it is quite better than L, but this

model gives lower scores than S1, S2, S3, S4 and S5 when identifying higher order.

Figure 4.13: The precisions, the recalls and the f1-scores of the models identifying p

Results of identifying the q order of the SIRO model

For the case of identifying the q order, the scores of the precision, the recall and the

f1-score are demonstrated in Figure 4.14. The results show that model S1, S2 and S3 give
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the best scores of the precision, the recall and the f1-score. For the result of model R, all

scores have trouble predicting indicated by their scores close to 0.5 in the precision, the

recall and the f1-score. For the auto-ARIMA model case, L gives the better performance

than model R, however it is still worse than S1, S2, S3, S4 and S5.

Figure 4.14: The precisions, the recalls and the f1-scores of the models identifying q

Results of identifying the d order of the SIRO model

For the case of identifying the differencing order in Figure 4.15, it is obvious that

S1 provides the best scores of the precision, the recall and the f1-score in all cases. In the
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auto-ARIMA model case, L has the best the precision when d = 0 whereas the recall and

the f1-score of L is worse than the recall and the f1-score of S1 and S2.

Figure 4.15: The precisions, the recalls and the f1-scores of the models identifying d

4.2.3 The conclusion of the SIRO model

For the conclusion of the SIRO model, the SIRO is constructed based on the ResNet

architecture by training the PACF images and the ACF images as the inputs to identify

the ARIMA order like the SID model. The SIRO model is separated into the pq-SIRO

model to identify the ARMA order and the d-SIRO model to identify the differencing

order. In the experimental results of the SIRO model, it outperforms the auto-ARIMA

model and the previous deep learning model using ResNet50 in the scores of the precision,

recall and f1-score. The results are suggested that the SIRO model is able to extract the
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features of the ACF images, the PACF images and the series images which are tough

for analysts to identify the suitable ARIMA order. Next, the new tool of the time series

analysis is introduced for using to be the new input of the deep learning model. The

details are shown in the next section.

4.3 The ACF-PACF-ESACF convolutional neural network ARIMA order

identification model

This section demonstrates the process of constructing the APEA model using ESACF

as inputs and its experimental results. The details are shown as follows.

4.3.1 The architecture of the APEA model

In the time series analysis, the PACF plot using for identifying the AR order and

the ACF plot using for identifying the MA order are very useful to identify the ARMA

order. Nevertheless, the PACF plot and the ACF plot obscure one another. Therefore,

ESACF is introduced to identify the AR order and the MA order using a single plot.

Consequently, this section explains the architecture of the APEA model using ESACF as

inputs of the deep leaning model. The model is split into two parts: (1) the pq-APEA

model using for identifying the ARMA order from 0-7 and (2) the d-APEA model using

for identifying the differencing order from 0-3.

In this research, the pq-APE model for identifying the ARMA order is built based

on the CNN model. The inputs of the pq-APEA model consist of four channels of 50×50

black and white images. The first channel is an image of the ACF plot, the second channel

is an image of the PACF plot, the third channel is an image of the ESACF plot and the

last channel is the time series image from differencing. the pq-APE model comprises of

2 convolutional layers. The first convolutional layers have 64 of 3×3 filter matrices with

the stride = 1 and the next convolutional layers have 128 of 3×3 filter matrices. Each of

the convolutional layer is connected with the max-pooling layer of the filter of size 2×2

and the stride is set to 2. After the CNN model, it is followed by a fully connected layers

having 512 nodes. Finally, in the case of identifying the ARMA order, the softmax layer
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is applied with all possible of orders p and q, which are 64 classes varying p from 0-7 and

q from 0-7.

For the case of identifying the differencing order, the deep learning architecture of

the d-APEA model is similar to the pq-APEA model. The inputs of the d-APEA model

consists of 4 channels of the ACF plots from time series images taking differencing from

d = 0 to 3. Moreover, to increase the efficiency of the deep learning model to identify the

differencing order, PACF is introduced as the input data to add more information to the

deep learning model for decision the differencing order. The PACF plots are from time

series images taking differencing from d = 0 to 3. For the final layer, softmax is applied

with possible d from 0-3. The architectures of the pq-APEA model and the d-APEA

model are shown in Figure 4.16 and Figure 4.17.
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In this research, the simulated time series data are generated from the ARMA

process varying p from 0 to 7 and q from 0 to 7. Moreover, all coefficients of the process

must satisfy the stationary and invertibility properties. They are randomly generated

from the uniform distribution within -1 to 1. If the stationary property or invertibility

property is not satisfied, all coefficients will be regenerated. The number of the time series

data in the training data repeating 100 times for each class, the validating data repeating

50 times for each class and the testing data repeating 20 times for each class are 6400,

3200 and 1280, respectively.

In the process of simulated time series for the differencing order, the simulated time

series data from the ARMA process is accumulated by varying d from 0 to 3, respectively.

Therefore, the number of the time series data in the training data, the validating data

and the testing data are 25600, 12800 and 5120, respectively. The process of simulating

the time series data and generating the images are the same as Section 4.1.1. Figure 4.18

shows the example images of ACF, PACF, ESACF and differencing time series.
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Figure 4.18: Samples of ACF, PACF, ESACF and differencing time series images

4.3.2 Experimental results of the APEA model

The experimental results of identifying the ARIMA order via the APEA model are

divided into three cases including the cases of identifying the AR order from 0-7, the cases

of identifying the MA order from 0-7 and the case of identifying the differencing order

from 0-3. The settings of each model having different channels are demonstrated in Table

4.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83

Case: identifying

order p and q

Case: identifying

order d
Model

Channel(s) Channel(s)

Model A1 APEA
1 channel:

ESACF images

4 channels:

ACF images with

d = 0, 1, 2 and 3

Model A2 APEA
2 channels:

PACF and ACF images

4 channels:

PACF images with

d = 0, 1, 2 and 3

Model A3 APEA

2 channels:

ESACF and differencing

time series images

8 channels:

PACF and ACF images

with d = 0, 1, 2 and 3

Model A4 APEA

3 channels:

ESACF, PACF

and ACF images

None

Model A5 APEA

3 channels: PACF, ACF

and differencing

time series images

None

Model A6 APEA

4 channels: ESACF, PACF,

ACF and differencing

time series images

None

Model R ResNet50 Series None

Model L
auto-ARIMA

(AIC criteria)
Series Series

Table 4.3: Description of each input of each model for identifying the ARIMA order

To explain the experimental results, the APEA model and the candidate models

which are the ResNet50 model and the auto-ARIMA model are called via the abbrevia-

tions as shown in Table 4.3. The APEA model is called via A1, A2, A3, A4, A5 and A6

according to the setting inputs. R and L are represented to the ResNet50 model and the

auto-ARIMA model.

Results of identifying the p order of the APEA model
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Figure 4.19 summarizes the precisions, the recalls and the f1-scores of all models.

From this figure, A4 using 3 channels of ESACF, ACF and PACF and A6 using 4 channels

of ESACF, ACF, PACF and differencing time series images are the top-two best scores

having scores close to 0.8. The performance of A1, A2 and A3 are similarly good but

they are still not the best using only ESACF or PACF and ACF. R and L show the poor

performance.

Figure 4.19: The precisions, the recalls and the f1-scores of the models identifying p

Results of identifying the q order of the APEA model
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From Figure 4.20, A4 using 3 channels of ESACF, PACF and ACF shows the best

performance of the precisions, the recalls and the f1-scores. Although A6 using 4 channels

of ESACF, PACF, ACF and differencing time series images provides similar performance

to A4, A4 performs better for the high order. For the other models, A1, A2, A3 and A5,

the performance is quite similar which decrease when the order is increase. For R and L,

the scores of both models are quite bad.

Figure 4.20: The precisions, the recalls and the f1-scores of the models identifying q

Results of identifying the d order of the APEA model
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Figure 4.21 shows the scores of the precision, the recall and the f1-score between

A1, A2, A3 and L. A1 and A2 using ACF and PACF as inputs respectively provide the

good performance and are quite similar. When using ACF and PACF as inputs altogether

in A3, the performance of the model is improved in terms of the precision and the recall.

L gives the lowest performance.

Figure 4.21: The precisions, the recalls and the f1-scores of the models identifying d

4.3.3 The conclusion of the APEA model

The APEA model is constructed based on the basic CNN model learning from the

ARMA models having the ARMA orders from 0 to 7 and the differencing order from 0 to 3

via the ESACF images, the PACF images and the ACF images as the inputs. The APEA
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model is separated into the pq-APEA model to identify the ARMA order and the d-APEA

model to identify the differencing order. In the experimental results of the APEA model,

the APEA model exhibits the best performance compared with the auto-ARIMA model

and the previous deep learning model using ResNet50 via the precisions, the recalls and

the f1-scores. The results are suggested that the APEA model is able to extract features

from the ESACF images, the ACF images, the PACF images and the series images at the

same time which it is very difficult for analysts. Next, the APEA model is extended to

identify the SARIMA order for the time series data with the seasonal component. The

details are shown in the next section.

4.4 Visualization of the convolutional neural network filter

This section demonstrates filter matrices from some time series data of the APEA

model. All filter matrices are visualized via the color scale which is called “Viridis”. It

can be used via the “matplotlib” package in python. The color scales are shown in Figure

4.22. The light yellow on the right side represents the maximum pixel value in the images

and the dark purple on the left side represents the minimum pixel value in the image.

The Viridis color scales is popularly used to visualize the images because it can clearly

show the color difference in the image. These features of the deep learning model can

be visualized in Figure 4.23 to Figure 4.26 which show the filter matrices of identifying

the AR orders from 0 to 3 of the APEA model taking 4 channels as inputs consisting of

the ESACF images, the PACF images, the ACF images and the differencing time series

images.

Figure 4.22: The color scales of “Viridis”.

From these figures, the APEA model attempts to combine all features of the ESACF
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images, the PACF images, the ACF images and the differencing time series images to-

gether and extracts features of each channel by considering the core of the image as lags

of PACF and ACF and the pattern of ESACF and the differencing time series. In Figure

4.23, the filter matrices try to capture the characteristic of the time series having the

AR order equals to 0. They show the light yellow area around the axis as appeared in

Figure 4.23 (4), Figure 4.23 (5), Figure 4.23 (14) and Figure 4.23 (16) whereas the other

filter matrices in Figure 4.24 to Figure 4.26 try to capture the lags occurring with the

corresponding AR order. For example, the filter matrices in Figure 4.25 capture at lag 2

to indicate the AR order 2 as shown in Figure 4.25 (4), Figure 4.25 (5), Figure 4.25 (13)

and Figure 4.25 (14). These examples show that using CNN for identifying the ARIMA

order can extract some features that is difficult for a human. Moreover, the process of

CNN can also recognize many patterns at the same time in order to identify the most

suitable ARIMA order.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

89

Figure 4.23: The filter matrices of the CNN layer which the AR order is 0
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Figure 4.24: The filter matrices of the CNN layer which the AR order is 1
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Figure 4.25: The filter matrices of the CNN layer which the AR order is 2
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Figure 4.26: The filter matrices of the CNN layer which the AR order is 3



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

METHODOLOGY TO IDENTIFY THE

SARIMA ORDER AND BUILD THE LINEAR

TIME SERIES MODEL

The success of using a deep learning model for identifying the ARIMA order is now

extended to deal with the seasonal component of the time series data via the time series

analysis of the seasonal component. The process consists of two parts. The first part is to

construct the ACF-PACF-ESACF convolutional neural network seasonal ARIMA order

identification model to identify the SARIMA order and the second part is to construct

the enhancing SARIMA forecasting model to forecast future values.

5.1 The ACF-PACF-ESACF convolutional neural network seasonal ARIMA

order identification model

This section demonstrates the rationale and the process of constructing the ACF-

PACF-ESACF convolutional neural network seasonal ARIMA order identification model

and its experimental results.

5.1.1 Constructing the ACF-PACF-ESACF convolutional neural network sea-

sonal ARIMA order identification model

In the time series analysis, the autoregressive process and the moving average pro-

cess are not sufficient to apply to the time series data having the seasonal component.

There is a need for another concept called the spectral analysis. Before obtaining the AR

order, the MA order and the differencing order, the seasonal length needs to be identified

using the spectral analysis of the time series [41]. In the concept of the spectral analysis,

a trend is removed from the time series first, then the spectral density function is ap-
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proximated from the best fitting autoregressive model at frequency f . The autoregressive

model with order p is shown as follows.

xt = ϕ1xt−1 + ϕ2xt−2 + ...+ ϕpxt−p + ϵt

where ϕ1, ϕ2, ..., ϕp are the coefficients of the autoregressive model and ϵt ∼
iid

N(0, σ2)

from the Box-jenkins method.

Then, the spectral density function from the best fitting autoregressive model at

frequency f can be approximated by

S(f, ϕ1, ϕ2, ..., ϕp, σ
2) =

σ2∆t(
|1−

p∑
k=1

ϕke
−2iπfk∆t|

)2

where 0 < f < 0.5, i =
√
−1 and ∆t is the sample time interval which is 1.

The maximum in the spectral density function at f can be written as

f = arg max
0<f<0.5

S(f, ϕ1, ϕ2, ..., ϕp, σ
2)

Then, the seasonal length will be 1/f .

After obtaining the seasonal length, the time series data will be aggregated corre-

sponding to the seasonal length. These aggregate time series data will be used to identify

these seasonal orders of P , D and Q by the APEA model. The ACF-PACF-ESACF con-

volutional neural network seasonal ARIMA order identification model is shown in Figure

5.1 and Algorithm 3 by defining s as the seasonal length, {xt} is the original time series

data and {yt} is the aggregate time series data.
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Algorithm 3 : Pseudo code for the ACF-PACF-ESACF convolutional neural
network seasonal ARIMA order identification model

Input: time series data
1: Original time series data = time series data
2: Calculate the seasonal period by the spectral density function
3: The seasonal period = s
4: if s = 1 then
5: - Submit the original time series to the pq-APEA model
6: - Submit the original time series to the d-APEA model
7: Return: the ARIMA order (p, d, q)
8: else
9: - Submit the original time series to the pq-APEA model

10: - Submit the original time series to the d-APEA model
11: Return: the ARIMA order (p, d, q)
12: - Aggregate the original time series data according to s
13: - Submit the aggregate time series to the pq-APEA model
14: - Submit the aggregate time series to the d-APEA model
15: Return: the Seasonal ARIMA order (P,D,Q)

5.1.2 Experimental results of the ACF-PACF-ESACF convolutional neural

network seasonal ARIMA order identification model

To test the performance of the ACF-PACF-ESACF convolutional neural network

seasonal ARIMA order identification model, the experimental results are set to include

the case of identifying the seasonal AR orders from 0-7, the case of identifying the seasonal

MA orders from 0-7 and the case of identifying the seasonal differencing orders from 0-

3. The setting of each model having different channels and type of inputs are listed in

Table 5.1. The APEA model is chosen among other models from Chapter 4 since it

obtains the best performance. Moreover, it uses all inputs from the time series analysis

including ACF, PACF and ESACF. Note that the ResNet50 model is not used since it is

not designed to deal with the seasonal component. Hence, only the auto-ARIMA model

can be used for comparison.
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Case: identifying order P, Q and D
Model

Channel(s)

Model A Proposed model 3 channels: ESACF, PACF and ACF images

Model L
auto-ARIMA

(AIC criteria)
Series

Table 5.1: Description of each channel in the models for identifying the SARIMA
order

From Table 5.1, the proposed model is called A having the inputs of the ESACF

images, the PACF images and the ACF images and L is represented to the auto-ARIMA

model. The seasonal length of the time series data for both methods is derived using the

spectral analysis.

Results of identifying the P order

From Figure 5.2, A gives the best results of the precisions and the f1-scores except

the cases of identifying P = 1 and 2 whereas L provides the good performance in the

recalls except P = 0 and 3. Although the recalls of A are slightly lower than L, A still

has much higher precisions than L. Consequently, the f1-scores of A are higher than L. It

is suggested that A can identify the seasonal order better than L.
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Figure 5.2: The precisions, the recalls and the f1-scores of the models identifying P

Results of identifying the Q order

From Figure 5.3, A outperforms L via the precisions and the f1-scores except the

case of identifying Q = 0 via the precisions like the case of identifying P . Nevertheless, L

provides slightly higher recalls except the case of identifying Q = 0, 1 and 3. Although A

gives smaller recalls than L, A shows the high performance in the precisions. Consequenly,

the f1-scores of A are higher than L. From these results, it can be concluded that A can

identify the seasonal order Q better than L.
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Figure 5.3: The precisions, the recalls and the f1-scores of the models identifying Q

Results of identifying the D order

Figure 5.4 shows the precisions, the recalls and the f1-scores between A and L.

It is clear that A provides the better performance of the precisions, the recalls and the

f1-scores than L.
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Figure 5.4: The precisions, the recalls and the f1-scores of the models identifying D

5.1.3 The conclusion of the ACF-PACF-ESACF convolutional neural network

seasonal ARIMA order identification model

The ACF-PACF-ESACF convolutional neural network seasonal ARIMA order iden-

tification model is extended from the APEA model to identify the seasonal order of the

SARIMA model. The proposed model uses the spectral density function to recognize the

seasonal length of the time series data. Then the concept of the aggregation before sub-

mitting to the APEA model is used to identify the seasonal order. The results show that

the proposed model gives the best precisions, the recalls and the f1-scores. It is suggested

that the APEA model applying with the spectral density function and the aggregate con-

cept can recognize the seasonal order within the time series data. Next, this proposed

model is used to build the SARIMA model to forecast the future values.
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5.2 The enhancing SARIMA forecasting model via the deep learning algo-

rithm

This section demonstrates the process of constructing the enhancing SARIMA fore-

casting model via the deep learning algorithm to build the SARIMA model and explains

its experimental results.

5.2.1 Constructing the enhancing SARIMA forecasting model via the deep

learning algorithm

The process starts by converting the original time series data to the images of ACF,

PACF, ESACF and differencing time series to submit to the ACF-PACF-ESACF convo-

lutional neural network ARIMA order identification model for identifying the ARIMA

order. Moreover, the original time series data are sent to the aggregate process to get

the aggregate time series data submitted to the ACF-PACF-ESACF convolutional neural

network seasonal ARIMA order identification model for identifying the SARIMA order.

Finally, all orders are used to fit all coefficients of the SARIMA model by the Box-Jenkins

method. The process of the enhancing SARIMA forecasting model via the deep learning

algorithm is shown in Algorithm 4 and Figure 5.5.

Algorithm 4 : Pseudo code for the enhancing SARIMA forecasting model via
the deep learning algorithm

Input: time series data
1: Original time series data = time series data
2: Submit the original time series to the APEA model
3: Return: the ARIMA order (p, d, q)
4: Calculate the seasonal period by the spectral density function
5: The seasonal period = s
6: Aggregate the original time series data according to s
7: Submit the aggregate time series to the seasonal APEA model
8: Return: the seasonal ARIMA order (P,D,Q)
9: Submit the SARIMA order (p, d, q)× (P,D,Q) to the Box-Jenkins method

10: Return: the seasonal ARIMA model
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5.2.2 Experimental results of the enhancing SARIMA forecasting model via

the deep learning algorithm

To test the performance of the SARIMA forecasting model from the enhancing

SARIMA forecasting model via the deep learning algorithm, it is applied to two collections

of the time series data. The first collection uses the synthetic time series data of fixed

orders and the second collection uses the real world time series data.

Results of forecasting the synthetic time series data

The enhancing SARIMA forecasting model via the deep learning algorithm is ap-

plied to 10 random synthetic time series data that have the stationary and the invertibility

properties. Figure 5.6 to Figure 5.10 show the graphs of forecasting values from the out-

sample data and p-values from the Ljung-Box test. The residuals from the appropriate

forecasting model should exhibit no correlated errors that is its values should be above

the dot lines representing p-value = 0.01 and p-value =0.05. The results show that the

proposed algorithm outperforms the auto-ARIMA model. All p-values of the residuals

are above 0.01 and 0.05 indicating that the residuals are independent and correspond to

the white noise process whereas some residuals from the auto-ARIMA model fail the test.

Moreover, the graphs of the forecasting data between two models suggest that the

proposed algorithm can forecast values closer to the out-sample data than the auto-

ARIMA model. In addition, Table 5.2 shows that the proposed algorithm provides better

MAPE in 7 out of 10 synthetic time series and better SMAPE, RMSE and MAE in 9 out

of 10 synthetic time series.

To show all parameters in the models, the orders and the coefficients of the ARIMA

models are shown in Table 5.3 and Table 5.4. These tables show that the ARIMA orders

from the proposed algorithm are closer to the orders from the synthetic time series data

than the ARIMA orders from the auto-ARIMA model in all cases of synthetic time series

data. Especially, in the case of the time series number 1, 5 and 6, the ARIMA orders

from the proposed algorithm are similar to the orders from the synthetic time series data.
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From this reason, the coefficients from the orders that come from the proposed algorithm

can be used to build the ARIMA model and predict the future values more efficiently

than the auto-ARIMA model.
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MAPE SMAPE RMSE MAE

Deep

learning

auto-

ARIMA

Deep

learning

auto-

ARIMA

Deep

learning

auto-

ARIMA

Deep

learning

auto-

ARIMA

1 0.61 1.09 0.66 0.90 0.74 1.43 0.61 1.21

2 1.76 1.18 1.02 1.72 0.8 1.14 0.64 0.96

3 0.51 0.99 0.63 1.89 1.68 3.06 1.23 2.74

4 2.18 1.01 0.40 1.98 1.61 4.74 1.22 4.13

5 0.77 1.01 0.67 1.71 1.39 2.15 1.13 1.88

6 0.97 1.00 1.01 1.94 1.76 2.08 1.37 1.88

7 0.89 1.84 0.84 1.27 0.92 1.61 0.69 1.38

8 2.76 1.42 1.02 0.95 2.03 1.47 1.58 1.21

9 0.90 1.13 0.62 1.36 1.72 3.41 1.38 2.91

10 0.96 1.01 0.78 1.91 1.61 3.07 1.31 2.54

Table 5.2: MAPE , SMAPE and RMSE between the enhancing SARIMA forecasting
model via the deep learning algorithm and the auto-ARIMA model of the synthetic

time series data
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Actual Deep learning auto-ARIMA

#
order

(p, q)

order

(p, q)
AR and MA coefficients

order

(p, q)
AR and MA coefficients

1 (4,0) (4,0)

AR: {-0.1682, -0.3184,

0.0181, -0.8056}

MA: -

(2,5)

AR: {-1.3137, -0.9992}

MA: {1.6266,1.4659,

0.3939}

2 (5,0) (6,1)

AR: {-1.2601,-0.9587,

-0.9853,-1.0495,

-1.1457,-0.4189}

MA: {1.1024}

(3,1)

AR: {0.0595, 0.2787,

-0.5769}

MA: {-0.4249}

3 (5,1) (5,5)

AR: {0.1180,-0.1075,

0.0025,0.1857,

-0.8698}

MA: {-1.5006,-0.1764,

0.1357,0.2419,

-0.1123}

(0,1)
AR: -

MA: {-0.9999}

4 (2,2) (2,6)

AR: {-0.0074-0.9633}

MA: {-0.1026,0.2314,

0.1572,-0.1429,

-0.1113,0.1622}

(0,1)
AR: -

MA: {-0.9998}

5 (4,2) (4,2)

AR: {-0.0291,-0.1037,

-0.1367,-0.8363}

MA: {0.0651,-1.0396}

(1,2)
AR: {0.2624}

MA: {-0.0001,-0.9999}

Table 5.3: The coefficients and the order from the synthetic time series number 0-5
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Actual Deep learning auto-ARIMA

#
order

(p, q)

order

(p, q)
AR and MA coefficients

order

(p, q)
AR and MA coefficient

6 (5,3) (5,3)

AR: {0.2259,-0.1751,

-0.1790,0.1409,-0.6864}

MA: {0.2046,-0.0670,

-0.9357}

(1,0)
AR: {0.2397}

MA: -

7 (6,6) (6,3)

AR: {-0.2500,-0.0934,

-0.1446,-0.0996,

-0.2818,-0.5994}

MA: {-0.1381,0.4091,

-0.0606}

(4,1)

AR: {0.3525,0.4452,

-0.2562-0.4160}

MA: {-0.8114}

8 (6,7) (6,3)

AR: {0.2448,0.1459,

0.48070.0456,

0.2804-0.8902}

MA: {0.3571,0.1030,

-0.7982}

(5,1)

AR: {-0.1741,0.3894,

0.2286,-0.2907,

0.3368}

MA: {0.8174}

9 (5,4) (6,2)

AR: {-0.0284,0.3543,

0.4418,0.0009,-0.0403,

-0.7253}

MA: {-0.0029,0.5606}

(5,2)

AR: {-0.0798,1.1634,

0.3301,-0.8168,

-0.2197}

MA: {-0.0020,-0.9980}

10 (7,7) (7,5)

AR: {0.0190,0.0744,

0.2288,0.3234,

0.2180,0.2330,

-0.7894}

MA: {0.15710.4137,

0.3674,-0.1343,

0.7548}

(1,0)
AR: {0.3197}

MA: -

Table 5.4: The coefficients and the order from the synthetic time series number 6-10
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Results of forecasting the real world time series data

To confirm the performance of the enhancing SARIMA forecasting model via the

deep learning algorithm, ten real world time series data are used. They are from the fpp2

packages in R which are “ausair”, “ausbeer”, “autoriets”, “elecequip”, “goog200”, “h02”,

“hyndsight”, “qauselec”, “qgas” and “sunspotarea”. The details of each time series data

are described in Table 5.5 and Table 5.6

Data Quote Description from “fpp2” package in R Source

ausair

“Total annual air passengers (in millions) including

domestic and international aircraft passengers

of air carriers registered in Australia. 1970-2016.”

World Bank.

https://data.is

/x5KiEO

ausbeer
“Total quarterly beer production in Australia

(in megalitres) from 1956:Q1 to 2010:Q2”

Australian Bureau of

Statistics. Cat.

8301.0.55.001

austourists
“Quarterly visitor nights (in millions) spent by

international tourists to Australia. 1999-2015.”

Tourism Research

Australia.

elecequip

“Monthly manufacture of electrical equipment:

computer, electronic and optical products.

January 1996 - March 2012. Data adjusted by

working days; Euro area (17 countries).

Industry new orders index. 2005=100.”

Eurostat. https:

//data.is/y6dO8i

goog200

“Closing stock prices of GOOG from the NASDAQ

exchange, for 1000 consecutive trading days

between 25 February 2013 and 13 February 2017.

Adjusted for splits. goog200 contains the

first 200 observations from goog.”

https://goo.gl

/5KBjL5

Table 5.5: Description I of the real world datasets
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Data Quote Description from “fpp2” package in R Source

h02

“Total monthly scripts for pharmaceutical products

falling under ATC code H02, as recorded by

the Australian Health Insurance Commission.

Measured in millions of scripts.”

Medicare

Australia

hyndsight

“Hyndsight is Rob Hyndman’s personal blog

at https://robjhyndman.com/hyndsight.

This series contains the daily pageviews for

one year, beginning 30 April 2014.

The frequency is set to 7, to allow the weekly

pattern to be modelled.”

Rob Hyndman

qauselec
“Total quarterly electricity production in Australia

(in billion kWh) from 1956:Q1 to 2010:Q2.”

Australian Bureau

of Statistics. Cat.

8301.0.55.001.

qgas
“Total quarterly gas production in Australia

(in petajoules) from 1956:Q1 to 2010:Q2.”

Australian Bureau

of Statistics. Cat.

8301.0.55.001.

sunspotera

“Annual averages of the daily sunspot areas

(in units of millionths of a hemisphere) for the full sun.

The Royal Greenwich Observatory compiled daily

sunspot observations from May 1874 to 1976.”

NASA

Table 5.6: Description II of the real world datasets

The results of this experiment appear in Figure 5.11, Figure 5.15 and Table 5.7

which demonstrate that both methods can be applied to the real world time series data.

Table 5.7 shows that both methods have similar MAPE, SMAPE and RMSE. However,

there are some cases in which the proposed algorithm passes the Ljung-Box test while

the auto-ARIMA model fails, such as “h02”. Although most forecasting results from both

methods pass the test, it is found that the proposed algorithm can forecast the future

values closer than the auto-ARIMA model for “ausbeer”, “austourists”, “h02”, “qauselec”
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and “sunspotarea”. Nevertheless, there is one dataset, “goog200”, which both methods

fail Ljung-Box test and cannot predict near the actual values. This “goog200” series has

multiple changes so it may not be captured by any ARIMA model.

The parameters of each model are shown in Table 5.8 and Table 5.9. From these

tables, both methods can identify the SARIMA order differently which the SARIMA mod-

els from both method can be used to forecast the future values effectively. Nevertheless,

there is the SARIMA order from the both method that cannot fit with the real world time

series number 5 which is “goog200”. The SARIMA orders from the proposed algorithm

and the auto-ARIMA model are (0, 2, 1) × (0, 0, 0) and (0, 1, 0) × (0, 0, 0), respectively

which these orders are only the relationship of random error terms than cannot be fitted

to the time series effectively.

MAPE SMAPE RMSE

Name Deep

learning

auto-

ARIMA

Deep

learning

auto-

ARIMA

Deep

learning

auto-

ARIMA

1 ausair 0.3109 0.4672 0.3109 0.4689 0.0235 0.0353

2 ausbeer 4.08731 2.9372 4.1996 2.9499 0.0622 0.0506

3 austourists 3.2012 2.9268 3.2616 2.9095 0.1161 0.1056

4 elecequip 0.814 1.1249 0.8093 1.1162 0.0497 0.0622

5 goog200 0.1356 0.1196 0.1355 0.1196 0.0105 0.0093

6 h02 0.863 1.242 0.723 1.479 0.1424 0.2551

7 hyndsight 1.1066 0.8601 1.1131 0.8598 0.099 0.0813

8 qauselec 1.0464 0.9343 1.0393 0.931 0.0508 0.0422

9 qgas 0.5955 0.61 0.598 0.6124 0.0369 0.0372

10 sunspotarea 0.199 0.3495 0.1548 0.252 1.2674 2.049

Table 5.7: MAPE , SMAPE and RMSE between the enhancing SARIMA forecasting
model via the deep learning algorithm and the auto-ARIMA model of the real world

datasets
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Deep learning auto-ARIMA

#

(p, d, q)

×

(P,D,Q)

SARIMA coefficients

(p, d, q)

×

(P,D,Q)

SARIMA coefficients

1

(4,2,1)

×

(0,2,1)

s = 4

AR: {-0.8817,-0.4341,0.0887

,-0.0574}, MA: {-1.0000}

SAR: - , SMA: {-0.9998}

(2,1,0)

×

(1,0,1)

s = 4

AR: {-0.9173,-0.4589,-0.4589}

MA: -

SAR: {0.9950}, SMA: {-0.7068}

2

(5,2,1)

×

(0,0,0)

s = 1

AR: {-0.4488,-0.3995,-0.1161,

-0.0581,0.1890}

MA: {-1.0000}

SAR: - , SMA: -

(1,1,1)

×

(0,0,0)

s = 1

AR: {0.3086}

MA: {-0.8448}

SAR: - , SMA: -

3

(1,2,1)

×

(4,1,3)

s = 6

AR: {-0.4747}

MA: {-0.9977}

SAR: {-1.0863,-0.0157,0.0752

,-0.00006}

SMA: {0.1815,-0.9461,-0.0939}

(1,1,2)

×

(2,0,2)

s = 6

AR: {-0.7789}

MA: {0.1647,-0.5927}

SAR: {-0.0033,0.9965}

SMA: {0.1668,-0.8018}

4

(5,2,1)

×

(4,1,0)

s = 3

AR: {-0.5809,-0.4194,-0.2285,

-0.1560,-0.0595}

MA: {-0.5489}

SAR: {-0.8618,-0.8059,-0.8104,

0.1052}, SMA: -

(0,1,1)

×

(2,0,2)

s = 3

AR: -

MA: {-0.4771}

SAR: {0.0065,0.9931}

SMA: {-0.0214,-0.9366}

5

(0,2,1)

×

(0,0,0)

s = 1

AR: - , MA: {-1.0000}

SAR: - , SMA: -

(0,1,0)

×

(0,0,0)

s = 1

AR: - , MA: -

SAR: - , SMA: -

Table 5.8: The coefficients and the order from the real world time series number 0-5
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Deep learning auto-ARIMA

#

(p, d, q)

×

(P,D,Q)

SARIMA coefficients

(p, d, q)

×

(P,D,Q)

SARIMA coefficients

6

(5,1,4)

×

(0,0,0)

s = 1

AR: {-0.4110,-0.0211,0.0213,

-0.1126,0.1141}

MA: {-0.4507,-0.3005,-0.1867,

-0.1919} , SAR: - , SMA: -

(5,1,1)

×

(0,0,0)

s = 1

AR: {0.5010,-0.0218,-0.011,

-0.1489,-0.2158}

MA: {-0.9425}

SAR: - , SMA: -

7

(5,1,2)

×

(1,2,1)

s = 7

AR: {-0.0905,-0.5799,-0.1475,

-0.2829,0.0994}

MA: {-0.6197,2.3119}

SAR: {-0.4614} , SMA: {-1.0111}

(2,1,1)

×

(2,0,1)

s = 7

AR: {0.5746,0.0301}

MA: {-0.9979}

SAR: {0.9605,0.0362}

SMA: {-0.8332}

8

(4,2,1)

×

(0,2,1)

s = 4

AR: {-0.2217,-0.0910,0.0002,

-0.4115}

MA: {-1.0000}

SAR: - , SMA: {-1.0000}

(3,2,0)

×

(4,0,1)

s = 4

AR: {-0.9793-0.9937-0.9490}

MA: -

SAR: {0.3632,0.0755,0.3519,

0.1696} , SMA: {-0.8986}

9

(2,2,1)

×

(0,2,1)

s = 4

AR: {-1.3556,-0.7218}

MA: {0.7810}

SAR: - , SMA: {-1.0000}

(3,2,0)

×

(3,0,1)

s = 4

AR: {-0.8397,-0.9932,-0.8266}

MA: -

SAR: {0.4610,0.4207,0.0931}

SMA: {-0.9785}

10

(7,1,7)

×

(2,1,1)

s = 11

AR: {0.2137,-0.1218,-0.7223,

0.4212,0.2142,0.0312

,-0.0023}

MA: {-0.3271,-0.2291,-0.6113

,-0.1232,0.0142,0.1181,-0.5221}

SAR: {0.1237,0.5711}

SMA: {0.1341}

(0,1,1)

×

(3,1,1)

s = 11

AR: - , MA: {-0.9871}

SAR: {0.3720,-0.1256,-0.0239}

SMA: {-0.8789}

Table 5.9: The coefficients and the order from the real world time series number 6-10
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5.2.3 The conclusion of the enhancing SARIMA forecasting model via the

deep learning algorithm

The experimental results are divided to the synthetic time series data from to the

ARIMA process and the real world time series data from the “fpp2” package in R. The

proposed algorithm can apply to the synthetic time series data effectively via MAE,

RMSE, MAPE and SMAPE and the Ljung-Box test. In addition, it can forecast the

future values closer to the actual values than the auto-ARIMA model on the real world

datasets. The appropriate SARIMA order helps to improve the performance of forecasting

the future values. However, the real world time series contains non-linear characteristics

that may not be appropriate to capture by the linear process. The next idea is to use the

deep learning model with the technique in the time series analysis to capture non-constant

variance.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

METHODOLOGY FOR APPLYING TO THE

NONLINEAR TIME SERIES MODEL

To enhance the ability to capture non-linear characteristics of the time series data,

the APEA model and the enhancing SARIMA forecasting model via the deep learning

algorithm are adapted to the ARCH model to apply to the financial time series data.

This algorithm is called the automatic ARCH forecasting via deep learning algorithm.

6.1 Constructing the automatic ARCH forecasting via deep learning algo-

rithm

After obtaining the algorithms for forecasting the time series data based on the

linear process, these algorithms are now adapted to build the forecasting time series

model for the financial time series. The algorithm will build the ARCH model from the

time series data.

The ARCH model is the basic model for applying with the time series data having

the non-constant variance. The details of the ARCH model are described in Section 2.2

of Chapter 2. From the ARCH process, error term ϵt is the residual from the fitted

SARIMA model. The new algorithm will use the enhancing SARIMA forecasting model

via the deep learning algorithm to fit the SARIMA model and use the APEA model for

the square residuals of the previous fitted SARIMA model. The process of the algorithm

is shown in Figure 6.1 and Algorithm 5.
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Algorithm 5 : Pseudo code for the automatic ARCH forecasting via deep learning
algorithm

Input: time series data
1: Submit the time series data to the enhancing SARIMA forecasting model via

the deep learning algorithm
2: Return: the SARIMA model
3: Generate the residuals from the SARIMA model
4: Submit the residuals to the APEA model
5: Return: the ARCH order
6: Submit the ARCH order to the Box-Jenkins method
7: Return: the ARCH model

The automatic ARCH forecasting via deep learning algorithm starts by sending

the time series data to the enhancing SARIMA forecasting model via the deep learning

algorithm to built the SARIMA model. Then, it is used for calculating the residuals from

the original time series data. Next, the square residuals are sent to the APEA model

to predict the AR order of the ARCH order. Finally, the ARCH model is built by the

Box-Jenkins method. The complete ARCH model is used to forecast the original time

series data.

6.2 Experimental results of the automatic ARCH forecasting via deep learn-

ing algorithm by applying to the financial time series data

Three financial time series data are used to compare with the auto-ARCH model

based on AIC. The process of auto-ARCH model based on AIC is similar to the auto-

ARIMA model but auto-ARCH model uses the ARCH model to fit the coefficients and

compute the AIC instead of using the ARIMA model. The S&P500 index, the NASDAQ

index and the Dow jones index are recorded daily from 2 May 2019 to 2 May 2020. The

financial time series plots of their closing prices are shown in Figure 6.2, Figure 6.3 and

Figure 6.4.
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Figure 6.2: The daily closing price of the S&P500 index

Figure 6.3: The daily closing price of the NASDAQ index
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Figure 6.4: The daily closing price of the Dow Jones index

The automatic ARCH forecasting via deep learning algorithm starts by sending

the financial time series data as inputs to the enhancing SARIMA forecasting model via

the deep learning algorithm. The fitted SARIMA model is used to derive the residuals.

The residual plot and its squared residual plot are shown in Figure 6.5, Figure 6.6 and

Figure 6.7. These figures confirm that the residuals of all financial time series data are

not satisfied the white noise property. They exhibit high variance in the last periods of

the time series data which should be fitted with the ARCH model.
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To fit the ARCH model with the residuals of the financial time series data, the

APEA is used to identify the AR order of the residuals. From the ARCH model describing

in Section 2.2.4 on Chapter 2, the residuals from the fitted SARIMA model can be written

as Equation (6.1).

ϵt = σtzt (6.1)

where ϵt is the residuals from the fitted SARIMA model, σt is the standard deviation of

the residuals and zt ∼
iid

N(0, 1) is a Gaussian white noise process.

Hence, the standardized residuals or the noise zt of the fitted ARCH model can

be computed by the quotient of the residuals of the SARIMA model and the standard

deviation of the residuals as shown in Equation (6.2)

zt =
ϵt
σt

(6.2)

which σt can be computed by σ2
t = α0 + α1ϵ

2
t−1 + ...+ αqϵ

2
t−q.

To measure the performance of the ARCH model, the standardized residuals zt of

the ARCH model must satisfy the white noise property. The ACF plot and the Ljung-Box

test are used to test the performance.

The standardized residuals of all financial time series data are shown in Figure

6.8, Figure 6.9 and Figure 6.10. The experimental results show that the standardized

residuals of both methods of three financial time series data is around 0 which the stan-

dardized residuals from the automatic ARCH forecasting via deep learning algorithm is

quite smaller than the auto-ARCH model based on AIC in the case of S&P500 and NAS-

DAQ. Nevertheless, in the last period of the standardized residuals exhibit high variance

in both methods. For the Dow Jones index, the result of both methods is quite similar.
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To confirm the performance of forecasting the variance by the ARCH model, the

ACF plots and the Ljung-Box plots of both methods are shown in Figure 6.11 - Figure

6.16. The ACF plots of both methods show that the residuals of the ARCH models from

both methods are independent because the ACF values of both methods are quite small

and is in the confidence band. Nevertheless, from the Ljung-Box plots demonstrating

in Figure 6.14, Figure 6.15 and Figure 6.16, the automatic ARCH forecasting via deep

learning algorithm passes the Ljung-Box test in the case of S&P500 and NASDAQ whereas

the auto-ARCH model based on AIC fails it. For the case of Dow jones, both methods

give the same performance.
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6.3 The conclusion of the automatic ARCH forecasting via deep learning

algorithm

The new algorithm is build based on applying the enhancing SARIMA forecasting

model via the deep learning algorithm to build the SARIMA model and the APEA model

is used to identify the ARCH order from the residuals occurring from the fitted SARIMA

model. The proposed algorithm is applied to the three financial time series data including

the S&P index, the NASDAQ index and the Dow Jones index. The experimental results

show that the APEA model can capture the residuals by ARCH better than the auto-

ARCH model based on AIC. The performance of the proposed algorithm is confirmed via

the Ljung-Box test which the proposed model can pass the Ljung-Box test for all three

financial time series data whereas the auto-ARCH model based on AIC succeeds only the

Dow Jones index.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII

CONCLUSIONS AND DISCUSSIONS

This dissertation proposes five new deep learning models. The first model is called

the SID model which composes of the pq-SID model to identify the ARMA order from

0-5 and the d-SID model to identify the differencing order from 0-2. The SID model

is constructed by training ACF, PACF and series images. It is improved by the ResNet

architecture utilizing skip connections of convolutional neural networks layers. The second

model is called the SIRO model. Moreover, ESACF is used as the input of the third model

which the APEA model is introduced. It is spitting into the pq-APEA model and the

d-APEA model. The pq-APEA model is constructed using ACF, PACF, ESACF and the

differencing time series images to identify the ARMA order from 0-7 while the d-APEA

model is constructed using ACF and PACF taking differencing from 0 to 3 to identify

the differencing order from 0-3. Then, the fourth model is extended from the APEA

model to identify the SARIMA order, called the ACF-PACF-ESACF convolutional neural

network seasonal ARIMA order identification model, using the technique of time series

aggregation and spectral analysis to find the seasonal length of the time series data.

To build the SARIMA model, the outputs of the model are used for constructing the

enhancing SARIMA forecasting model via the deep learning algorithm by applying the

Box-jenkins method to fit the SARIMA coefficients and forecast future values. The fifth

model is constructed for the financial time series data having the non-constant variance by

combining the enhancing SARIMA forecasting model via the deep learning algorithm to

build the SARIMA model and the pq-APEA to identify the ARCH order of the residuals.

From the visualization of the convolutional neural network filters in Section 4.4, the

APEA model can extract the features of various inputs effectively. PACF and ACF are

recognized in the middle of the images and try to capture the lags which is hard for humans

to recognize visually. For the background of the images, ESACF and differencing time
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series images are used to fulfill in the background images for improving the performance

of identifying the ARIMA order by CNN. The visualization of the CNN filters shows that

the features of ESACF and differencing time series images can be extracted.

In the experiments in Section 4.1 and Section 4.2, the SID model and the SIRO

model outperforms the auto-ARIMA model and the previous deep learning model, ResNet50,

in terms of the precision, the recall and the f1-score. It is suggested that the proposed

models can extract the features of PACF, ACF or series images which are laborious for

analysts for identifying the ARIMA order. Moreover, the results indicate that changing

the time series to PACF images, ACF images or differencing time series images can pre-

dict orders better than using time series as direct input like ResNet50. In addition, these

results suggest that the identifying ARIMA order using PACF, ACF or differencing is

still more efficient than using the auto-ARIMA model because these tools can represent

the correlation of time series data whereas the auto-arima model does not use it.

In the experiment in Section 4.3, the APEA model for identifying the ARIMA order

from 0-7 gives the better performance than the other models consisting of ResNet50 and

the auto-ARIMA model. Especially, the APEA model using 3 and 4 channels of ESACF,

PACF, ACF, and differencing time series images can identify the ARIMA order accurately

and give the best scores of the precisions, the recalls and the f1-scores. It is suggested that

identifying the ARIMA order by ESACF, PACF, ACF and differencing time series images

is more effective than the auto-ARIMA model and the ResNet50 using the pure time series

as inputs. ESACF helps to identify the ARIMA order better than using only ACF, PACF

and series images. Moreover, the APEA model can extract the features in ACF, PACF,

ESACF or differencing series images which are difficult for analysts. In addition, the

experiment suggests that the use of time series without converting to ACF, PACF, ESACF

or taking differencing cannot identify the ARIMA order effectively which may be caused

by the time series being disturbed by some noises. For the experimental results of the

ACF-PACF-ESACF convolutional neural network seasonal ARIMA order identification

model to identify the SARIMA order as demonstrates in Section 5.1, the model can

identify the SARIMA order better than the auto-ARIMA model when considering the
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precisions, the recalls and the f1-scores.

Then, the enhancing SARIMA forecasting model via the deep learning algorithm is

applied with the various time series data including the synthetic time series data and the

real world time series data. The first experiment for the proposed algorithm is to apply

with the synthetic time series data according to stationarity and invertibility. The results

show that the error from forecasting of the proposed algorithm passes the Ljung-Box

test and provides the forecasted values close to the actual values whereas the auto-arima

model cannot fit the model in some case of the synthetic time series data. To ensure the

performance of the enhancing SARIMA forecasting model via the deep learning algorithm,

the real world time series data is applied. The results show that the proposed algorithm

can apply to the real world datasets like the auto-arima model, though there are some

real world time series data which fail the Ljung-Box test. This may be caused by the real

world time series being inconsistent with the ARIMA process.

Finally, the automatic ARCH forecasting via deep learning algorithm is applied

to the financial time series data including the S&P500 index, the NASDAQ index and

the Dow Jones index. The results shows that the automatic ARCH forecasting via deep

learning algorithm can better forecast the variance of the financial time series than the

auto-ARCH model based on AIC. Moreover, the performance of the the automatic ARCH

forecasting via deep learning algorithm is also confirmed by the success of the Ljung-Box

test whereas the auto-ARCH model based on AIC fails the test.

For the future work, forecasting the financial time series data using only the ARCH

model may not be able to get the best prediction of financial time series. Therefore, the

algorithm in this research may be able to extend the ARCH model to the GARCH model

in order to more accurately and efficiently predict the financial time series data.
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