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CHAPTER I

INTRODUCTION

A stochastic differential equation (SDE) with jumps for tilapia population

is the model that represents the number of tilapia population under various con-

ditions. In this section, we describe how the SDE with jumps has evolved from an

ordinary differential equation (ODE) for tilapia population. Gertjan et al.[1] pro-

posed that tilapia can produce the population in a short time duration in a proper

environment. Laham et al.[2] modeled the estimation for the tilapia population

with harvesting by an ODE

dXt =

(
rXt

(
1− Xt

K

)
−H(t)

)
dt,

where t is the time (in months), Xt is the population size of tilapia at time t (in

fish), r > 0 is the rate of the tilapia that survive at maturity stage (in fish per

month), H(t) is a harvest function and K > 0 is the original carrying capacity.

He obtained the data for the model of tilapia population from the fish owner of

selected ponds suggested by the Department of Fisheries of Malaysia situated at

Gombak, Selangor, Malaysia. The Department of Fisheries of Malaysia claimed

the following statements: (i) the fish pond can sustain 5 tilapia fish for every 1

square meter, (ii) the selected pond has an area of 156100 square meters so that

the original carrying capacity of this selected pond is 780500 fish, and (iii) the

rate of the tilapia that survives at maturity stage is 0.8 per month. For each year,

the selected pond will be harvested with the rate of 156100 fish per month for the

first 6 months, but for the rest 6 months, the selected pond will not be harvested.
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Hence, the harvest function for this selected pond is

H(t) =


156100, if t ∈ (0, 6]

0, if t ∈ (6, 12]

,

and

H(t+ 12) = H(t),

where t ≥ 0.

Since the carrying capacity of the tilapia population should be seasonal,

Asaduzzaman et al. [3] considered the periodic carrying capacity

K(t) = K0

(
1 + ε cos

(
2πt

T0

))
, (1)

where K0 > 0 is the original carrying capacity, T0 is a period of seasonal oscillations

in the carrying capacity which equals to 12 months, ε > 0 is the proportion of

extreme varying for the carrying capacity, which is much less than 1, with the

condition K(t) = K(t + 12) for all t ≥ 0. Since the carrying capacity for the

tilapia population have the highest rate at the middle of the summer, in this

work, we let April 1st, which is the middle of the summer, be the starting time

t = 0. Furthermore, Asaduzzaman et al. [3] modeled the SDE as the form

dXt

dt
=

(
rXt

(
1− Xt

K(t)

)
−H(t)

)
+ ζXtWt,

where ζ > 0 and Wt is a Wiener process.

However, we are interested in only K(t) in this model, so our ODE model
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for the tilapia population has a form

dXt =

rXt

1− Xt

K0

(
1 + ε cos

(
2πt
T0

))
−H(t)

 dt. (2)

Since there may be environmental factors that have little impact on the tilapia

population, the tilapia population should be not deterministic. With this reason,

we add a diffusion term which depends on the current number of tilapia fish into

(2), so that the tilapia population will have some random perturbation in time.

Here, we use a Wiener process as a noise for the model. Thus, ODE (2) can be

developed into an SDE for tilapia population which has the form

dXt =

rXt

1− Xt

K0

(
1 + ε cos

(
2πt
T0

))
−H(t)

 dt+ ζXκ
t dWt, (3)

where κ ∈ [0, 1]. Since there might be an epidemic occurring with tilapia popu-

lation, we add a jump term depending on the current number of tilapia fish into

the SDE (3). Thus, we have SDE with jumps for tilapia population

dXt =

rXt

1− Xt

K0

(
1 + ε cos

(
2πt
T0

))
−H(t)

 dt+ ζXκ
t dWt −

4∑
i=1

Xηi
t−dJ

(i)
t ,

(4)

where Xt− = lim
s→t−

Xs, ηi ∈ [0, 1], J
(i)
t is the inhomogeneous compound Poisson

process with intensity function λi(t) and jump size distribution D(i), when D(i)

is a beta distribution or a logit-normal distribution for i = 1, ..., 4 representing 4

diseases: Columnaris, Epitheliocystis, Red egg and Streptococcus, respectively.

From the SDE (3) and the SDE with jumps (4), it is possible that the process

Xt will become negative at some time; consequently, there is no solution for the

SDEs with some certain parameters after that time. Let τ = inf{t > 0 | Xt ≤ 0}

be the time that the number of tilapia population becomes zero. We will set



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Xt = 0 for all t > τ .

We discuss about the model for tilapia population (4) in more details in

chapter 3. The simulation for the models (3) and (4) by using Euler-Maruyama and

jump-adapted Euler, respectively, are presented in chapter 2. Then, we explain

the simulation results in chapter 4 and conclude our work in chapter 5. Our model

(4) for tilapia population is probably a good choice for studying the trend of the

tilapia population in the future under the various factors such as epidemic in order

to prepare and cope effectively with various conditions that may affect the tilapia

population.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

This chapter provides basic knowledge about SDE with jumps (4) in section

2.1. Furthermore, we introduce some numerical methods that are used in this

work in section 2.2 and 2.3.

2.1 Introduction to SDE

Definition 2.1.1. (Stochastic Process)[4]

Let I be a subset of [0,∞). A collection of random variables {Xt}t∈I , indexed by

I, is called a stochastic process.

Definition 2.1.2. (Continuous Sample Path)[4]

Let {Xt}t∈I be a stochastic process on a probability space (Ω,F , P ). For a fixed

ω ∈ Ω, a function X.(ω) : I → R is called a sample path. If X.(ω) is a continuous

function for all ω ∈ Ω, the process {Xt}t∈I is said to have continuous sample

paths.

Definition 2.1.3. (Normal Distribution)[5]

A random variable X is said to have a normal distribution with parameters

µ ∈ R and σ2 > 0, denoted by X ∼ N (µ, σ2), if its probability density function is

given by

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , x ∈ R.

If X ∼ N (0, 1), then we say that X has a standard normal distribution, i.e.,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

its probability density function is given by

g(x) =
1√
2π

e−
x2

2 , x ∈ R.

Proposition 2.1.1. If X ∼ N (µ, σ2), then

E[X] = µ

and

V ar[X] = σ2.

Definition 2.1.4. (Standard Brownian Motion)[6]

A standard Brownian motion, or standard Wiener process on [0, T ], is a

stochastic process {Wt}t∈[0,T ] which satisfies the following conditions.

1. W0 = 0, with probability 1.

2. For 0 ≤ s < t ≤ T,Wt −Ws ∼ N (0, t− s).

3. For 0 ≤ s < t ≤ u < v ≤ T , the increments Wt − Ws and Wv − Wu are

independent.

4. {Wt}t∈[0,T ] has continuous sample paths.

Definition 2.1.5. (Itô Stochastic Integral)[4]

Let Pn = {t0, t1, t2, ..., tn} where 0 = t0 < t1 < t2 < ... < tn = t be a partition

for the closed interval [0, t]. Define ∥Pn∥ = max
i∈{1,2,...,n}

(ti − ti−1). Then, an Itô

stochastic integral ∫ t

0

σ(Xs)dWs

can be defined by

lim
∥Pn∥→0

n∑
i=1

σ(Xti−1
)(Wti −Wti−1

).
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Definition 2.1.6. (Stochastic Differential Equations)[4]

An SDE typically has the form

dXt = F (Xt)dt+G(Xt)dWt,

where F and G are real-valued functions, {Wt}t∈[0,T ] is a standard Brownian mo-

tion and X0 is a constant. This equation is a differential form which should be

understood as the stochastic integral equation

Xt = X0 +

∫ t

0

F (Xs)ds+

∫ t

0

G(Xs)dWs,

where
∫ t

0
F (Xs)ds is a Riemann integral and

∫ t

0
G(Xs)dWs is an Itô integral.

Theorem 2.1.1. (Itô Formula)[6]

Let Xt be a solution of the SDE

dXt = F (Xt)dt+G(Xt)dWt

and f(x, t) is a function such that fx, fxx and ft exist. Then, the SDE for f(Xt, t)

is given by

df(Xt, t) = ft(Xt, t)dt+ fx(Xt, t)dXt +
1

2
fxx(Xt, t)(dXt · dXt),

where

dt · dt = dt · dWt = dWt · dt = 0

and

dWt · dWt = dt.
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Therefore,

df(Xt, t) =

(
ft(Xt, t) + fx(Xt, t)F (Xt) +

1

2
fxx(Xt, t)(G(Xt))

2

)
dt

+ (fx(Xt, t)G(Xt)) dWt.

Definition 2.1.7. (Beta Distribution)[5]

A random variable X is said to have a beta distribution with parameters α > 0

and β > 0, denoted by X ∼ Beta(α, β), if its probability density function is given

by

f(x) =
xα−1(1− x)β−1

B(α, β)
, x ∈ (0, 1),

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

and Γ is the Gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt.

Proposition 2.1.2. If X ∼ Beta(α, β), then

E[X] =
α

α + β

and

V ar[X] =
αβ

(α + β)2(α+ β + 1)
.

Definition 2.1.8. (Logit-Normal Distribution)[7]

A random variable X is said to have a logit-normal distribution with param-

eters µ ∈ R and σ2 > 0, denoted by X ∼ P (N (µ, σ2)), if its probability density
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function is given by

f(x) =
1

σ
√
2π

e−
(logit(x)−µ)2

2σ2
1

x(1− x)
, x ∈ (0, 1),

where

logit(x) = log
(

x

1− x

)
.

Proposition 2.1.3. If X ∼ P (N (µ, σ2)), then the location of the mode x is given

by

logit(x) = σ2(2x− 1) + µ,

and the median is
1

1 + e−µ
.

Definition 2.1.9. (Exponential Distribution)[8]

A random variable X is said to have an exponential distribution with param-

eters λ > 0, denoted by X ∼ Exp(λ), if its probability density function is given

by

f(x) = λe−λx, x ≥ 0.

Proposition 2.1.4. If X ∼ Exp(λ), then

E[X] =
1

λ

and

V ar[X] =
1

λ2
.

Definition 2.1.10. (Poisson Distribution)[5]

A random variable X is said to have a Poisson distribution with parameters
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λ > 0, denoted by X ∼ Poi(λ), if its probability mass function is given by

P (X = k) =
e−λλk

k!
, k ∈ N ∪ {0}.

Proposition 2.1.5. If X ∼ Poi(λ), then

E[X] = λ

and

V ar[X] = λ.

Definition 2.1.11. (Point Process)[9]

A point process on [0,∞) with an infinite number of strictly positive jump

instants without accumulation point, is a process {Nt, t ≥ 0} with values in N∪{0},

vanishing at 0, non-decreasing, right continuous, with unit jumps, and with infinite

limit, i.e., for 0 ≤ s ≤ t < ∞,

0 = N0 ≤ Ns ≤ Nt = Nt+ ,

Nt −Nt− ∈ {0, 1},

lim
t→∞

Nt = ∞,

with the notation Nt+ = lim
u→t+

Nu, Nt− = lim
u→t−

Nu and N0− = N0.

Definition 2.1.12. (Poisson Process)[9]

A Poisson process {Nt, t ≥ 0} with parameter λ > 0 is a point process satisfying

the following conditions.

1. N0 = 0.

2. For 0 ≤ s < t,Nt −Ns ∼ Poi(λ(t− s)).
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3. For 0 ≤ s < t ≤ u < v, the increments Nt−Ns and Nv−Nu are independent.

The parameter λ is called the intensity or rate of the Poisson process.

Definition 2.1.13. (Inhomogeneous Poisson Process)[10]

A point process {Nt, t ≥ 0} is said to be an inhomogeneous Poisson process with

intensity function λ(t) ≥ 0, if

1. N0 = 0 with probability 1.

2. The process {Nt, t ≥ 0} is the point process with independent increments

and right continuous piecewise constant trajectories.

3. For h > 0,

P (Nt+h−Nt = k) =
(
∫ t+h

t
λ(x)dx)k

k!
e−

∫ t+h
t λ(x)dx.

Definition 2.1.14. (Compound Poisson Process)[9]

Let {Nt, t ≥ 0} be a Poisson process with intensity λ and {Di}i∈N a sequence

of independent and identically distributed random variables with distribution D,

and {Di}i∈N is independent of {Nt, t ≥ 0}. Define

Jt =
Nt∑
i=1

Di,

where
0∑

i=1

Di is defined to be zero. Then, {Jt, t ≥ 0} is called a compound

Poisson process with intensity λ and jump size distribution D.

Definition 2.1.15. (Inhomegeneous Compound Poisson Process)[11]

Let {Nt, t ≥ 0} be an inhomogeneous Poisson process with intensity function

λ(t) and {Di}i∈N a sequence of independent and identically distributed random
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variables with distribution D, and {Di}i∈N is independent of {Nt, t ≥ 0}. Define

Jt =
Nt∑
i=1

Di,

where
0∑

i=1

Di is defined to be zero. Then, {Jt, t ≥ 0} is called an inhomogeneous

compound Poisson process with intensity function λ(t) ≥ 0 and jump size

distribution D.

Definition 2.1.16. (Stochastic Integrals with Jumps)[9]

Let {Nt, t ≥ 0} be an inhomogeneous Poisson process with intensity λ(t) and

{Jt, t ≥ 0} the corresponding inhomogeneous compound Poisson process with

jump size distribution D. We can define a stochastic integral of a stochastic process

{ϕt, t ≥ 0} with respect to {Jt, t ≥ 0} by

∫ T

0

ϕtdJt =

∫ T

0

ϕtDNtdNt =

NT∑
i=1

ϕTi
Di,

where Ti’s are jump instants of the process {Nt, t ≥ 0}.

Definition 2.1.17. (Total variation for functions of one real variable) [12]

The total variation of a real-valued function f , defined on an interval [a, b] ⊂ R

is the quantity

V
(a)
b (f) = sup

P

nP−1∑
i=0

|f(xi+1)− f(xi)|,

where the supremum runs over the set of all partitions P = {P = {x0, ..., xnP
} | P

is a partition of [a, b]} of the given interval.
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2.2 Introduction to Numerical Methods for SDEs

2.2.1 Euler-Maruyama

For an SDE

dXt = F (Xt)dt+G(Xt)dWt, t ∈ [0, T ], (4)

where X0 is a constant, and Wt is a Wiener process. The Euler-Maruyama method

is a numerical method to approximate a numerical solution of an SDE. It has the

following procedure [11].

1. Discretize the interval [0, T ] into N equal pieces for some N ∈ N and let

∆t = T
N

.

2. Define tn = n∆t and denote the numerical solution of Xtn by xn for n =

0, ..., N .

3. The Euler-Maruyama scheme for the SDE (4) has the form

x0 = X0,

xn = xn−1 + F (xn−1)∆t+G(xn−1)∆Wn, for n = 1, 2, ..., N,

where

∆Wn = Wtn −Wtn−1 ∼ N (0,∆t).

2.2.2 Jump-Adapted Euler

For an SDE with jumps

dXt = F (Xt)dt+G(Xt)dWt +
4∑

i=1

Vi(Xt−)dJ
(i)
t , t ∈ [0, T ], (5)
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where X0 is a constant, Wt is a Wiener process, and J
(i)
t is an inhomogeneous

compound Poisson process with intensity λi(t) and jump size distribution D(i)

for i = 1, 2, 3, 4. The jump-adapted Euler method is a numerical method to

approximate a numerical solution of an SDE with jumps. It has the following

procedure [11].

1. Discretize the interval [0, T ] into M equal pieces for some M ∈ N and let

∆t = T
M

.

2. Define τm = m∆t for m = 0, ...,M .

3. For all i = 1, ..., 4, generate all inhomogeneous jump instants between 0 and

T , namely τ̂
(i)
p for p = 1, ..., Q(i), where Q(i) is the number of jump instants,

from the inhomogeneous Poisson process with intensity λi(t).

4. Let {tn | n = 0, 1, ..., N} =
4∪

i=1

{τ̂ (i)p | p = 1, ..., Q(i)}
∪
{τm | m = 0, ...,M} be

a jump-adapted time discretization, where t0 < t1 < ... < tN .

5. Denote the numerical solution of Xtn by xn for n = 0, ..., N .

6. The jump-adapted Euler scheme for the SDE with jumps (5) has the form

x0 = X0,

x−
n = xn−1 + F (xn−1)∆tn +G(xn−1)∆Wn,

xn = x−
n +

4∑
i=1

Vi(x
−
n )∆J (i)

n , for n = 1, 2, ..., N,

where

∆tn = tn − tn−1,

∆Wn = Wtn −Wtn−1 ∼ N (0,∆tn),
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∆J (i)
n = J

(i)
tn − J

(i)
tn−1

=

N
(i)
tn∑

k=N
(i)
tn−1

+1

D
(i)
k , where D

(i)
k ∼ D(i).

2.3 Acceptance-Rejection Method

In this work, we use MATLAB to simulate our tilapia population model.

We can use built-in MATLAB functions for generating random numbers from

most well-known distributions. However, we need to use the acceptance-rejection

method to generate random numbers from the logit-normal distribution. The

acceptance-rejection method, initiated by Von Neumann [13], is the method that

generates samples from a target distribution by first generating candidates from a

more convenient distribution and then rejecting a random subset of the generated

candidates. The rejection mechanism is designed so that the accepted samples are

indeed distributed according to the target distribution. The technique is by no

means restricted to univariate distributions.

Suppose that we wish to generate samples from a density f defined on some

set χ. This could be a subset of the real line, of Rd, or a more general set. Let

g be a density on χ from which we know how to generate samples and with the

property that

f(x) ≤ cg(x), for all x ∈ χ

for some constant c. In the acceptance-rejection method, we generate a sample X

from g and accept the sample with probability f(X)
cg(X)

; this can be implemented by

sampling U uniformly over (0,1) and accepting X if U ≤ f(X)
cg(X)

. If X is rejected,

a new candidate is sampled from g and the acceptance test is applied again. The

process repeats until the acceptance test is passed, and the accepted value is

returned as a sample from f .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

SDE WITH JUMPS MODEL OF TILAPIA

POPULATION

In this chapter, we describe in details of the harvest functions in section 3.1,

the diffusion term in section 3.2, and the jump terms in section 3.3.

3.1 Harvest Function

Recall that we have a harvest function used in a farm in Malaysia [2]. In this

work, we not only consider the harvest function introduced in [2] but also define

other 5 harvest functions that have different behaviors including the harvestment

in Thailand. The 6 harvest functions are given by

H1(t) =


156100, if t ∈ (0, 6]

0, if t ∈ (6, 12]

,

H2(t) = 78050, if t ∈ (0, 12],

H3(t) =



156100, if t ∈ (0, 2]

0, if t ∈ (2, 4]

156100, if t ∈ (4, 6]

0, if t ∈ (6, 8]

156100, if t ∈ (8, 10]

0, if t ∈ (10, 12]

,
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H4(t) =


156100

(
1 + 0.1 cos

(
2πt

12

))
, if t ∈ (0, 6]

0, if t ∈ (6, 12]

,

H5(t) = 78050

(
1 + 0.1 cos

(
2πt

12

))
, if t ∈ (0, 12]

H6(t) =



171710, if t ∈ (0, 2]

0, if t ∈ (2, 4]

140490, if t ∈ (4, 6]

0, if t ∈ (6, 8]

171710, if t ∈ (8, 10]

0, if t ∈ (10, 12]

,

and

Hi(t+ 12) = Hi(t),

where t ≥ 0 for i = 1, 2, 3, 4, 5, 6. We describe the motivation of defining these 6

harvest functions as follows.

The first harvest function H1 is the same as in [2]. For each year, a pond will

be harvested with the rate of 156100 fish per month for the first 6 months, but

for the rest 6 months, the pond will not be harvested. As for the harvest function

H2, we define it to make the tilapia population be harvested all year round with

a constant rate of 78050 fish per month, which equals to the half of 156100. The

harvest function H3 is defined similarly to the harvest function H1 in terms of the

harvest rate, but the harvest period does not have the same pattern as the harvest

function H1. As for the harvest function H4, we define it similarly to the harvest

function H1 in terms of the harvest period. The difference between them is that

the harvest rate for H4 is not just a constant, but it depends on time. Tilapia pop-
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ulation will be harvested with the seasonal rate of 156100
(
1 + 0.1 cos

(
2πt
12

))
fish

per month which resembles to the periodic carrying capacity K(t) defined in (1).

The harvest function H5 is defined similarly to the harvest function H2 in terms of

the harvest period. However, the harvest rate is given by 78050
(
1 + 0.1 cos

(
2πt
12

))
fish per month which equals to the half of the harvest rate for the harvest func-

tion H4. As for the last harvest function H6, we define it similarly to the harvest

function H3 in terms of the harvest period, but the harvest rate for the harvest

function H6 is slightly different from the harvest function H3. The harvest rate for

the harvest function H6 resembles to the periodic carrying capacity K(t) defined

in (1). On month 0 − 2 and 8 − 10, the harvest rate is given by 171710 fish per

month, which equals to the maximum of 156100
(
1 + 0.1 cos

(
2πt
12

))
. On month

4−6, the harvest rate is given by 140490 fish per month, which equals to the min-

imum of 156100
(
1 + 0.1 cos

(
2πt
12

))
. Note that the harvest functions H2 and H5

are suitable for many farms in Thailand up to a scalar multiplication depending

on the size of those farms.

To see the effect of each harvest function to the ODE (2), we use the Euler

method to find the numerical solutions of ODE (2) with these 6 harvest func-

tions. The numerical solutions are plotted in Figure 3.1 using parameters r = 0.8,

ε = 0.1, K0 = 780500 and T0 = 12 with 3 initial conditions: 200000, 300000 and

900000. Notice that the number of tilapia population becomes zero for the yellow

dotted line in Figures 3.1(a), 3.1(d) and 3.1(f).

3.2 Diffusion Term

From the diffusion term, the second term of the right-hand-side of SDE with jumps

(4), if κ = 0, then the diffusion term will not depend on tilapia population, if κ = 1,

then the diffusion term will depend on tilapia population linearly. However, if

κ > 1, then the tilapia population will be unstable. Thus, κ can indicate how
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(a) H1 (b) H2

(c) H3 (d) H4

(e) H5 (f) H6

Figure 3.1: Numerical solutions of ODE (2) with different harvest functions

much the noise change according to the tilapia population. To make the diffusion

term more general, we assume that κ ∈ [0, 1]. ζ is the parameter indicating how

much the noise oscillates according to the tilapia population. We study the proper

values of ζ > 0 and κ for the SDE with jumps in chapter 4.

3.3 Jump Terms

Jump terms, the summation term of the right-hand-side of SDE with jumps (4), de-

scribe the epidemic occurring with tilapia population based on 4 diseases, Colum-
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naris, Epitheliocystis, Red egg, and Streptococcus. In our model, we let J (i)
t be the

inhomogeneous compound Poisson process with intensity λi(t) and jump size dis-

tribution D(i), which is a beta distribution or a logit-normal distribution, where

i = 1, ..., 4 represent Columnaris, Epitheliocystis, Red egg, and Streptococcus,

respectively. We describe all diseases and their corresponding parameters in sub-

sections 3.3.1 - 3.3.4 and explain the meaning of the parameters ηi in subsection

3.3.5.

3.3.1 Columnaris

Chitmanat [14] proposed the fact that the infected tilapia from this disease will

have pale body, slime, corrosion on fin and gill, and yellow spots in the wound.

The cause of infection is stress from transportation. Thus, the tilapia population

can be infected anytime where the chances of infected are different depending

on the season. With this reason, AQUADAPT [15] proposed the level of risk of

Columnaris in each month, and from [15], we propose the intensity function in

time of Columnaris as described by

λ1(t) =



0.1 +
0.4

1 + 48e−16+8|t+0.5| , if t ∈ (0, 2]

0.1, if t ∈ (2, 2.5]

0.1 +
0.2

1 + 48e−24+8|t−6| , if t ∈ (2.5, 9.5]

0.1, if t ∈ (9.5, 10]

0.1 +
0.4

1 + 48e−16+8|t−12.5| , if t ∈ (10, 12],

and

λ1(t+ 12) = λ1(t),

for t ≥ 0. Dong et al. [16] proposed that the mortality of infected tilapia from this

disease is approximately 10−70%, we propose that the severity of this disease can
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be modeled by the beta distribution,

D1 ∼ Beta(9, 15).

The intensity function and the severity function of Columnaris are shown as Fig-

ures 3.2(a) and 3.2(b), respectively.

3.3.2 Epitheliocystis

Somridhivej et al. [17] proposed the fact that the infected tilapia from this disease

will have cysts in the epithelium cells of the gill that will cause the cells at the tip

of the gill to enlarge and look like cysts. This disease can occur all year round.

Thus, we propose that the intensity function in time of Epitheliocystis is described

by

λ2(t) = 0.5,

for t ≥ 0. The mortality of infected tilapia from this disease is approximately

4 − 10%. Thus, we propose that the severity of this disease can be modeled by

the logit-normal distribution,

D2 ∼ P (N (−2.67, 0.0196)).

The intensity function and the severity function of Epitheliocystis are shown as

Figures 3.2(c) and 3.2(d), respectively.

3.3.3 Red Egg

Senapin et al. [18] proposed the fact that the eggs of infected tilapia from this

disease will change colors from normal yellowish to reddish and eventually fail to

hatch. This disease spreads in the winter. Thus, we propose that the intensity
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function in time of Red egg is described by

λ3(t) =


0.02, if t ∈ (0, 6]

0.1 +
0.48

1 + 48e−16+8|t−8.5| , if t ∈ (6, 11]

0.02, if t ∈ (11, 12],

and

λ3(t+ 12) = λ3(t),

for t ≥ 0. The mortality of infected tilapia from this disease is approximately

10 − 50%. Thus, we propose that the severity of this disease can be modeled by

the beta distribution,

D3 ∼ Beta(14, 36).

The intensity function and the severity function of Red Egg are shown as Figures

3.2(e) and 3.2(f), respectively.

3.3.4 Streptococcus

Chitmanat [14] proposed the fact that the infected tilapia from this disease will

have bulging white eyes, swollen intestine, and cannot swim. The causes of in-

fection are temperature fluctuation, trauma, and poor water quality. Thus, the

tilapia population can be infected anytime where the chances of infection are dif-

ferent depending on the season. With this reason, AQUADAPT [15] proposed

the level of risk of Streptococcus in each month, and from [15], we propose the

intensity function in time of Streptococcus as described by
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λ4(t) =



0.1 +
0.4

1 + 48e−16+8|t+0.5| , if t ∈ (0, 2]

0.1, if t ∈ (2, 2.5]

0.1 +
0.2

1 + 48e−24+8|t−6| , if t ∈ (2.5, 9.5]

0.1, if t ∈ (9.5, 10]

0.1 +
0.4

1 + 48e−16+8|t−12.5| , if t ∈ (10, 12],

and

λ4(t+ 12) = λ4(t),

for t ≥ 0. Assis et al. [19] proposed that the mortality of infected tilapia from this

disease is approximately up to 90%. Thus, we propose that the severity of this

disease can be modeled by the beta distribution,

D4 ∼ Beta(22, 10).

The intensity function and the severity function of Streptococcus are shown as

Figures 3.2(g) and 3.2(h), respectively.

3.3.5 Immunity

From the jump terms in SDE with jumps 4, we describe the meaning of ηi for

i = 1, ..., 4 as follows. Assume that the tilapia farm has the number of tilapia

population equal to Xt fish. If the tilapia farm wants to make parameter ηi equal

to some constant C ∈ [0, 1], the tilapia farm should maintain the level of immuned

tilapia to Xt − XC
t fish. Thus, this amount of tilapia will not be dead from the

ith disease, but the others XC
t tilapia will not have the immunity and can be dead

from the ith disease. We define the parameter ηi to be 1, if the ith disease is not
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controlled by the tilapia farm. In this case tilapia population in the farm will

have low immunity. If the ith disease is controlled by the tilapia farm, tilapia

population in the farm will have high immunity. In this case, ηi is less than 1.

If the tilapia population have high immunity and do not die from the ith disease,

we will define the parameter ηi to be 0. Hence, ηi ∈ [0, 1] represents how much

the tilapia population have immunity against the ith disease. In this study, we

compare the trends of SDE with jumps (4) when we change the parameter ηi of

some diseases, which will be described in chapter 4.
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(a) Intensity function of Columnaris (b) PDF of the severity of Columnaris

(c) Intensity function of Epitheliocystis (d) PDF of the severity of Epitheliocystis

(e) Intensity function of Red egg (f) PDF of the severity of Red egg

(g) Intensity function of Streptococcus (h) PDF of the severity of Streptococcus

Figure 3.2: Intensity functions and PDFs of the severity of all diseases



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

EXPERIMENTS AND RESULTS

In this chapter, we simulate the SDE without jumps (3), for tilapia popula-

tion without disease occurring, and the SDE with jumps (4), for tilapia population

with disease occurring, using the Euler-Maruyama and jump-adapted Euler meth-

ods, respectively. We perform the simulation 10000 sample paths over the time

domain [0, T ] by showing the first 10 sample paths together with the average of

all 10000 sample paths. In this work, we observe the simulation results for five

years which should be enough to see the long-time behavior of the tilapia popula-

tion. Thus, we define the maximum time domain T = 60. If the initial number of

tilapia population is too low, the number of tilapia population may rapidly and

easily become zero. Thus, we define the initial tilapia population X0 = 900000.

We define the proportion of extreme varying for the carrying capacity ε = 0.1,

because from [3], ε = 0.1 is much less than 1. We want to discretize the time

domain [0, T ] into 6000 equal pieces which is not too high or too low to observe

the simulation results. Thus we define ∆t = 0.01.

4.1 Suitable Diffusion Term of the SDE for Tilapia Population

As for the diffusion term in SDE (3), we would like to determine values of ζ

and κ which bring about moderate noises. This means that the noises from the

diffusion term are not too low or too high for observing the trend of SDE. If the

noises are too low, environmental factors seems to disappear as if we had only

the original ODE (2). If the noises are too high, the trend of the ODE (2) may

no longer remain. Therefore, we simulate the SDE (3) by using ζ = 3, 30, 70 and
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κ = 0.4, 0.5, 0.6 to find proper values of ζ and κ. Here, we use H1 as the common

harvest function in our simulation. The results are shown in Figure 4.1 and they

suggest that proper values of ζ and κ are ζ = 30 and κ = 0.5 which correspond to

Figure 4.1(e).

To see a mathematical criterion to choose the proper values of ζ and κ, we

use the concept of the total variation for a sample path of an SDE. The numerical

approximation of the total variation for a sample path of SDE (3) is given by
N∑

n=1

|xn − xn−1|. Table 4.1 shows the average of these approximation values of 10

sample paths with 9 different values of ζ and κ: ζ = 3, 30, 70 and κ = 0.4, 0.5, 0.6.

Since, the numerical approximation of the total variation for a sample path of

SDE (3) with ζ = 30 and κ = 0.5 is 11.411000 million fish which is not too low or

too high, we suggest that proper values of ζ and κ are ζ = 30 and κ = 0.5.

κ
0.4 0.5 0.6

ζ
3 3.666500 3.698900 5.283200
30 4.416500 11.411000 40.032000
70 7.511400 25.574000 40.074000

Table 4.1: The numerical approximation of the total variation for a sample path of
SDE (3) with ζ = 3, 30, 70 and κ = 0.4, 0.5, 0.6, where the unit is in million fish.

4.2 Harvest Function of SDE of Tilapia Population

In this section, we use ζ = 30 and κ = 0.5 obtained from section 4.1 to simulate

the SDE (3) for tilapia population with the different harvest functions. The results

are shown in Figure 4.2, and the MATLAB code for this simulation is given in

APPENDIX A-F. From Figure 4.2, the results are similarly to the results from

the ODE, Figure 3.1. Although the selected farm in Malaysia harvested only for

half a year, the harvest period and the harvest rate of the other farms in Malaysia

maybe not the same as the selected farm. Since most of the farms in Thailand

always harvest the tilapia throughout the year, the harvest function H2 and H5
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(a) ζ = 3 and κ = 0.4 (b) ζ = 3 and κ = 0.5 (c) ζ = 3 and κ = 0.6

(d) ζ = 30 and κ = 0.4 (e) ζ = 30 and κ = 0.5 (f) ζ = 30 and κ = 0.6

(g) ζ = 70 and κ = 0.4 (h) ζ = 70 and κ = 0.5 (i) ζ = 70 and κ = 0.6

Figure 4.1: Numerical solutions of SDE (3) for tilapia population with harvest function
H1
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should be the proper harvest functions for the most farms in Thailand. Note that

the harvest rates of these harvest functions may differ from other tilapia farms in

Thailand. However, we choose only the harvest function H2 to observe the effect

from the diseases in section 4.3.

(a) H1 (b) H2

(c) H3 (d) H4

(e) H5 (f) H6

Figure 4.2: Numerical solutions of SDE (3) with ζ = 30, κ = 0.5 for different harvest
functions
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Figure 4.3: Numerical solutions of SDE (4) when all disease are not controlled

4.3 Jumps Effect from the SDE with Jumps of Tilapia Population

In this section, we divide the simulation into 4 cases. For the first case, we study

when the tilapia farms have no control of diseases. For the second case, we study

the controll of all disease via controlling of the parameter ηi. For the last 2 cases,

we study the effect of disease classified by the time that diseases occur.

4.3.1 No Control of Diseases

In this case, the disease are not controlled, so ηi = 1 for i = 1, ..., 4. The results of

SDE with jumps (4) in this subcase are shown in Figure 4.3. From Figure 4.3, the

number of tilapia population becomes zero after some time due to the diseases.

4.3.2 Control all Diseases

In this case, we control all diseases using the same value of ηi for i = 1, ..., 4.

We vary the value of all ηi to study how many tilapia population will become
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zero if all ηi are changed. After some preliminary experimental trials of the SDE

with jumps (4), we choose all ηi = 0.90, 0.91, 0.92, ..., 0.99, because there are two

specific values for all ηi that make the number of tilapia population become positive

for all 10000 sample paths and make the number of tilapia population become

zero exactly 1 sample path, respectively. These two specific values are between

0.90 and 0.99. Furthermore, we found that the number of tilapia population

for all 10000 sample path are positive when all ηi less than 0.9. If tilapia farm

maintain the level of immuned tilapia to Xt − XC
t fish where C is less than 0.9

the number of tilapia population will become positive. Thus, we consider the

SDE with jumps (4) where all ηi = 0.90, 0.91, 0.92, ..., 0.99. Table 4.2 shows the

number of sample paths of tilapia population becoming zero when all diseases

are controlled with these values of ηi. We count the number of sample paths of

tilapia population becoming zero when all diseases are controlled with all ηi =

0.90, 0.91, 0.92, ..., 0.99. If all ηi increase, the number of sample paths of tilapia

population becoming zero will increase. Thus, if tilapia population in the tilapia

farm have low immunity, the chance that the number of tilapia population become

zero will be high. Furthermore, if all ηi are changed from 0.91 to 0.92, the number

of sample paths of tilapia population becoming zero will change from 0 sample

path to 11 sample paths. Thus, tilapia farm should maintain the level of immuned

tilapia to Xt − XC
t fish where C is less than or equal to 0.91 to avoid that the

number of tilapia population becomes zero. Note that if the initial number of

tilapia population is too low, the number of sample paths of tilapia population

becoming zero will close to 10000 easily and vice versa. The numerical solutions

of (4) when ηi = 0.90, 0.93, 0.94, and 0.99 are shown in Figure 4.4. From Figure

4.4, if all ηi increase, then the number of sample paths whose numerical solution

of (4) at t = T is equal to zero will increase, and the expectation of the numerical

solution of (4) for all sample paths will decrease. The MATLAB code for this

simulation where ηi = 0.90 is given in APPENDIX G.
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(a) ηi = 0.90 for all i = 1, ..., 4 (b) ηi = 0.93 for all i = 1, ..., 4

(c) ηi = 0.94 for all i = 1, ..., 4 (d) ηi = 0.99 for all i = 1, ..., 4

Figure 4.4: Numerical solutions of SDE (4) when all diseases are controlled with
different value of ηi

4.3.3 Control Columnaris and Streptococcus

Since Columnaris, i = 1, and Streptococcus, i = 4, often occur in the same season,

we control these 2 diseases by letting η1 = η4 = 0.5. Note that we can choose η1

and η4 around 0.3 to 0.6 which are not too low or too high to observe the simulation

results where Columnaris and Streptococcus affect the tilapia population slightly,

but we choose η1 = η4 = 0.5 in our simulation. Since Epitheliocystis and Red Egg

are not controlled, we set η2 = η3 = 1. The numerical solutions of (4) in this case

are shown in Figure 4.5. From Figure 4.5, since Columnaris and Streptococcus,

which have high severity, are controlled, the number of tilapia population will not

become zero.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

ηi

The number of sample paths
of tilapia population

becoming zero
ηi

The number of sample paths
of tilapia population

becoming zero
0.90 0 0.95 9958
0.91 0 0.96 10000
0.92 11 0.97 10000
0.93 924 0.98 10000
0.94 7111 0.99 10000

Table 4.2: The number of sample paths of tilapia population becoming zero when all
diseases are controlled with different value of ηi

Figure 4.5: Numerical solutions of SDE (4) when Columnaris and Streptococcus are
controlled
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Figure 4.6: Numerical solutions of SDE (4) when Red Egg is controlled

4.3.4 Control Red Egg

In this case, we control Red Egg, i = 3, by letting η3 = 0.5. Note that we

can choose η3 around 0.3 to 0.6 which are not too low or too high to observe

the simulation results where Red Egg affect the tilapia population slightly, but

we choose η3 = 0.5 in our simulation. Since Columnaris, Epitheliocystis and

Streptococcus are not controlled, η1 = η2 = η4 = 1. The numerical solutions of

(4) in this case is shown in Figure 4.6. From Figure 4.6, although Red egg, which

have moderate severity, is controlled, the number of tilapia population becomes

zero. This is because the other high severity deseases are not controlled.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS

In this work, we develop the ODE (2) into the SDE (3) by adding the diffu-

sion term. Next, we develop the SDE (3) into the SDE with jumps (4) by adding

the jump terms corresponding to fish diseases. Our model development process is

explained in chapter 3 and 4.

In chapter 3, we describe in details of the harvest functions, the diffusion

term and the jump terms for the SDE with jumps (4).

As for the harvest functions, we first define other 5 harvest functions that

have different behaviors including the harvestment in Thailand which apart from

the harvest function from [2] and observe the trends of (2) with different harvest

functions by using the Euler method.

As for the the diffusion term, we use a Wiener process as a noise for the

model. Furthermore, we assume κ ∈ [0, 1] which can indicate how much the noise

change according to the tilapia population and define ζ > 0 which can how much

the noise oscillates according to the tilapia population.

As for the the jump terms, we explain about the jump terms for (4) which de-

scribe the epidemic occurring with tilapia population based on 4 diseases, Colum-

naris, Epitheliocystis, Red egg, and Streptococcus. The chance that each disease

occurs is consistent with the intensity of inhomogeneous compound Poisson pro-

cess. The severity of each disease is consistent with the jump size distribution

of inhomogeneous compound Poisson process which has a beta distribution or a

logit-normal distribution. After that, we explain about the meaning of ηi in the

jump terms for (4). If the tilapia farm wants to make parameter ηi equal to some



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

constant C ∈ [0, 1], the tilapia farm should maintain the level of immuned tilapia

to Xt−XC
t fish. Thus, this amount of tilapia will not be dead from the ith disease,

but the other XC
t tilapia will not have the immunity and can be dead from the

ith disease. Hence, ηi ∈ [0, 1] represents how much the tilapia population have

immunity against the ith disease.

In chapter 4, we simulate the SDE (3), and the SDE with jumps (4), for

tilapia population with disease occurring, using the Euler-Maruyama and jump-

adapted Euler methods, respectively. We perform the simulation of 10000 sample

paths over the time domain [0, T ] by showing the first 10 sample paths together

with the average of all 10000 sample paths.

We first simulate the SDE (3) to obtain a proper diffusion term for the SDE

with jumps (4) by using the Euler-Maruyama method. From the results, we found

a the proper diffusion term has ζ = 30 and κ = 0.5.

We simulate the SDE without jumps (3) with the proper diffusion term

to observe the trends of (3) with different harvest functions by using the Euler-

Maruyama method and choose the harvest function H2 which is a proper harvest

function for many farms in Thailand for the SDE with jumps (4). Finally, we

divide the simulation into 4 situations to study the jump effect to the tilapia

population and obtain the results of SDE with jumps (4) related to the diseases

control.

For the first case, all diseases are not controlled by letting all ηi = 1. The

results is that the number of tilapia population becomes zero after some time due

to the diseases.

For the second case, we first perform some preliminary experimental trials

of the SDE with jumps (4) to find an interval that has two specific values for

all ηi that make the number of tilapia population become positive for all 10000

sample paths and make the number of tilapia population become zero exactly 1

sample path, respectively. These two specific values are between 0.90 and 0.99.
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Furthermore, we found that the number of tilapia population for all 10000 sample

path are positive when all ηi less than 0.9. Thus, we consider the SDE with jumps

(4) where all ηi = 0.90, 0.91, 0.92, ..., 0.99. We find that if tilapia population have

low immunity, the chance that the number of tilapia population becomes zero will

be high. Moreover, tilapia farm should maintain the level of immuned tilapia to

Xt − XC
t fish where C is less than or equal to 0.91 to avoid that the number of

tilapia population becomes zero.

For the third case, Columnaris and Streptococcus are controlled by letting

η1 = η4 = 0.5. However, Epitheliocystis and Red Egg are not controlled, i.e.,

η2 = η3 = 1. Since Columnaris and Streptococcus, which have high severity, are

controlled, the number of tilapia population will not become zero.

For the last case, Red Egg are controlled by letting η3 = 0.5. However,

Columnaris, Epitheliocystis and Streptococcus are not controlled, i.e., η1 = η2 =

η4 = 1. Since the other high severity deseases are not controlled, the number of

tilapia population eventually becomes zero. Since Epitheliocystis has low severity,

we do not have the case that Epitheliocystis is controlled.

However, we did not consider to perform the parameter estimation in this

work. If we had data and performed the parameter estimation for the SDE with

jumps (4), we could obtain proper parameters and the model (4) should be more

realistic.

In reality, there are many other factors apart from our work that affect

tilapia population, so our model for tilapia population can be developed more in

terms of sources of random noise to the model. However, we still believe that our

model (4) for tilapia population is probably a good choice for studying the trend

of the tilapia population in the future under the various factors such as epidemic

in order to prepare and cope effectively with various conditions that may affect

the tilapia population.
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APPENDIX A : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 1

1 rng default;

2 % Define all parameters and all functions for the ODE term with

out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all normal times maximum time domain

13 T = 60;

14 % Time step for normal times

15 dt = 0.01;

16 t = 0:dt:T;

17 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 1

18 Path = 10000;

19 N = length(t)-1;

20 x_sim = zeros(Path,N+1);

21 x_sim(1:Path,1) = 900000;

22 H0 = 156100;

23 H = @(t) H0;

24 for i=1:Path

25 for j=1:length(t)-1

26 dw = randn();

27 if mod(t(j),12)>0 && mod(t(j),12)<=6

28 x_sim(i,j+1) = x_sim(i,j)+...
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29 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

30 G(x_sim(i,j))*sqrt(dt)*dw;

31 else

32 x_sim(i,j+1) = x_sim(i,j)+...

33 (F(x_sim(i,j),t(j)))*(dt)+...

34 G(x_sim(i,j))*sqrt(dt)*dw;

35 end

36 if x_sim(i,j+1) <= 0

37 x_sim(i,j+1) = 0;

38 break;

39 end

40 end

41 end
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APPENDIX B : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 2

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion

term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all normal times

13 % maximum time domain

14 T = 60;

15 % Time step for normal times

16 dt = 0.01;

17 t = 0:dt:T;

18 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 2

19 Path = 10000;

20 N = length(t)-1;

21 x_sim = zeros(Path,N+1);

22 x_sim(1:Path,1) = 900000;

23 H0 = 156100;

24 H = @(t) H0/2;

25 for i=1:Path

26 for j=1:length(t)-1

27 dw = randn();
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28 x_sim(i,j+1) = x_sim(i,j)+...

29 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

30 G(x_sim(i,j))*sqrt(dt)*dw;

31 if x_sim(i,j+1) <= 0

32 x_sim(i,j+1) = 0;

33 break;

34 end

35 end

36 end
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APPENDIX C : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 3

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion

term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all normal times

13 % maximum time domain

14 T = 60;

15 % Time step for normal times

16 dt = 0.01;

17 t = 0:dt:T;

18 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 3

19 Path = 10000;

20 N = length(t)-1;

21 x_sim = zeros(Path,N+1);

22 x_sim(1:Path,1) = 900000;

23 H0 = 156100;

24 H = @(t) H0;

25 for i=1:Path

26 for j=1:length(t)-1

27 dw = randn();



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

28 if mod(t(j),12)>0 && mod(t(j),12)<=2

29 x_sim(i,j+1) = x_sim(i,j)+...

30 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

31 G(x_sim(i,j))*sqrt(dt)*dw;

32 elseif mod(t(j),12)>2 && mod(t(j),12)<=4

33 x_sim(i,j+1) = x_sim(i,j)+...

34 (F(x_sim(i,j),t(j)))*(dt)+...

35 G(x_sim(i,j))*sqrt(dt)*dw;

36 elseif mod(t(j),12)>4 && mod(t(j),12)<=6

37 x_sim(i,j+1) = x_sim(i,j)+...

38 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

39 G(x_sim(i,j))*sqrt(dt)*dw;

40 elseif mod(t(j),12)>6 && mod(t(j),12)<=8

41 x_sim(i,j+1) = x_sim(i,j)+...

42 (F(x_sim(i,j),t(j)))*(dt)+...

43 G(x_sim(i,j))*sqrt(dt)*dw;

44 elseif mod(t(j),12)>8 && mod(t(j),12)<=10

45 x_sim(i,j+1) = x_sim(i,j)+...

46 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

47 G(x_sim(i,j))*sqrt(dt)*dw;

48 else

49 x_sim(i,j+1) = x_sim(i,j)+...

50 (F(x_sim(i,j),t(j)))*(dt)+...

51 G(x_sim(i,j))*sqrt(dt)*dw;

52 end

53 if x_sim(i,j+1) <= 0

54 x_sim(i,j+1) = 0;

55 break;

56 end

57 end

58 end
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APPENDIX D : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 4

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion

term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all normal times

13 % maximum time domain

14 T = 60;

15 % Time step for normal times

16 dt = 0.01;

17 t = 0:dt:T;

18 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 4

19 Path = 10000;

20 N = length(t)-1;

21 x_sim = zeros(Path,N+1);

22 x_sim(1:Path,1) = 900000;

23 H0 = 156100;

24 H = @(t) H0*(1+(echilon)*cos((2*pi*t)./12));

25 for i=1:Path

26 for j=1:length(t)-1

27 dw = randn();
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28 if mod(t(j),12)>0 && mod(t(j),12)<=6

29 x_sim(i,j+1) = x_sim(i,j)+...

30 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

31 G(x_sim(i,j))*sqrt(dt)*dw;

32 else

33 x_sim(i,j+1) = x_sim(i,j)+...

34 (F(x_sim(i,j),t(j)))*(dt)+...

35 G(x_sim(i,j))*sqrt(dt)*dw;

36 end

37 if x_sim(i,j+1) <= 0

38 x_sim(i,j+1) = 0;

39 break;

40 end

41 end

42 end
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APPENDIX E : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 5

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion

term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all normal times

13 % maximum time domain

14 T = 60;

15 % Time step for normal times

16 dt = 0.01;

17 t = 0:dt:T;

18 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 5

19 Path = 10000;

20 N = length(t)-1;

21 x_sim = zeros(Path,N+1);

22 x_sim(1:Path,1) = 900000;

23 H0 = 156100;

24 H = @(t) (H0/2)*(1+(echilon)*cos((2*pi*t)./12));

25 for i=1:Path

26 for j=1:length(t)-1

27 dw = randn();
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28 x_sim(i,j+1) = x_sim(i,j)+...

29 (F(x_sim(i,j),t(j))-H(t(j)))*(dt)+...

30 G(x_sim(i,j))*sqrt(dt)*dw;

31 if x_sim(i,j+1) <= 0

32 x_sim(i,j+1) = 0;

33 break;

34 end

35 end

36 end
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APPENDIX F : MATLAB code for finding the numerical solutions of
the SDE (3) with harvest function 6

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 clearvars;

4 rng default;

5 r = 0.8;

6 K0 = 708500;

7 echilon = 0.1;

8 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

9 F = @(x,t) r*x*(1-(x/K(t)));

10 % Define all parameters and the functions for the diffusion

term

11 kappa = 0.5;

12 zeta = 30;

13 G = @(x) zeta*(x.^kappa);

14 % Define all normal times

15 % maximum time domain

16 T = 60;

17 % Time step for normal times

18 dt = 0.01;

19 t = 0:dt:T;

20 % Find all numerical solutions by using Euler-Maruyama method

with harvest function 6

21 Path = 10000;

22 N = length(t)-1;

23 x_sim = zeros(Path,N+1);

24 x_sim(1:Path,1) = 900000;

25 H0 = 156100;

26 H1 = @(t) H0*(1+echilon);

27 H2 = @(t) H0*(1-echilon);
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28 for i=1:Path

29 for j=1:length(t)-1

30 dw = randn();

31 if mod(t(j),12)>0 && mod(t(j),12)<=2

32 x_sim(i,j+1) = x_sim(i,j)+...

33 (F(x_sim(i,j),t(j))-H1(t(j)))*(dt)+...

34 G(x_sim(i,j))*sqrt(dt)*dw;

35 elseif mod(t(j),12)>2 && mod(t(j),12)<=4

36 x_sim(i,j+1) = x_sim(i,j)+...

37 (F(x_sim(i,j),t(j)))*(dt)+...

38 G(x_sim(i,j))*sqrt(dt)*dw;

39 elseif mod(t(j),12)>4 && mod(t(j),12)<=6

40 x_sim(i,j+1) = x_sim(i,j)+...

41 (F(x_sim(i,j),t(j))-H2(t(j)))*(dt)+...

42 G(x_sim(i,j))*sqrt(dt)*dw;

43 elseif mod(t(j),12)>6 && mod(t(j),12)<=8

44 x_sim(i,j+1) = x_sim(i,j)+...

45 (F(x_sim(i,j),t(j)))*(dt)+...

46 G(x_sim(i,j))*sqrt(dt)*dw;

47 elseif mod(t(j),12)>8 && mod(t(j),12)<=10

48 x_sim(i,j+1) = x_sim(i,j)+...

49 (F(x_sim(i,j),t(j))-H1(t(j)))*(dt)+...

50 G(x_sim(i,j))*sqrt(dt)*dw;

51 else

52 x_sim(i,j+1) = x_sim(i,j)+...

53 (F(x_sim(i,j),t(j)))*(dt)+...

54 G(x_sim(i,j))*sqrt(dt)*dw;

55 end

56 if x_sim(i,j+1) <= 0

57 x_sim(i,j+1) = 0;

58 break;

59 end

60 end
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61 end
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APPENDIX G : MATLAB code for finding the numerical solutions of
the SDE with jumps (4) with harvest function 2

1 rng default;

2 % Define all parameters and all functions for the ODE term

with out harvest function

3 r = 0.8;

4 K0 = 708500;

5 echilon = 0.1;

6 K = @(t) K0*(1+(echilon)*cos((2*pi*t)./12));

7 F = @(x,t) r*x*(1-(x/K(t)));

8 % Define all parameters and the functions for the diffusion

term

9 kappa = 0.5;

10 zeta = 30;

11 G = @(x) zeta*(x.^kappa);

12 % Define all parameters and the functions for the jump terms

13 eta1 = 0.9;

14 eta2 = 0.9;

15 eta3 = 0.9;

16 eta4 = 0.9;

17 V1 = @(x) -(x.^eta1);

18 V2 = @(x) -(x.^eta2);

19 V3 = @(x) -(x.^eta3);

20 V4 = @(x) -(x.^eta4);

21 % Define all times and find jump times that diseases occur

22 % Define all normal times

23 % maximum time domain

24 T = 60;

25 % Time step for normal times

26 dt = 0.01;

27 t_normal = 0:dt:T;

28 % Find all jump times that Columnaris occur
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29 % Define the bounded value for inhomogeneous compound poisson

process to find all jump times that Columnaris occur

30 lambdat_max1 = 0.5;

31 % Define the intensity function to find the jump times that

Columnaris

32 % occur

33 f11 = @(x) (0.4./(1+48*exp(-16+8*abs(mod(x,12)+0.5)))+0.1);

34 f12 = @(x) 0.1;

35 f13 = @(x) (0.2./(1+48*exp(-24+8*abs(mod(x,12)-6)))+0.1);

36 f14 = @(x) 0.1;

37 f15 = @(x) (0.4./(1+48*exp(-16+8*abs(mod(x,12)-12.5)))+0.1);

38 % Find all jump times that Columnaris occur by inhomogeneous

compound poisson process

39 tjump1 = 0;

40 tjump_in1 = 0;

41 while tjump_in1(end) <= T

42 tjump1 = [tjump1 , tjump1(end) + exprnd(1/lambdat_max1)];

43 if mod(tjump1(end),12) < 2

44 if rand() <= f11(tjump1(end))/lambdat_max1

45 tjump_in1 = [tjump_in1 , tjump1(end)];

46 end

47 elseif mod(tjump1(end),12) < 2.5

48 if rand() <= f12(tjump1(end))/lambdat_max1

49 tjump_in1 = [tjump_in1 , tjump1(end)];

50 end

51 elseif mod(tjump1(end),12) < 9.5

52 if rand() <= f13(tjump1(end))/lambdat_max1

53 tjump_in1 = [tjump_in1 , tjump1(end)];

54 end

55 elseif mod(tjump1(end),12) < 10

56 if rand() <= f14(tjump1(end))/lambdat_max1

57 tjump_in1 = [tjump_in1 , tjump1(end)];

58 end
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59 else

60 if rand() <= f15(tjump1(end))/lambdat_max1

61 tjump_in1 = [tjump_in1 , tjump1(end)];

62 end

63 end

64 end

65 tjump_in1(1)=[];

66 tjump_in1(end)=[];

67 % Define all parameters for the severity of Columnaris

68 alpha1 = 9;

69 beta1 = 15;

70 % Find all jump times that Ephitheliocystis occur

71 % Define the bounded value for inhomogeneous compound poisson

process to find all jump times that Ephitheliocystis

occur.

72 lambdat_max2 = 0.5;

73 % Define the intensity function to find the jump times that

Ephitheliocystis occur

74 f2 = @(x) 0.5;

75 % Find all jump times that Ephitheliocystis occur by

inhomogeneous compound poisson process

76 tjump2 = 0;

77 tjump_in2 = 0;

78 while tjump_in2(end) <= T

79 tjump2 = [tjump2 , tjump2(end) + exprnd(1/lambdat_max2)];

80 if rand() <= f2(tjump2(end))/lambdat_max2

81 tjump_in2 = [tjump_in2 , tjump2(end)];

82 end

83 end

84 tjump_in2(1)=[];

85 tjump_in2(end)=[];

86 % Define all parameters for the PDF function for the severity

of Ephitheliocystis
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87 sigma_Ephitheliocystis = 0.14;

88 mu_Ephitheliocystis = -2.67;

89 logit = @(x) log(x./(1-x));

90 fEphitheliocystis = @(x) (1./(sigma_Ephitheliocystis.*sqrt(2.

*pi)))*...

91 (1./(x.*(1-x))).*exp(-((logit(x)-mu_Ephitheliocystis).^2)./

...

92 (2.*sigma_Ephitheliocystis^2));

93 % Find all jump times that Red egg occur

94 % Define the bounded value for inhomogeneous compound poisson

process to find all jump times that Red egg occur.

95 lambdat_max3 = 0.5;

96 % Define the intensity function to find the jump times that

Red egg occur

97 f31 = @(x) (0.02);

98 f32 = @(x) (0.48./(1+48*exp(-16+8*abs(mod(x,12)-8.5)))+0.02);

99 f33 = @(x) (0.02);

100 % Find all jump times that Red egg occur by inhomogeneous

compound poisson process

101 tjump3 = 0;

102 tjump_in3 = 0;

103 while tjump_in3(end) <= T

104 tjump3 = [tjump3 , tjump3(end) + exprnd(1/lambdat_max3)];

105 if mod(tjump3(end),12) < 6

106 if rand() <= f31(tjump3(end))/lambdat_max3

107 tjump_in3 = [tjump_in3 , tjump3(end)];

108 end

109 elseif mod(tjump3(end),12) < 11

110 if rand() <= f32(tjump3(end))/lambdat_max3

111 tjump_in3 = [tjump_in3 , tjump3(end)];

112 end

113 else

114 if rand() <= f33(tjump3(end))/lambdat_max3
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115 tjump_in3 = [tjump_in3 , tjump3(end)];

116 end

117 end

118 end

119 tjump_in3(1)=[];

120 tjump_in3(end)=[];

121 % Define all parameters for the severity of Red egg

122 alpha3 = 14;

123 beta3 = 36;

124 % Find all jump times that Streptococcus occur

125 % Define the bounded value for inhomogeneous compound poisson

process to find all jump times that Streptococcus occur

126 lambdat_max4 = 0.5;

127 % Define the intensity function to find the jump times that

Streptococcus

128 % occur

129 f41 = @(x) (0.4./(1+48*exp(-16+8*abs(mod(x,12)+0.5)))+0.1);

130 f42 = @(x) 0.1;

131 f43 = @(x) (0.2./(1+48*exp(-24+8*abs(mod(x,12)-6)))+0.1);

132 f44 = @(x) 0.1;

133 f45 = @(x) (0.4./(1+48*exp(-16+8*abs(mod(x,12)-12.5)))+0.1);

134 % Find all jump times that Streptococcus occur by

inhomogeneous compound poisson process

135 tjump4 = 0;

136 tjump_in4 = 0;

137 while tjump_in4(end) <= T

138 tjump4 = [tjump4 , tjump4(end) + exprnd(1/lambdat_max4)];

139 if mod(tjump4(end),12) < 2

140 if rand() <= f41(tjump4(end))/lambdat_max4

141 tjump_in4 = [tjump_in4 , tjump4(end)];

142 end

143 elseif mod(tjump4,12) < 2.5

144 if rand() <= f42(tjump4(end))/lambdat_max4
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145 tjump_in4 = [tjump_in4 , tjump4(end)];

146 end

147 elseif mod(tjump4,12) < 9.5

148 if rand() <= f43(tjump4(end))/lambdat_max4

149 tjump_in4 = [tjump_in4 , tjump4(end)];

150 end

151 elseif mod(tjump4,12) < 10

152 if rand() <= f44(tjump4(end))/lambdat_max4

153 tjump_in4 = [tjump_in4 , tjump4(end)];

154 end

155 else

156 if rand() <= f45(tjump4(end))/lambdat_max4

157 tjump_in4 = [tjump_in4 , tjump4(end)];

158 end

159 end

160 end

161 tjump_in4(1)=[];

162 tjump_in4(end)=[];

163 % Define all parameters for the severity of Streptococcus

164 alpha4 = 22;

165 beta4 = 10;

166 % Combine all normal times and all jump times that disease

occur

167 t = unique...

168 (sort([t_normal , tjump_in1 , tjump_in2 , tjump_in3 ,

tjump_in4]));

169 % Find all numerical solutions by using Jump-adapted euler

method with harvest function 2

170 Path = 10000;

171 N = length(t)-1;

172 x_sim = zeros(Path,N+1);

173 x_sim(1:Path,1) = 900000;

174 H0 = 156100;
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175 H = @(t) H0/2;

176 for i=1:Path

177 for j=1:length(t)-1

178 k = 1;

179 cj1 = 0;

180 while k<=length(tjump_in1)

181 if t(j+1)==tjump_in1(k)

182 % Find severity of Columnaris

183 cj1 = cj1 + betarnd(alpha1,beta1);

184 end

185 k=k+1;

186 end

187 k = 1;

188 cj2 = 0;

189 while k<=length(tjump_in2)

190 if t(j+1)==tjump_in2(k)

191 % Find severity of Ephitheliocystis by Acceptance-rejection

192 u1 = 0.001 + (0.999-0.001)*rand();

193 u2 = 0.001 + (0.999-0.001)*rand();

194 while u2 > fEphitheliocystis(u1)/50

195 u1 = 0.001 + (0.999-0.001)*rand();

196 u2 = 0.001 + (0.999-0.001)*rand();

197 end

198 severity_of_Ephitheliocystis = u1;

199 cj2 = cj2 + severity_of_Ephitheliocystis;

200 end

201 k=k+1;

202 end

203 k = 1;

204 cj3 = 0;

205 while k<=length(tjump_in3)

206 if t(j+1)==tjump_in3(k)

207 % Find severity of Red egg
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208 cj3 = cj3 + betarnd(alpha3,beta3);

209 end

210 k=k+1;

211 end

212 k = 1;

213 cj4 = 0;

214 while k<=length(tjump_in4)

215 if t(j+1)==tjump_in4(k)

216 % Find severity of Streptococcus

217 cj4 = cj4 + betarnd(alpha4,beta4);

218 end

219 k=k+1;

220 end

221 dw = randn();

222 x_sim(i,j+1) = x_sim(i,j)+...

223 (F(x_sim(i,j),t(j))-H(t(j)))*(t(j+1)-t(j))+...

224 G(x_sim(i,j))*sqrt(t(j+1)-t(j))*dw;

225 x_sim(i,j+1) = x_sim(i,j+1)+...

226 V1(x_sim(i,j+1))*cj1+V2(x_sim(i,j+1))*cj2+...

227 V3(x_sim(i,j+1))*cj3+V4(x_sim(i,j+1))*cj4;

228 if x_sim(i,j+1) <= 0

229 x_sim(i,j+1) = 0;

230 break;

231 end

232 end

233 end
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APPENDIX H : MATLAB code for plotting a graph

1 hold on

2 plot(t,x_sim(1:10,:))

3 plot(t,mean(x_sim,1),'k','LineWidth', 1)

4 xlabel('t')

5 ylabel('X_{t} ','Rotation',0)

6 legend([plot(t,mean(x_sim,1),'k','LineWidth', 1)], '

Expectation')

7 xlim([0 T])

8 ylim([0 1000000])

9 hold off
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