REFERENCES

- Bechtel, A., Pervaz, M., and Puttmann, W. 1998. Role of Organic matter and sulfate reducing bacteria for metal sufide precipitation in the Bahloul Formation at the Bou Grine Zn/Pb/ Deposit.(Tunisia). <u>Chemical Geology</u>., 144, 1-21.
- Beech, I.B. 2003. Sulfate reducing bacteria in biofilms on metallic materials and corrosion. <u>Microbiology today</u>, 30, 115-116.
- Chang, B.V., Yu, C.H., and Yuan, S.Y. 2004. Degradation of nonylphenol by anaerobic microorganisms from river sediment. <u>Chemospere.</u>, 55, 493-500.
 Department of Microbiology, Soochow University.
- Christensen, B., Laake, M., and Lien, T. 1996. Treatment of acid mine water by sulfate-reducing bacteria;Results from a bench scale experiment. Norwegian Institute for water reseach, Department of Microbiology, University of Bergen, Norway.
- Dinelli, E., Lucchini, F., Fabbri, M., and Cortecci, G. 2001. Metal distribution and environmental problem related to sulfide oxidation in the Libiola copper mine area. <u>Journal of Geochemical Exploration</u>, 74, 141-152.
- Erses, A.E., and Onay, T.T. 2003. In situ metal attenuation in landfills under methanogenic conditions. <u>Journal of Hazardous Materials</u>., B99, 159-175.
 Bogazici University, Intitute of Environmental Sciences, Istanbul, Turkey
- Foucher, S., Battiaglia, B., F., Ignatiadis, I., and Morin, D. 2001. Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery.
 <u>Chemical Engineering Science</u>., 56, 1639-1645. Environment and processes, Biotechnology, BRGM French Mineral Survey, Orleans, France.
- Garcia, C., Moreno, D.A., Ballester, A., Blazquez, M.L., and Gonzalez, F. 2001.
 Bioremidiation of an industrial acid mine water by metal-tolerant sulfatereducing bacteria. <u>Minerals Engineering</u>., 14, 9, 997-1008. Elsevier Science Ltd.
- Giere, R., Sidenko, N.V., and Lazareva, E.V. 2003. The role of secoundary mineral in controlling the migration of arsenic and metals from high-sulfide wastes.(Berikul gold mine,Siberia). <u>Applied Geochemistry</u>., 18, 1347-1359.

- Glombitza, F. 2001. Treatment of acid lignite mine flooding water by mean of microbial sulfate reducing. <u>Water Management.</u>, 21, 197-203.Department of Biotechnology, GEOS Freiberg Ingenieurgesellschaft, Tuttendorf, Germany.
- Jalali, K., and Susan, A., B. 2000. The Role of sulfate reducing bacteria in copper removeal from aqueous sulfate solutions. <u>Wat. Res.</u>, 34, 3, 797-806.
 Department of Chemical and Bio-Resource Engineering, University of British Columbia.
- Jeris, J.S. and McCarty, P.L. 1962. The Biochemistry of Methane Fermentation Using C14 Traces. J.WPCF, 37, 2, 178-192.
- Kirsh, E.J. 1969. Studies on the Enumeration and Isolation of Obligate Anaerobic Bacteria from Digesting Sewage sludge. <u>Developments in Industrial</u> <u>Microbiology</u>, 10, 170-176.
- Kotze, J.P. 1969. Anaerobic Digestion II The Characteristic and Control of Anaerobic Digestion. <u>Water Res.</u>, 3, 459-494.
- Kroeker, E.J. 1979. Anaerobic Process Stability. J.WPCF, 51, 4, 718-726
- McCarty, P.L. 1964. Anaerobic Waste Treatment Fundamentals: Part One. <u>Public</u> <u>Works</u>, September, 107-112.
- McCarty, P.L. 1964. Anaerobic Waste Treatment Fundamentals: Part Two. <u>Public</u> <u>Works</u>, October, 123-126.
- McCarty, P.L. 1964. Anaerobic Waste Treatment Fundamentals: Part Four. <u>Public</u> <u>Works</u>, December, 95-99.
- McCarty, P.L. 1982. One hundred years of Anaerobic treatment. Proc. 2nd Symp. On Anaerobic Digestion, <u>Elsevier Biomedical Press</u>, New York, 3-22
- McInemey, M.J. 1979. Metabolic Stages and Energetic of Microbial Anaerobic digestion, 91-98. Proc.. 1st Symp on Anaerobic Digestion, Cardiff, Wales.
- Michael, O.G., and Ania, M.G. 1996. <u>Manganese Removal Mechanisms in a Stirred</u> <u>UASB Reactor.</u> Department of Chemical Engineering, University of the Witwatersrand, Johannesburg, South Africa.
- Mitchell, R. 1974. Introduction to environment Microbiology, Enylewood Cliffs, NJ: Prenntice Hall,Inc.

- Mori, K., Hatsu M., Kimura, R., and Takamizawa, K. 2000. Effect of heavy metals on the Growth of a Methanogen in Pure Culture and Coculture with a Sulfate-Reducing Bacterium. Journal of Bioscience and Bioengineering., 90, 3, 260-265. Department of Bioprocessing, Faculty of Agriculture, Gifu University.
- Nagpal, S., Chuichulcherm, A., Livingston, A., and Peeva, L. 2000. <u>Ethanol</u> <u>Utilization by Sulfate-Reducing Bacteria: An experimental and Modeling</u> <u>Study.</u> Department of Chemical Engineering and Chemical Technology, Imperial College, London, United Kingdom.
- Pfeffer, P.L. 1967. Population Dynamics in Anaerobic Digestion. J. <u>WPCF</u>, 39, 8, 2120-2129.
- Russell, R.A., Holden, P.J., Wilde, K.L., and Neilan, B.A. 2003. Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. <u>Hydrometallurgy.</u>, 71, 227-234.
- Saipanich, 1987. <u>A study of Completely Mixed Anaerobic Contact Stabilization</u> <u>Process.</u> Sanitary Engineering.

Thimann, K.V. 1963. The Life of Bacteria. New York: The McMillan

- Tsukamoto, T.K., Killion, H.A., and Miller, G.C. 2004. Column experiments for microbiological treatment of acid mine drainage:low-temperature,lowpH and matrix investigations. <u>Water research.</u>, 38, 1405-1418. Center for Environmental sciences and Engineering, University of Nevada.
- Tuppurainen, K.O., Vaisanen, A.O., and Rintala, J.A. 2002. Zinc removal in anaerobic sulfate-reducing liquid substrate process. <u>Minerals Engineering</u>., 15, 847-852. Department of Biological and Environmental scince, University of Jyvaskyla.
- Veeken, A.H.M., Akoto, L., Look, W., Pol, H., and Weijma, J. 2003. Control of Sulfide (S²⁻) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. <u>Water Research.</u>, 37, 3709-3717 Department of Environmental Technology, Wageningen Agricultural University.

APPENDICES

APPENDIX A

ORP, pH and Temperature during prepare the sludge seeding

		ORP	pH	Temp]			ORP	pH	Temp
11/1/2005	1	-103.6	6.75	28.2		31/1/2005	21	-162.4	6.86	30
12/1/2005	2	-121.3	6.73	28.5		1/2/2005	22	-165.1	6.87	30
13/1/2005	3	-127	6.77	29		2/2/2005	23	-170	6.88	29.8
14/1/2005	4	-141	6.72	28.8		3/2/2005	24	-162	6.97	29
15/1/2005	5	-138	6.76	29.1		4/2/2005	25	-152.7	6.94	29.6
16/1/2005	6	-130	6.82	28.6		5/2/2005	26	-160.2	6.98	30.1
17/1/2005	7	-123.2	6.91	29.3		6/2/2005	27	-162.5	6.98	29.8
18/1/2005	8	-120	6.87	28.7		7/2/2005	28	-170.2	6.97	29.6
19/1/2005	9	-146.5	6.65	28.7		8/2/2005	29	-175.2	6.98	29.5
20/1/2005	10	-150.2	6.4	28.9		9/2/2005	30	-173.8	6.97	29.7
21/1/2005	11	-152	6.53	29		10/2/2005	31	-177.6	6.96	29.6
22/1/2005	12	-162	6.62	28.6		11/2/2005	32	-179.2	6.97	29.3
23/1/2005	13	-154	6.72	28.7		12/2/2005	33	-170.1	6.95	29.8
24/1/2005	14	-155.6	6.83	29.3		13/2/2005	34	-180.2	6.93	29.9
25/1/2005	15	-158.9	6.87	29.6		14/2/2005	35	-172	6.97	30.2
26/1/2005	16	-138.6	7	28.7		15/2/2005	36	-180.4	6.98	30.1
27/1/2005	17	-172.5	6.87	28		16/2/2005	37	-182.7	6.98	29.7
28/1/2005	18	-152.6	6.86	28.9		17/2/2005	38	-188.5	6.95	30.1
29/1/2005	19	-157	6.88	29.2		18/2/2005	39	-190.2	6.97	30.8
30/1/2005	20	-160	6.88	29.5						

Table A-1 ORP, pH and Temperature during prepare the sludge seeding

APPENDIX B

Alkalinity, Volatile Fatty Acid, VFA/Alk Ratio and Total Kjedahl Nitrogen during experiment

		Alk			
	day	(mg./l.)	VFA(mg./l.)	VFA/Alk	TKN(mg.A.)
20/2/2005	1	75	30	0.4	106.4
22/2/2005	3	95	60	0.63158	116.7
24/2/2005	5	120	40	0.33333	128.8
26/2/2005	7	115	45	0.3913	125
28/2/2005	9	110	40	0.36364	123.2
2/3/2005	11	110	45	0.40909	112.3
4/3/2005	13	105	40	0.38095	117.5
6/3/2005	15	95	45	0.47368	121.2
8/3/2005	17	100	40	0.4	126.1
10/3/2005	19	105	35	0.33333	130.6
12/3/2005	21	115	35	0.30435	133.5
14/3/2005	23	95	35	0.36842	137.2
16/3/2005	25	90	35	0.38889	135.2
18/3/2005	27	85	35	0.41176	134.3
20/3/2005	29	90	35	0.38889	131.6
22/3/2005	31	80	40	0.5	115.6
24/3/2005	33	60	45	0.75	89.6
26/3/2005	35	45	50	1.11111	103.6

 Table B-1 Alkalinity, Volatile Fatty Acid, VFA/Alk ratio and Total Kjedahl Nitrogen

 of the reactor mixture in the reactor during the experiment

APPENDIX C

Total Chemical Oxygen Demand and Dissolved Chemical Oxygen Demand during experiment

	COD						
	Dissolved COD (mg/l)						
20/2/2005	1						
21/2/2005	2	118,400	473.6				
22/2/2005	3	61,300	467.9				
23/2/2005	4	56,100	442				
24/2/2005	5	15,900	440				
25/2/2005	6	27,000	337				
26/2/2005	7	18,800	342				
27/2/2005	8	19,800	332				
28/2/2005	9	21,700	302				
1/3/2005	10	25,300	295				
2/3/2005	11	23,100	286				
3/3/2005	12	26,800	272				
4/3/2005	13	29,500	263				
5/3/2005	14	44,500	232				
6/3/2005	15	23,100	295				
7/3/2005	16	20,000	263				
8/3/2005	17	28,000	320				
9/3/2005	18	26,400	305				
10/3/2005	19	25,000	260				
11/3/2005	20	23,000	245				
12/3/2005	21	24,500	180				
13/3/2005	22	24,200	125				
14/3/2005	23	68,200	362				
15/3/2005	24	49,400	169				
16/3/2005	25	32,300	162				
17/3/2005	26	28,600	142				
18/3/2005	27	24,200	149				
19/3/2005	28	23,100	153				
20/3/2005	29	20,500	147				
21/3/2005	30	33,200	306				
22/3/2005	31	19,800	204				
23/3/2005		21,800	195				
24/3/2005	33	20,100	183				
25/3/2005	34	21,500	178				
26/3/2005	35	22,100	180				

 Table C -1 Total Chemical Oxygen Demand and Dissolved Chemical Oxygen

 Demand of the reactor mixture in the reactor during the experiment

APPENDIX D

Gas Production during in the reactors during the experiment

	day	First Reactor	Second reactor
20/2/2005	1	0.0	0.0
21/2/2005	2	1.0	1.1
22/2/2005	3	1.2	1.4
23/2/2005	4	1.5	1.1
24/2/2005	5	1.1	1.2
25/2/2005	6	1.0	1.0
26/2/2005	7	0.8	1.2
27/2/2005	8	0.9	1.2
28/2/2005	9	1.2	1.1
1/3/2005	10	1.3	1.4
2/3/2005	11	1.1	1.0
3/3/2005	12	1.0	1.0
4/3/2005	13	1.2	1.1
5/3/2005	14	1.4	1.0
6/3/2005	15	0.9	0.9
7/3/2005	16	1.0	0.9
8/3/2005	17	1.2	1.0
9/3/2005	18	1.3	1.5
10/3/2005	19	1.4	1.2
11/3/2005	20	1.1	1.0
12/3/2005	21	0.9	0.8
13/3/2005	22	1.3	1.1
14/3/2005	23	1.1	1.1
15/3/2005	24	1.2	1.0
16/3/2005	25	0.9	1.2
17/3/2005	26	1.7	1.1
18/3/2005	27	1.5	1.2
19/3/2005	28	1.5	1.2
20/3/2005	29	1.8	1.9
21/3/2005	30	2.1	1.8
22/3/2005	31	2.0	-
23/3/2005		2.2	-
24/3/2005	33	1.8	4
25/3/2005	34	1.1	

Gas Product (ml.)

APPENDIX E

Mixed Liquor Suspended Solids during the experiment

Table E-1 Mixed Liquor Suspended Solids during the experiment

	day	Reactor1
20/2/2005	1	28,750
21/2/2005	2	25,510
22/2/2005	3	23,950
23/2/2005	4	20,650
24/2/2005	5	22,030
25/2/2005	6	21,830
26/2/2005	7	20,994
27/2/2005	8	24,360
28/2/2005	9	22,200
1/3/2005	10	22,510
2/3/2005	11	25,080
3/3/2005	12	20,340
4/3/2005	13	22,860
5/3/2005	14	21,860
6/3/2005	15	21,960
7/3/2005	16	19,260
8/3/2005	17	22,750
9/3/2005	18	22,160
10/3/2005	19	24,950
11/3/2005	20	23,540
12/3/2005	21	23,290
13/3/2005	22	21,810
14/3/2005	23	19,450
15/3/2005	24	19,530
16/3/2005	25	21,220
17/3/2005	26	21,100
18/3/2005	27	17,250
19/3/2005	28	19,370
20/3/2005	29	17,770
21/3/2005	30	17,260
22/3/2005	31	19,520
23/3/2005	32	20,130
24/3/2005	33	18,950
25/3/2005	34	20,580

MLSS (g/l)

APPENDIX F

ORP during the start up reactor and operation reactor

Second reactor day First reactor 20/2/2005 -49.70 -49.70 1 21/2/2005 2 -138.30 -137.20 22/2/2005 -158.50 3 -161.00 23/2/2005 4 -181.60 -176.20 24/2/2005 5 -191.00 -192.30 6 25/2/2005 -127.60 -135.20 26/2/2005 7 -155.20 -152.40 27/2/2005 8 -146.20 -150.20 28/2/2005 9 -147.20 -148.50 1/3/2005 10 -125.30 -128.20 2/3/2005 11 -127.20 -130.80 3/3/2005 12 -128.00 -133.50 4/3/2005 13 -131.00 -142.60 5/3/2005 14 -152.30 -156.70 6/3/2005 15 -150.20 -153.20 16 7/3/2005 -135.20 -138.20 8/3/2005 17 -139.80 -146.20 9/3/2005 18 -140.00 -155.20 10/3/2005 19 -145.20 -146.10 11/3/2005 20 -151.50 -154.20 12/3/2005 21 -147.20 -146.20 13/3/2005 22 -149.30 -158.20 14/3/2005 23 -152.70 -161.00 15/3/2005 24 -143.90 -152.20 16/3/2005 25 -132.90 -134.40 17/3/2005 26 -135.60 -137.50 -139.20 18/3/2005 27 -137.60 19/3/2005 28 -100.00 -101.20 20/3/2005 29 -78.50 -86.20 21/3/2005 30 -126.00 -132.20 22/3/2005 -157.20 31 -155.20 23/3/2005 32 -129.20 24/3/2005 33 -122.50 25/3/2005 34 -56.6 26/3/2005 35 52.2

ORP(mV.)

Table F-1 ORP during the start up reactor and operation reactor

APPENDIX G

pH during the start up reactor and operation reactor

Table G-1 pH during the start up reactor and operation reactors

pН

	day	First reactor	Second reactor
20/2/2005	1	7.25	7.25
21/2/2005	2	7.25	7.25
22/2/2005	3	7.17	7.18
23/2/2005	4	7.13	7.14
24/2/2005	5	7.28	7.27
25/2/2005	6	7.27	7.25
26/2/2005	7	7.26	7.26
27/2/2005	8	7.27	7.28
28/2/2005	9	7.25	7.27
1/3/2005	10	7.00	7.05
2/3/2005	11	7.10	7.08
3/3/2005	12	7.10	7.09
4/3/2005	13	7.22	7.23
5/3/2005	14	7.09	7.10
6/3/2005	15	6.95	6.95
7/3/2005	16	7.01	7.05
8/3/2005	17	7.05	7.10
9/3/2005	18	7.16	7.19
10/3/2005	19	7.19	7.20
11/3/2005	20	7.20	7.22
12/3/2005	21	7.21	7.22
13/3/2005	22	7.28	7.29
14/3/2005	23	7.20	7.20
15/3/2005	24	7.20	7.21
16/3/2005	25	7.17	7.19
17/3/2005	26	7.16	7.20
18/3/2005	27	7.13	7.14
19/3/2005	28	7.16	7.17
20/3/2005	29	7.15	7.18
21/3/2005	30	7.15	7.14
22/3/2005	31	7.09	
23/3/2005	32	6.99	
24/3/2005	33	6.97	
25/3/2005	34	6.89	
26/3/2005	35	6.77	

APPENDIX H

Relationship between ph and phase of sulfide

Table G-1 Relationship between ph and phase of sulfide

Relationship between ph and phase of sulfide

	Н		H ₂ S			HS ⁻			S ²⁻		Total S
pH	M	%	mg.	M	%	mg.	M	%	mg.	М	mg.
4.00	1.00E-04	99.90	999.03	29.38	0.10	0.97	2.94E-02	0.00	0.00	3.70E-12	.1000
4.25	5.62E-05	99.83	998.28	29.36	0.17	1.72	5.22E-02	0.00	0.00	1.17E-11	1000
4.50	3.16E-05	99.69	996.94	29.32	0.31	3.06	9.27E-02	0.00	0.00	3.69E-11	1000
4.75	1.78E-05	99.46	994.57	29.25	0.54	5.43	1.64E-01	0.00	0.00	1.17E-10	1000
5.00	1.00E-05	99.04	990.39	29.13	0.96	9.61	2.91E-01	0.00	0.00	3.67E-10	1000
5.25	5.62E-06	98.30	983.03	28.91	1.70	16.97	5.14E-01	0.00	0.00	1.15E-09	1000
5.50	3.16E-06	97.02	970.22	28.54	2.98	29.78	9.02E-01	0.00	0.00	3.60E-09	1000
5.75	1.78E-06	94.82	948.24	27.89	5.18	51.76	1.57E+00	0.00	0.00	1.11E-08	1000
6.00	1.00E-06	91.15	911.53	26.81	8.85	88.47	2.68E+00	0.00	0.00	3.38E-08	1000
6.25	5.62E-07	85.28	852.81	25.08	14.72	147.19	4.46E+00	0.00	0.00	9.99E-08	1000
6.50	3.16E-07	76.52	765.15	22.50	23.48	234.85	7.12E+00	0.00	0.00	2.84E-07	1000
6.75	1.78E-07	64.69	646.91	19.03	35.31	353.09	1.07E+01	0.00	0.00	7.58E-07	1000
7.00	1.00E-07	50.75	507.46	14.93	49.25	492.54	1.49E+01	0.00	0.00	1.88E-06	1000
7.25	5.62E-08	36.68	366.84	10.79	63.32	633.16	1.92E+01	0.00	0.00	4.30E-06	1000
1.50	3.16E-08	24.57	245.74	7.23	75.43	754.26	2.29E+01	0.00	0.00	9.11E-06	1000
7.75	1.78E-08	15.48	154.85	4.55	84.52	845.15	2.56E+01	0.00	0.00	1.81E-05	1000
8.00	1.00E-08	9.34	93.41	2.75	90.66	906.59	2.75E+01	0.00	0.00	3.46E-05	1000
8.25	5.62E-09	5.48	54.77	1.61	94.52	945.23	2.86E+01	0.00	0.00	6.42E-05	1000
8.50	3.16E-09	3.16	31.55	0.93	96.84	968.44	2.93E+01	0.00	0.00	1.17E-04	1000
8.75	1.78E-09	1.80	17.99	0.53	98.20	982.00	2.98E+01	0.00	0.01	2.11E-04	1000
9.00	1.00E-09	1.02	_10.20	0.30	98.98	989.79	3.00E+01	0.00	0.01	3.78E-04	1000
9.25	5.62E-10	0.58	5.76	<u>0.17</u>	99.42	994.22	3.01E+01	0.00	0.02	6.75E-04	1000
9.50	3.16E-10	0.32	3.25	0.10	99.67	996.71	3.02E+01	0.00	0.04	1.20E-03	1000
9.75	1.78E-10	0.18	1.83	0.05	99.81	998.10	3.02E+01	0.01	0.07	2.14E-03	1000
10.00	1.00E-10	0.10	1.03	0.03	99.88	998.85	3.03E+01	0.01	0.12	3.81E-03	1000
10.25	5.62E-11	0.06	0.58	0.02	99.92	999.20	3.03E+01	0.02	0.22	6.78E-03	1000
10.50	3.16E-11	0.03	0.33	0.01	99.93	999.29	3.03E+01	0.04	0.39	1.21E-02	1000
10.75	1.78E-11	0.02	0.18	0.01	99.91	999.13	3.03E+01	0.07	0.69	2.15E-02	1000
00.11	1.00E-11	0.01	0.10	0.00	99.87	998.68	3.03E+01	0.12	1.22	3.81E-02	1000
11.25	5.62E-12	0.01	0.06	0.00	99.78	997.78	3.02E+01	0.22	2.17	6.77E-02	1000
11.50	3.16E-12	0.00	0.03	0.00	99.61	996.12	3.02E+01	0.38	3.85	1.20E-01	1000
11.75	1.78E-12	0.00	0.02	0.00	99.32	993.16	3.01E+01	0.68	6.82	2.13E-01	1000
12.00	1.00E-12	0.00	0.01	0.00	98.79	987.93	2.99E+01	1.21	12.07	3.77E-01	1000
12.25	5.62E-13	0.00	0.01	0.00	97.87	978.75	2.97E+01	2.13	21.27	6.65E-01	1000
12.50	3.16E-13	0.00	0.00	0.00	96.28	962.83	2.92E+01	3.72	37.20	1.16E+00	1000
12.75	1.78E-13	0.00	0.00	0.00	93.58	935.76	2.84E+01	6.43	64.29	2.01E+00	1000
13.00	1.00E-13	0.00	0.00	0.00	89.12	891.20	2.70E+01	10.89	108.89	3.40E+00	1000
13.25	5.62E-14	0.00	0.00	0.00	82.16	821.63	2.49E+01	17.85	178.52	5.58E+00	1000
13.50	3.16E-14	0.00	0.00	0.00	72.15	721.48	2.19E+01	27.88	278.76	8.71E+00	1000
13.75	1.78E-14	0.00	0.00	0.00	59.29	592.95	1.80E+01	40.74	407.40	1.27E+01	1000
14.00	1.00E-14	0.00	0.00	0.00	45.03	450.29	1.36E+01	55.02	550.18	1.72E+01	1000

APPENDIX I

Sulfate during the start up reactor and operation reactors

Standard				
Sulfate(mg/l)	Abs			
0	0			
1	0.078			
2	0.198			
3	0.344			
4	0.465			
5	0.576			
6	0.726			
7	0.761			

Table I-1 Standard sulfate for calibration curve during the 1st to the 15th day

Calibration curve

Figure I-1 Calibration curve for the 1st to the 15th day

		Absorption		Sulfate
20/2/2005	1	0.113	1.1	11
21/2/2005	2	0.101	1	10
22/2/2005	3	0.090	0.9	9
23/2/2005	4	0.054	0.6	6
24/2/2005	5	0.031	0.4	4
25/2/2005	6	0.019	0.3	3
26/2/2005	7	0.019	0.3	3
27/2/2005	8	0.019	0.3	3
28/2/2005	9	0.019	0.3	3
1/3/2005	10	0.043	0.5	5
2/3/2005	11	0.019	0.3	3
3/3/2005	12	0.019	0.3	3
4/3/2005	13	0.265	2.4	24
5/3/2005	14	0.218	2	20
6/3/2005	15	0.160	1.5	15

Table I-2 Absorption and sulfate during the 1st to the 15th day

Table I-3 Standard sulfate for calibration curve during the 1st to the 15th day

Calibration curve

Standard				
Sulfate(mg/l.)	Abs			
0	0			
1	0.118			
2	0.18			
3	0.332			
4	0.508			
5	0.575			
6	0.519			
7	0.82			
8	0.768			

Figure I-2 Calibration curve for the 16th to the 35th day

		Absorption		Sulfate
7/3/2005	16	0.160	1.4	14
8/3/2005	17	0.150	1.3	13
9/3/2005	18	0.140	1.2	12
10/3/2005	19	0.130	1.1	11
11/3/2005	20	0.120	1	10
12/3/2005	21	0.120	1	10
13/3/2005	22	0.099	0.8	8
14/3/2005	23	0.109	0.9	9
15/3/2005	24	0.109	0.9	9
16/3/2005	25	0.109	0.9	9
17/3/2005	26	0.109	0.9	9
18/3/2005	27	0.089	0.7	7
19/3/2005	28	0.109	0.9	9
20/3/2005	29	0.109	0.9	9
21/3/2005	30	0.109	0.9	9
22/3/2005	31	0.109	0.9	9
23/3/2005	32	0.191	1.7	17
24/3/2005	33	0.191	1.7	17
25/3/2005	34	0.313	2.9	29
26/3/2005	35	0.740	7.1	71

Table I-4 Absorption and sulfate during the 16th to the 35th day

Table I-5 Sulfate during	the start up reactor a	nd operation reactors.
--------------------------	------------------------	------------------------

	day	Reactor1
20/2/2005	1	11
21/2/2005	2	10
22/2/2005	3	9
23/2/2005	4	6
24/2/2005	5	4
25/2/2005	6	3
26/2/2005	7	3
27/2/2005	8	3
28/2/2005	9	3
1/3/2005	10	5
2/3/2005	11	3
3/3/2005	12	3
4/3/2005	13	24
5/3/2005	14	20
6/3/2005	15	15
7/3/2005	16	14
8/3/2005	17	13
9/3/2005	18	12
10/3/2005	19	11
11/3/2005	20	10
12/3/2005	21	10
13/3/2005	22	8
14/3/2005	23	9
15/3/2005	24	9
16/3/2005	25	9
17/3/2005	26	9
18/3/2005	27	7
19/3/2005	28	9
20/3/2005	29	9
21/3/2005	30	9
22/3/2005	31	9
23/3/2005	_32	17
24/3/2005	33	17
25/3/2005	34	29
26/3/2005	35	71

Sultate $(SO_4^2)(mg/L)$	Sulfate	(SO_4^{2-})	(mg/L)
--------------------------	---------	---------------	--------

APPENDIX J

Sulfide during the start up reactor, operation reactors and every injection synthesized wastewater

113

 Table J-1 Sulfide during the start up reactor, operation reactors and every injection

 synthesized wastewater.

Sulfide (mg/L,ppm)

The first of zinc injection (10ppm)

	day	Reactor1
20/2/2005	1	1.2
21/2/2005	2	2
22/2/2005	3	4
23/2/2005	4	6
24/2/2005	5	8
25/2/2005	6	8
26/2/2005	7	8
27/2/2005	8	8
28/2/2005	9	8
1/3/2005	10	6
2/3/2005	11	8
3/3/2005	12	8
4/3/2005	13	36
5/3/2005	14	40
6/3/2005	15	46
7/3/2005	16	46
8/3/2005	17	48
9/3/2005	18	48
10/3/2005	19	50
11/3/2005	20	50
12/3/2005	21	50
13/3/2005	22	52
14/3/2005	23	52
15/3/2005	24	52
16/3/2005	25	52
17/3/2005	26	52
18/3/2005	27	54
19/3/2005	28	52
20/3/2005	29	52
21/3/2005	30	52
22/3/2005	31	52
23/3/2005	32	44
24/3/2005	33	44
25/3/2005	34	40
26/3/2005	35	0

		Time	Reactor1
2-28-05	1	0 min.	8
	2	30 min.	2
	3	60 min.	2
	4	90 min.	2
	5	120 min.	4
	6	3hr.	4
	7	6hr.	6
i	8	9hr.	6
	9	12hr.	8
	10	15 hr.	8

The second of zinc injection (20ppm)

		Time	Reactor1
14/3/2005	1	0 min.	52
	2	10 min.	42
	3	20 min.	42
	4	30 min.	42
	5	40 min.	42
	6	50 min.	44
	7	60 min.	44

The third of zinc injection (20ppm)

		Time	Reactor1
16/3/2005	1	0 min.	52
	2	10 min.	42
	3	20 min.	42
	4	30 min.	42
	5	40 min.	44
	6	50 min.	44
	7	60 min.	44

The fifth of zinc injection (20ppm)

		Time	Reactor1
20/3/2005	1	0 min.	52
	2	10 min.	42
	3	20 min.	42
	4	30 min.	42
	5	40 min.	42
	6	50 min.	44
	7	60 min.	44

The seventh of zinc injection (50ppm)

		Time	Reactor1
23/3/2005	1	0 min.	44
	2	10 min.	20
	3	20 min.	20
	4	30 min.	20
	5	40 min.	22
	6	50 min.	24
	7	60 min.	24

The ninth of zinc injection (100ppm)

_		Time	Reactor1
25/3/2005	1	0 min.	40
-	2	10 min.	0
	3	20 min.	0
	4	30 min.	0
	5	40 min.	0
	6	50 min.	0
	7	60 min.	0

The forth of zinc injection (20ppm)

		Time	Reactor1
19/3/2005	1	0 min.	52
	2	10 min.	42
	3	20 min.	42
	4	30 min.	42
	5	40 min.	42
	6	50 min.	44
	7	60 min.	44

The sixth of zinc injection (50ppm)

		Time	Reactor1
22/3/2005	1	0 min.	52
	2	10 min.	24
	3	20 min.	24
	4	30 min.	24
	5	40 min.	26
	6	50 min.	26
	7	60 min.	28

The eighth of zinc injection (100ppm)

		Time	Reactor1
24/3/2005	1	0 min.	44
	2	10 min.	6
	3	20 min.	6
	4	30 min.	5
	5	40 min.	4
	6	50 min.	4
	7	60 min.	4

APPENDIX K

Sulfur Mass Balance

Sulfur mass balance

Total Sulfur at the beginning (Start up) 1st day.

1. Residual sulfide in the sludge seeding	= 1.0 mg/l = 1.0 x 2	= 2.0 mg
2. Nutrient (MgSO ₄ .7H ₂ O)	= 1.0 mg/l = 1.0 x 2	= 2.0 mg
3. Adding MgSO ₄ .7H ₂ O	= 10.4 mg/l = 10.4 x 2	= 20.8 mg
Total sulfur at the beginning	= 2.0+2.0+20.8	= 24.8 mg

Mass balance for 1st injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 8.0 mg/l = 8.0 x 2	= 16.0 mg
2. Residual sulfate in the reactor	= 3.0 mg/l = 3.0 x 2	= 6.0 mg
3. Synthesized wastewater	= 5.0 mg/l = 5.0 x 2	= 10.0 mg
Total dissolved sulfur	= 16.0 + 6.0 + 10.0	= 32.0 mg

After 1st injection (1day)

1. Residual sulfide in the reactor	= 6.0 mg/l = 6.0 x 2	= 12.0 mg
2. Residual sulfate in the reactor	= 5.0 mg/l = 5.0 x 2	= 10.0 mg
3. Precipitate with Zn in synthesized wastewater	= 5.0 mg/l = 5.0 x 2	= 10.0 mg

* zinc 10 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

 $Zn^{2+} + S^{2-} --- \rightarrow ZnS$ 10 mg/65 + 5mg/32 = 15mg/97

Then Zinc 10 mg/l precipitate with sulfide 5 mg/l

Total dissolved sulfur after 1 st injection	= 12.0+10.0	= 22.0 mg
Precipitated sulfur in this injection	= 10 mg	
Total accumulative precipitated sulfur	= 10 mg	
Total Sulfur in reactor	= 22.0+10.0	= 32.0 mg

Mass balance for 3/3/2005 (added $SO_4^2 50 \text{ mg/l}$)

1. Residual sulfide in the reactor	= 8.0 mg/l	= 8.0 x 2	= 16.0 mg
2. Residual sulfate in the reactor	= 3.0 mg/l	= 3.0 x 2	= 6.0 mg
3. Adding MgSO ₄ .7H ₂ O	= 50.0 mg/l	= 50.0 x 2	= 100 mg
4. Precipitated sulfur (ZnS)	= 5.0 mg/l	= 5.0 x 2	= 10.0 mg
Total dissolved sulfur	= 16.0+6+100	= 122.0 mg	
Total accumulative precipitated sulfur	= 10.0 mg		
Total Sulfur in reactor	= 122.0+10.0	= 132.0 mg	

Mass balance for 2nd injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 52.0 mg/l	= 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l	= 9.0 x 2	= 18.0 mg
3. Synthesized wastewater	= 10.0 mg/l	= 10.0 x 2	= 20.0 mg
Total dissolved sulfur	= 104.0 + 18.	0 + 20.0	=142.0 mg
Total accumulative precipitated sulfur	= 10.0 mg		

After 2nd injection (1day)

1. Residual sulfide in the reactor	= 52.0 mg/l	= 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l	= 9.0 x 2	= 18.0 mg
3. Precipitate with Zn in synthesized wastew	vater= 10.0 mg/	$1 = 10.0 \ge 2$	= 20 mg

* zinc 20 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

$$Zn^{2+} + S^{2-} --- \Rightarrow ZnS$$

20 mg/65 + 10mg/32 = 30mg/97

Then zinc 20 mg/l precipitate with s	ulfide 10 mg/l	
Total dissolved sulfur after 2 nd injection	= 104.0 + 18.0	= 122.0 mg
Precipitated sulfur in this injection	= 20.0 mg	
Total accumulative precipitated sulfur	= 10.0 + 20.0	= 30.0 mg
Total sulfur in reactor	= 142.0 + 10.0	= 152.0 mg

Mass balance for 3rd injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 52.0 mg/l	$= 52.0 \times 2$	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l	= 9.0 x 2	= 18.0 mg
3. Synthesized wastewater	= 10.0 mg/l	= 10.0 x 2	= 20.0 mg
Total dissolved sulfur when injection	= 104.0 + 18.	0 + 20.0	=142.0 mg
Total accumulative precipitated sulfur	= 30.0 mg		

After 3rd injection (1day)

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 140 mg
2. Residual sulfate in the reactor	= 9.0 mg/l = 9.0 x 2	= 18.0 mg
3. Precipitate with Zn in synthesized waste	water= $10.0 \text{ mg/l} = 10.0 \text{ x } 2$	= 20.0 mg

*zinc 20 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

Then Zinc 20 mg/l precipitate with sulfide 10 mg/l

Total dissolved sulfur after 3 rd injection	= 104.0 + 18.0	= 122.0mg
Precipitated sulfur in this injection	= 20.0 mg	
Total accumulative precipitated sulfur	= 30.0 + 20.0	= 50.0 mg
Total sulfur in reactor	= 122.0 + 50.0	= 172.0 mg

Mass balance for 4th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l = 9.0 x 2	= 18.0 mg
3. Synthesized wastewater	= 10.0 mg/l = 10.0 x 2	= 20.0 mg
Total dissolved sulfur when injection	= 104 + 18.0 + 20.0	=142.0 mg
Total accumulative precipitated sulfur	= 50.0 mg	

After 4th injection (1day)

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l. = 9.0 x 2	= 18.0 mg
3. Precipitate with Zn in synthesized waste	water= $10.0 \text{ mg/l} = 10.0 \text{ x } 2$	= 20.0 mg

*zinc 20 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

Then Zinc 20 mg/l precipitate with	sulfide 10 mg/l	
Total dissolved sulfur after 4 th injection	= 104.0 + 18.0	= 122.0 mg
Precipitated sulfur in this injection	= 20.0 mg	
Total accumulative precipitated sulfur	= 50.0 + 20.0	= 70.0 mg
Total sulfur in reactor	= 122.0 + 70.0	= 192.0 mg

Mass balance for 5th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l = 9.0 x 2	= 18.0 mg
3. Synthesized wastewater	= 10.0 mg/l = 10.0 x 2	= 20.0 mg
Total dissolved sulfur when injection	= 122.0 + 20.0	= 142.0 mg
Total accumulative precipitated sulfur	= 70.0 mg	

After 5th injection (1day)

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l = 9.0 x 2	= 18.0 mg
3. Precipitate with Zn in synthesized waster	water= $10.0 \text{ mg/l} = 10.0 \text{ x } 2$	= 20.0 mg

* zinc 20 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

Then Zinc 20 mg/l precipitate with s	ulfide 10 mg/l	
Total dissolved sulfur after 5 th injection	= 104.0 + 18.0	= 122.0 mg
Precipitated sulfur in this injection	= 20.0 mg	
Total accumulative precipitated sulfur	= 70.0 + 20.0	= 90.0 mg
Total sulfur in reactor	= 122.0 + 90.0	= 212.0 mg

Mass balance for 6th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 52.0 mg/l = 52.0 x 2	= 104 mg
2. Residual sulfate in the reactor	= 9.0 mg/l = 9.0 x 2	= 18 mg
3. Synthesized wastewater	= 25.0 mg/l = 25.0 x 2	= 50 mg
Total dissolved sulfur when injection	= 104.0 + 18.0 + 50.0	=172.0 mg
Total accumulative precipitated sulfur	= 90.0 mg	

After 6th injection (1day)

1. Residual sulfide in the reactor	= 44.0 mg/l = 44.0 x 2	= 88.0 mg
2. Residual sulfate in the reactor	= 17.0 mg/l = 17.0 x 2	= 34.0 mg
3. Precipitate with Zn in synthesized waster	water= $25.0 \text{ mg/l} = 25.0 \text{ x } 2$	= 50.0 mg

* zinc 50 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

$$Zn^{2+} + S^{2-} \dots \rightarrow ZnS$$

50 mg/65 + 25mg/32 = 75mg/97

Then Zinc 50 mg/l precipitate with	sulfide 25 mg/l	
Total dissolved sulfur after 6 th injection	= 88.0 + 34.0	= 122.0 mg
Precipitated sulfur in this injection	= 50.0 mg	
Total accumulative precipitated sulfur	= 90.0 + 50.0	= 140.0 mg
Total sulfur in reactor	= 122.0 + 140.0	= 162.0 mg

Mass balance for 7th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 44.0 mg/l = 44.0 x 2	= 88.0 mg
2. Residual sulfate in the reactor	= 17.0 mg/l = 17.0 x 2	= 34.0 mg
3. Synthesized wastewater	= 25.0 mg/l = 25.0 x 2	= 50.0 mg
Total dissolved sulfur when injection	= 88.0 + 34.0 + 50.0	= 172 mg
Total accumulative precipitated sulfur	= 140.0 mg	

After 7th injection (1day)

1. Residual sulfide in the reactor	= 44.0 mg/l = 44.0 x 2	= 88.0 mg
2. Residual sulfate in the reactor	= 17.0 mg/l = 17.0 x 2	= 34.0 mg
3. Precipitate with Zn in synthesized waster	water= $25.0 \text{ mg/l} = 25.0 \text{ x } 2$	= 50.0 mg

* zinc 50 ppm in synthesis wastewater and all of them precipitate with sulfide in the reactor.

$$Zn^{2+} + S^{2-} --- \rightarrow ZnS$$

50 mg/65 + 25mg/32 = 75mg/97

Then Zinc 50 mg/l precipitate with s	sulfide 25 mg/l	
Total dissolved sulfur after 7 th injection	= 88.0 + 34.0	= 122.0 mg
Precipitated sulfur in this injection	= 50.0 mg	
Total accumulative precipitated sulfur	=140.0 + 50.0	= 190.0 mg
Total sulfur in reactor	= 122.0 + 190.0	= 312.0 mg

Mass balance for 8th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 44.0 mg/l = 44.0 x 2	= 88.0 mg
2. Residual sulfate in the reactor	= 17.0 mg/l = 17.0 x 2	= 34.0 mg
3. Synthesized wastewater	= 50.0 mg/l = 50.0 x 2	=100.0 mg
Total dissolved sulfur when injection	= 88.0 + 34.0 + 100.0	=222.0 mg
Total accumulative precipitated sulfur	= 190.0 mg	

After 8th injection (1day)

1. Residual sulfide in the reactor	= 40.0 mg/l = 40.0 x 2	= 80.0 mg
2. Residual sulfate in the reactor	= 29.0 mg/l = 29.0 x 2	= 58.0 mg
3. Precipitate with Zn in synthesized waster	water= $42.0 \text{ mg/l} = 42.0 \text{ x } 2$	= 84.0 mg

* zinc 100 ppm in synthesis wastewater and 85% of them precipitate with sulfide in the reactor.

$$Zn^{2+} + S^{2-} --- \rightarrow ZnS$$

85 mg/65 + 42.5mg/32 = 127.5mg/97

Then Zinc 85 mg/l precipitate with sulfide 42.5 mg/l				
Total dissolved sulfur after 8 th injection	= 80.0 + 58.0	= 138.0 mg		
Precipitated sulfur in this injection	= 84.0 mg			
Total accumulative precipitated sulfur	= 190.0 + 84.0	= 274.0 mg		
Total sulfur in reactor	= 138.0 + 274.0	= 412.0 mg		

Mass balance for 9th injection synthesized wastewater

Before injection

1. Residual sulfide in the reactor	= 40.0 mg/l = 40.0 x 2	= 80.0 mg
2. Residual sulfate in the reactor	= 29.0 mg/l = 29.0 x 2	= 58.0 mg
3. Synthesized wastewater	= 50.0 mg/l = 50.0 x 2	= 100.0mg
Total dissolved sulfur when injection	= 80.0 + 58.0 + 100.0	=238.0 mg
Total accumulative precipitated sulfur	= 274.0 mg	

After 9th injection (1day)

1. Residual sulfide in the reactor	= 0.0 mg/l = 0.0 x 2	= 0.0 mg
2. Residual sulfate in the reactor	= 71.0 mg/l = 71.0 x 2	= 142.0 mg
3. Precipitate with Zn in synthesized waste	water= $48.0 \text{ mg/l} = 48.0 \text{ x } 2$	= 96.0 mg

* zinc 115 ppm in the reactor and 74.78% of them precipitate with sulfide in the reactor.

$$Zn^{2+} + S^{2-} --- \rightarrow ZnS$$

96 mg/65 + 48mg/32 = 129.5mg/97

Then Zinc 96 mg/l precipitate with sulfide 48 mg/l					
Total dissolved sulfur after 9 th injection	= 142.0 + 0.0	= 142.0 mg			
Precipitated sulfur in this injection	= 96.0 mg				
Total accumulative precipitated sulfur	= 274.0 + 96.0	= 370.0 mg			
Total sulfur in reactor	= 142.0 + 370.0	= 512.0 mg			

APPENDIX L

.....

Temperature during the start up reactors and operation reactors

date	day	First reactor	Second reactor
20/2/2005	1	31.1	31.2
21/2/2005	2	31.2	31.0
22/2/2005	3	30.0	30.0
23/2/2005	4	30.8	30.7
24/2/2005	5	30.0	30.2
25/2/2005	6	30.4	30.6
26/2/2005	7	31.7	31.7
27/2/2005	8	31.3	31.1
28/2/2005	9	30.2	30.1
1/3/2005	10	31.1	31.1
2/3/2005	11	30.2	30.0
3/3/2005	12	33.2	33.5
4/3/2005	13	29.5	29.7
5/3/2005	14	27.3	27.4
6/3/2005	15	26.6	26.7
7/3/2005	16	28.1	28.1
8/3/2005	17	29.5	29.6
9/3/2005	18	30.2	30.2
10/3/2005	19	31.1	31.0
11/3/2005	20	31.5	31.5
12/3/2005	21	30.5	30.4
13/3/2005	22	30.9	30.9
14/3/2005	23	31.9	32.0
15/3/2005	24	31.0	30.8
16/3/2005	25	28.4	28.4
17/3/2005	26	30.4	30.3
18/3/2005	27	29.8	29.9
19/3/2005	28	30.2	30.1
20/3/2005	29	34.5	33.9
21/3/2005	30	31.5	
22/3/2005	31	31.1	-
23/3/2005	32	30.8	
24/3/2005	33	30.9	
25/3/2005	34	29.8	
26/3/2005	35	32.2	

 Table L-1 Temperature during the start up reactors and operation reactors

Temperature(Degree C^o)

APPENDIX M

Zinc during the start up reactors, operation reactors and every injection the synthesized wastewater

Table M-1 Zinc during the start up reactor, operation reactors and every injection the synthesized wastewater.

	day	Reactor1
20/2/2005	1	0.25
28/2/2005	9	0.15
1/3/2005	10	0.18
2/3/2005	11	0.16
3/3/2005	12	0.10
4/3/2005	13	0.02
5/3/2005	14	0.08
6/3/2005	15	0.06
7/3/2005	16	0.04
8/3/2005	17	0.13
9/3/2005	18	0.10
10/3/2005	19	0.12
11/3/2005	20	0.08
12/3/2005	21	0.15
13/3/2005	22	0.30
14/3/2005	23	0.35
15/3/2005	24	0.13
16/3/2005	25	0.07
17/3/2005	26	0.14
18/3/2005	27	0.17
19/3/2005	28	0.15
20/3/2005	29	0.28
21/3/2005	30	0.09
22/3/2005	31	0.23
23/3/2005	32	0.45
24/3/2005	33	
25/3/2005	34	

Zn (mg/L,ppm)

The first of zinc injection (10ppm)

		Time	Reactor1
2-28-05	1	0 min	10.15
	2	30 min	0.17
	3	60 min	0.05
	4	90 min	0.07
	5	120 min	0.02
	6	3hr	0.05
	7	6hr	0.01
	8	9hr	0.09
	9	12hr	0.02
	10	15 hr	0.29

128

The second of zinc injection (20ppm)

		Time	Reactor1
14/3/2005	1	0 min.	20.08
	2	10 min.	0.34
	3	20 min.	0.27
	4	30 min.	0.25
	5	40 min	0.21
	6	50 min.	0.19
	7	60 min.	0.19

The forth of zinc injection (20ppm)

		Time	Reactor 1
19/3/2005	1	0 min.	20.15
	2	10 min.	0.36
	3	20 min.	0.42
	4	30 min.	0.41
	5	40 min.	0.42
	6	50 min.	0.41
	7	60 min.	0.41

The sixth of zinc injection (50ppm)

		Time	Reactor1
22/3/2005	1	0 min.	50.23
	2	10 min.	0.81
	3	20 min.	0.80
	4	30 min.	0.73
	5	40 min.	0.71
	6	50 min.	0.65
	7	60 min.	0.60

The third of zinc injection (20ppm)

		Time	Reactor1
	<u> </u>	1 11110	Itouotorr
16/3/2005	1	0 min.	20.04
	2	10 min.	0.28
	3	20 min.	0.24
	4	30 min.	0.32
	5	40 min.	0.24
	6	50 min.	0.20
	7	60 min.	0.46

The fifth of zinc injection (20ppm)

		Time	Reactor1
20/3/2005 1		0 min.	20.28
	2	10 min.	0.28
	3	20 min.	0.38
	4	30 min.	0.37
	5	40 min.	0.36
	6	50 min.	0.35
	7	60 min.	0.43

The seventh of zinc injection (50ppm)

		Time	Reactor1
23/3/2005 1		0 min.	50.45
	2	10 min.	1.05
	3	20 min.	1.06
	4	30 min.	1.00
	5	40 min.	0.89
	6	50 min.	0.82
	7	60 min.	0.79

The eighth of zinc injection (100ppm)

		Time	Reactor1
24/3/2005 1		0 min.	100.5
	2	10 min.	24.2
	3	20 min.	23.1
	4	30 min.	22.1
	5	40 min.	21.0
	6	50 min.	20.1
	7	60 min.	19.0

The ninth of zinc injection (100ppm)

		Time	Reactor1
25/3/2005 1		0 min.	115.0
	2	10 min.	35.2
	3	20 min.	32.1
	4	30 min.	30.9
	5	40 min.	30.3
	6	50 min.	29.5
	7	60 min.	28.9

APPENDIX N

Zinc Mass Balance

Zinc mass balance

The 1st injection

	Residual zinc	0.15	$mg/l = 0.15 \ge 2$	= 0.30 mg
	Zinc injected	10	$mg/l = 10 \ge 2$	= 20 mg
	Effluent	0.04	$mg/l = 0.04 \ge 2$	= 0.08 mg
Th	e removal (precipitate)		20.30 - 0.08	= 20.22 mg
The	e accumulate zinc inject	ion	0+20.0	= 20.0 mg
The	e accumulate zinc remov	val	0+20.22	= 20.22 mg

The 2nd injection

Residual zinc	0.35	$mg/l = 0.35 \times 2$	= 0.70 mg
Zinc injected	20	$mg/l = 20 \ge 2$	= 40 mg
Effluent	0.13	$mg/l = 0.13 \times 2$	= 0.26 mg
The removal (precipitate)		40.70-0.26	= 40.44 mg
The accumulate zinc injec	tion	20.0+40.0	= 60.0 mg
The accumulate zinc remo	val	20.22+ 40.44	= 60.66 mg

The 3rd injection

	Residual zinc	0.07	$mg/l = 0.07 \ge 2$	= 0.14 mg
	Zinc injected	20	$mg/l = 20 \ge 2$	= 40 mg
	Effluent	0.14	$mg/l = 0.14 \times 2$	= 0.28 mg
The r	emoval (precipitate)		40.14-0.28	= 39.86 mg
The a	ccumulate zinc injection	on	60.0+40.0	= 100.0 mg
The a	ccumulate zinc remova	al	60.66+ 39.86	= 100.52 mg

The 4th injection

R	Residual zinc	0.15	$mg/l = 0.15 \times 2$	= 0.30 mg
Z	Zinc injected	20	$mg/l = 20 \ge 2$	= 40 mg
E	Effluent	0.28	$mg/l = 0.28 \times 2$	= 0.56 mg
The rem	oval (precipitate)		40.30-0.56	= 39.74 mg
The accu	umulate zinc injection	n	100.0+40.0	= 140.0 mg
The accu	umulate zinc remova	1	100.52+39.74	= 140.26 mg.

The 5th injection

Residual zinc	0.28	$mg/l = 0.28 \ge 2$	= 0.56 mg
Zinc injected	20	$mg/l = 20 \ge 2$	= 40 mg
Effluent	0.09	$mg/l = 0.09 \ge 2$	= 0.18 mg
The removal (precipitate)		40.56-0.18	= 40.38 mg
The accumulate zinc injec	tion	14.0+40.0	= 180.0 mg
The accumulate zinc remo	oval	140.26+40.38	= 180.64 mg

The 6th injection

	Residual zinc	0.23	$mg/l = 0.23 \times 2$	= 0.46 mg
	Zinc injected	50	$mg/l = 50 \ge 2$	= 100 mg
	Effluent	0.45	$mg/l = 0.45 \ge 2$	= 0.90 mg
The re	emoval (precipitate)		100.46-0.90	= 99.56 mg
The a	ccumulate zinc injection	n	180.0+100.0	= 280.0 mg
The a	ccumulate zinc remova	al	180.64+99.56	= 280.2 mg

The 7th injection

	Residual zinc	0.45	$mg/l = 0.45 \ge 2$	= 0.90 mg
	Zinc injected	50	$mg/l = 50 \ge 2$	= 100 mg
	Effluent	0.52	$mg/l = 0.52 \ge 2$	= 1.04 mg
The r	emoval (precipitate)		100.90-1.04	= 99.86 mg
The a	ccumulate zinc injection	on	280.0+100.0	= 380.0 mg
The a	ccumulate zinc remova	al	280.2+99.86	= 380.06 mg

The 8th injection

	Residual zinc	0.52	$mg/l = 0.52 \times 2$	= 1.04 mg
	Zinc injected	100	$mg/l = 100 \ge 2$	= 200 mg
	Effluent	15	$mg/l = 15 \ge 2$	= 30 mg
The	removal (precipitate)		201.04-30	= 171.04 mg
The	accumulate zinc injecti	on	380.0+200.0	= 580.0 mg
The	accumulate zinc remov	al	380.06+171.04	= 551.1 mg

The 9th injection

	Residual zinc	15	$mg/l = 15 \times 2$	= 30 mg
	Zinc injected	100	$mg/l = 100 \ge 2$	= 200 mg
	Effluent	19	mg/l = 19 x 2	= 38 mg
The removal (precipitate)			230-38	= 192.0 mg
The accumulate zinc injection			580.0+200.0	= 780.0 mg
The ac	cumulate removal		551.1+192	= 743.1mg

APPENDIX O

The comparison zinc precipitation from Zinc balance and Sulfur balance

The comparison zinc precipitation from Zinc balance and Sulfur balance

1st Injection

From Zinc Balance Precipitated zinc = 10.106 mg/l = 20.212 mgUse S²⁻ for precipitate = 10.106 x 32/65 x 2 = 9.95 mg

From Sulfur balance		
Precipitated sulfide	= 5.0 mg/l x 2	= 10.0 mg
Removed zinc	= 5.0 x 65/32 x 2	= 20.312 mg

2nd Injection

From Zinc Balance	e	
Precipitated zinc	= 20.218 mg/l	x 2 = 40.436 mg
Use S ²⁻ for precipi	tate = $20.218 \times 32/6$	55 x 2 = 19.906 mg

From Sulfur balance				
Precipitated sulfide	= 10.0 mg/l x 2	= 20.0 mg		
Removed zinc	= 10.0 x 65/32 x 2	= 40.626 mg		

3rd Injection

From Zinc Balance				
Precipitated zinc	= 19.932 mg	g/l x 2	= 39.864 n	ng
Use S ²⁻ for precipitate	= 19.932 x 3	32/65 x 2	= 19.625 n	ng

From Sulfur balance				
Precipitated sulfide	= 10.0 mg/l x 2	= 20.0 mg		
Removed zinc	= 10.0 x 65/32 x 2	= 40.626 mg		

4th Injection

From Zinc Balance Precipitated zinc = 19.87 mg/l x 2 = 39.74 mgUse S²⁻ for precipitate = 19.87 x 32/65 x 2 = 19.564 mg

From Sulfur balance				
Precipitated sulfide	= 10.0 mg/l x 2	= 20.0 mg		
Removed zinc	= 10.0 x 65/32 x 2	= 40.626 mg		

5th Injection

From Zinc Balance		
Precipitated zinc	= 20.189 mg/l x 2	= 40.378 mg
Use S ²⁻ for precipitat	$e = 20.189 \times 32/65 \times 2$	= 18.78 mg

From Sulfur balance

Precipitated sulfide	= 10.0 mg/l x2	= 20.0 mg
Removed zinc	$= 10.0 \times 65/32 \times 2$	= 40.626 mg

6th Injection

From Zinc Balance Precipitated zinc = 49.776 mg/l x 2 = 99.552 mgUse S²⁻ for precipitate = 49.776 x 32/65 x 2 = 49.01 mg

From Sulfur balance				
Precipitated sulfide	= 25.0 mg/l x 2	= 50.0 mg		
Removed zinc	$= 25.0 \times 65/32 \times 2$	= 101.562 mg		

7th Injection

From Zinc Balance		
Precipitated zinc	= 49.933 mg/l x 2	= 99.866 mg
Use S ²⁻ for precipitate	= 49.933 x 32/65 x 2	= 49.164 mg

From Sulfur balance				
Precipitated sulfide	= 25.0 mg/l x 2	= 50.0 mg		
Removed zinc	$= 25.0 \times 65/32 \times 2$	= 101.562 mg		

8th Injection

From Line Balance	From	Zinc	Balance
-------------------	------	------	---------

Precipitated zinc	= 85.523 mg/l x2	= 171.046 mg
Use S ²⁻ for precipitat	te = 85.523 x 32/65	= 42.104 mg

From Sulfur balance

Precipitated sulfide	= 42.0 mg/l x 2	= 84.0 mg
Removed zinc	$= 42.0 \times 65/32 \times 2$	= 170.626 mg

9th Injection

From Zinc Balance		
Precipitated zinc	= 96.0 mg/l x 2	= 192.0 mg
Use S ²⁻ for precipitat	$e = 96.0 \times 32/65 \times 2$	= 94.52 mg

From Sulfur balance		
Precipitated sulfide	= 48.0 mg/l x 2	= 96.0 mg
Removed zinc	$= 48.0 \times 65/32 \times 2$	= 195.0 mg

Total Precipitated Zinc

From Zinc Balance	= 371.547 mg/l x 2	= 743.094 mg
From Sulfur Balance	= 185.0 x 65/32 x2	= 751.56 mg

APPENDIX P

The measurement and the adjustment of sulfate and sulfide from standard method of water and wastewater

4500-SO4²⁻ E. Turbidimetric Method (Sulfate measurement)

Sampling and storage

In the presence of organic matter certain bacteria may reduce SO42- to S2-. To avoid this, stor heavily polluted or contaminated sample at 4°C

<u>Apparatus</u>

a. -Magnetic stirrer: Use a constant stirring speed. It is convenient to incorporate a fixed resistance in series with the motor operating the magnetic stirrer to regulate stirring speed. Use magnets of identical shape and size. The exact speed of stirring is not critical, but keep it constant for each run of samples and standards and adjust it to prevent splashing.

b. -Photometer: One of the following is required, with preference in the order given:

1). Nephelometer

2). Spectrophotometer, for use at 420 nm. Providing a light path of 2.5 to 10 cm

3). Filter photometer, equipped with a violet filter having maximum transmittance near 420 nm and providing a light path of 2.5 to 10 cm

c. –Stopwatch or electric timer

d. –Measuring spoon, capacity 0.2 to 0.3 ml

<u>Reagent</u>

- a. Buffer solution A: Dissolve 30 g magnesium chloride, MgCl₂.6H₂O, 5 g Sodium acetate, CH₃COONa.3H₂O, 1.0 g potassium nitrate, KNO₃, and 20 ml acetic acid, CH₃COOH (99%), in 500 ml distilled water and make up to 1000 ml
- b. Buffer solution B: (required when the sample SO₄²⁻ concentration is less than 10 mg/l)Dissolve 30 g magnesium chloride, MgCl₂.6H₂O, 5 g Sodium acetate, CH₃COONa.3H₂O, 1.0 g potassium nitrate, KNO₃, 0.111 g sodium sulfate, Na₂SO₄, and 20 ml acetic acid, CH₃COOH (99%), in 500 ml distilled water and make up to 1000 ml
- c. Barium chloride, BaCl₂, crystals, 20 to 30 mesh. In standardization, uniform turbidity is produced with this mesh range and the appropriate buffer.
- d. Standard sulfate solution: Prepare a standard sulfate solution as described in 1) or 2) below; $1.00 \text{ ml} = 100 \text{ug SO}_4^{2-}$
 - Dilute 10.4 ml standard 0.0200 N H₂SO₄ titrant specified in alkalinity, Section 2320B.3c, to 100ml with distilled water.
 - Dissolve 0.1479 g anhydrous Na₂SO₄ in distilled water and dilute to 1000 ml

Procedure

- a. Formation of barium sulfate turbidity: Measure 100 ml sample or a suitable portion made up to 100 ml, into a 250 ml Erlenmeyer flask. Add 20 ml buffer solution and mix in stirring apparatus. While stirring, add a spoonful of BaCl₂ crystals and begin timing immediately. Stir for 60±2s at constant speed.
- b. Measurement of barium sulfate turbidity: After stirring period has ended, pour solution into absorption cell of photometer and measure turbidity at 5 ± 0.5 min.

- c. Preparation of calibration curve: Estimate SO_4^{2-} concentration in sample by comparing turbidity reading with a calibration curve prepared by carrying SO_4^{2-} standards through the entire procedure. Space standards at 5 mg/l increments in the 0 to 40 mg/l SO_4^{2-} range. Above 40 mg/l accuracy decreases and BaSO₄ suspensions lose stability. Check reliability of calibration curve by running a standard with every three or four samples.
- d. Correction for sample color and turbidity: Correct for sample color and turbidity by running blanks to which BaCl₂ is not added.

* For this experiment have many adjustment

- Sample: 100ml of sample were from 10ml of real sample and made up to 100ml by distilled water.

- Calibration curve: Space standards at 1 mg/l increments in the 0 to 8 mg/l SO_4^{2-} range. (because SO_4^{2-} range in the sample not more than 80 mg/l)

4500- S²⁻ E. Iodometric Method (Sulfide measure ment)

Reagents

- a. Hydrochloric acid, HCl, 6 N
- b. Standard iodine solution, 0.0250 N: Dissolve 20 to 25 g KI in a little water and add 3.2 g iodine. After iodine has dissolved, dilute to 1000 ml, and standardize against 0.0250 N Na₂S₂O₃, using starch solution as indicator.
- c. Standard sodium thiosulfate solution, 0.0250N: See Section 4500-O.C.2e.
- d. Starch solution: See Section 4500-O.C.2d.

Procedure

- a. Measure from a buret into a 500 ml flask an amount of iodine solution estimated to be an excess over the amount of sulfide present. Add distilled water, if necessary, to bring volume to about 20 ml. Add 2 ml 6N HCl. Pipet 200 ml sample into flask, discharging sample under solution surface. If iodine color disappears, add more iodine so that color remains. Back-titrate with Na₂S₂O₃ solution, adding a few drops of starch solution as end point is approached, and continuing until blue color disappears.
- b. If sulfide was precipitated with zinc and ZnS filtered out return filter with precipitate to original bottle and add about 100 ml water. Add iodine solution and HCl and titrate as in 2a above.

Calculation

One milliliter 0.0250 N iodine solution reacts with 0.4 mg S^{2-} :

 $mg S^{2}/L = [(AxB)-(CxD)]x16000$

ml Sample

Where:

A = ml iodine solution.

B = normality of iodine solution

 $C = ml Na_2S_2O_3$ solution, and

 $D = normality of Na_2S_2O_3$ solution

* For this experiment have many adjustment

- Sample: 200ml of sample were from 10ml of real sample and made up to 200ml by distilled water.

BIOGRAPHY

Mr. Thana Techapakdivongse was born on Nov 15, 1981 in Bangkok, Thailand. He graduated from Debsirin School in Bangkok in 1999. He received his Bachelor's Degree in Environmental Engineering from Faculty of Engineer, Chulalongkorn University in 2003. He pursued his Master Degree study in the International Postgraduate Programs in Environmental Management, Inter-Department of Environmental, Chulalongkorn University, Bangkok, Thailand in May 2003. He finished his Master Degree of Science in Environment Management in May 2005.