
CHAPTER II 
LITERATURE SURVEY

2.1 Capillarity Theory

One of the most classical methods for determining surface tension of liquid 
is based on the capillary force in a capillary tube. The schematic diagram of the 
capillary method is shown in Figure 2.1.

Figure 2.1 The schematic diagram of the capillary method.

Cutler et al. (1975) stated that the height to which a liquid in a capillary will 
rise depends on the radius of the tube, the surface tension of the liquid, the density of 
the liquid, and the contact angle between the tube wall, the air, and the liquid. The 
equation that provides an adequate treatment of the phenomenon is

Y = g T R z

where y

g
r
p
z

= the surface tension of the liquid 
= the gravitation constant 
= the radius of the capillary tube 
= the density of the test liquid 
= the height of the liquid rise in the capillary tube

(2.1)
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This equation is applicable if the liquid completely wets the walls of the 
capillary tube, giving a contact angle of zero. If the contact angle 9 is not 0° or 180°, 
then the expression is

y c o sO  = (2.2)

The general attributes of the capillary method were summarized by 
Adamson (1976). This method is considered to be one of the most accurate absolute 
methods and good to a few hundredths of a percent in precision. On the other hand, 
for practical reasons, a zero contact angle is required and fairly large volumes of 
solution are needed. A number of variations in the capillary rise method have been 
developed for ultimate accuracy, it is necessary to obtain capillaries with a uniform 
radius. This can be avoided if the meniscus can always be brought to the same point. 
This may be done by rising or lowering the outer liquid level until the meniscus 
stands at the reference point.

2.2 Molecular Mass Transfer Theory

The theory of molecular mass transfer was dated back a long time. This 
phenomenon was first observed by Parrot (1815). He observed qualitatively that 
whenever a gas mixture contains two or more molecular species, whose relative 
concentrations vary from point to point, an apparently natural process results which 
tends to minimizing the concentration differences within the system. The transport of 
one constituent from a region of higher concentration to that of a lower concentration 
is called mass transfer.

Later, Bird et al. (1960) indicated that diffusion of A in a binary system of 
A and B occurs because of a concentration gradient of A which is called ordinary 
diffusion. However, there are a number of other physical conditions, in addition to 
the difference in concentration, which produces a chemical potential gradient: 
temperature differences, pressure differences and differences in the forced created by 
external field, such as gravity, magnetic and electrical fields. For example, mass
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transfer obtained by applying a temperature gradient to a multicomponent 
system, component in a liquid mixture can be separated with a centrifuge by pressure 
diffusion and mineral mixture separated through the action of a magnetic force field.

Welty et al. (1984) stated the definition of a vector quantity denoting the 
amount of the particular species in molar units that passes per given increment of 
time through a unit area normal to the vector is called the molar flux. They also 
reviewed the Fick’s law of mass transfer that shows the relation between the flux of 
the diffusing substance and the concentration gradient responsible for this mass 
transfer. The relations of the total molar flux of component A in z direction is shown 
in equation (2.3).

N  A = -C D abWxa + ^  (N a + N  8 ) (2.3)

where Na = 
Nb =
c

Dab = 

XA =

the total molar flux of component A in z direction 
the total molar flux of component B in z direction 
the bulk concentration of mixture
the diffusion coefficient for component A diffusing through 
component B
the mole fraction of component A

From equation (2.3), the molar flux, Na, is a result of the two vector 
quantities. The first term resulting from the concentration gradient is referred to as 
the concentration gradient contribution whereas the other term resulting as 
component A is carried in the bulk flow of the fluid. This flux term is designated the 
bulk motion contribution.

2.3 Taylor Dispersion Method

Pratt and Wakeham (1974) introduced the Taylor dispersion (peak­
broadening) method in order to measure the mutual diffusion coefficients of the 
solutions. In this method, a small sample (20 p.1) is injected into a carrier stream as it
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flows through a capillary tube. Provided the flow is laminar, the combination of 
the flow and diffusion results in the Gaussian distribution of the solute with respect 
to the axial position along the tube. Experimentally, it is more convenient to measure 
the variation in concentration with time at a fixed location. The resulting 
concentration profile is given as shown in equation (2.4).

f t  ไl R
1/2

exp โ -!2 D < f - (* nV t  J r 2t (2.4)

where D = the effective diffusion coefficient 
r = the radius of the tube
c = the average surfactant concentration without the pulse 
c = the surfactant concentration averaged across the tube radius at time t 
c max= the maximum value of c
tR = the residence time (the tube length divided by the average solution 

velocity) 
t = time

The diffusion coefficient is obtained by nonlinear least-square fit of the 
observed concentration profile.

Leaist e t al. (1986) proposed an alternative to monitor the broadened 
distribution of the injected sample at the outlet of a long capillary tube by a liquid- 
chromatography differential refractometer detector. Surfactant diffusivity can be 
calculated from the least-square fit of the dispersion equation as shown in equation
(2.5).

v ( t )  = v 0 + ¥ 1t + v m f t  ไ1 R
1/2

expโ - m d ' - G d
l  t J r t (2.5)

where V(t) = detector voltages which are measured with a digital voltmeter 
Vo+Vit = the base line voltage
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v max = the peak height

The interesting feature of the Taylor dispersion method is that the diffusion 
coefficient appears in the numerator of the exponent. As a result, the measured pulse 
is broad for slow diffusion, and narrow for fast diffusion. This is the antithesis of 
intuition of the method. It occurs that the radial diffusion is fast compared to 
convection. This is assured by a very low fluid velocity and a very long thin tube.

2.4 Surfactant Diffusivity

Weinheimer et al. (1981) measured the diffusion coefficient in water of a 
nonionic surfactant, Triton X-100, and an ionic surfactant, SDS, as a function of 
concentration using the Taylor dispersion method by running the experiment above 
the critical micelle concentration (CMC) at 25 °c. The results showed that, for Triton 
X-100, the diffusion coefficient dropped as the concentration increased and, for SDS, 
the diffusion coefficient increased as the concentration increased because of 
electrostatic coupling between the species present.

Shortly, after this study, Evans et al. (1983) determined diffusion 
coefficients for tetradecyl trimethyl ammonium bromide (C14TAB) at 25, 95 and 130 
°c and SDS at 25 °c using the Taylor dispersion method. The results of SDS 
diffusion coefficients plotted against concentration are given in Figure 2.2.
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Figure 2.2 SDS diffusion coefficients by Taylor dispersion method at 25°c (Evan et 
a l ,  1983).

They found that the diffusion coefficient decreased rapidly just beyond the 
CMC, went through a minimum, and then increased with concentration.

The diffusion coefficients for binary aqueous solution of sodium hexanoate, 
heptanoate, octanoate, decanoate and dodecanoate salts at 25 °c using the Taylor 
dispersion method was investigated by Deng et al. (1996). Results (Figure 2.3) 
showed that the diffusion coefficients of sodium hexanoate and heptanoate dropped 
smoothly as the salt concentration was increased. For each of the longer-chain 
sodium alkanoates, the diffusion coefficient dropped sharply in the region of CMC.
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Figure 2.3 Sodium alkanoates diffusion coefficients by Taylor dispersion method at 
25°c (Deng et a i ,  1996).

It was suggested that the sharp drop in the diffusion coefficients was due to 
two reasons. Firstly, the formation of micelles reduces the number of free ions 
diffusing in the solution and this, in turn, reduces the free energy gradient driving the 
diffusion process. Secondly, the friction acting on a micelle cluster is much larger 
than that acting on a single surfactant monomer and causes a sharp drop in the 
diffusion coefficient when micelles occurred at CMC.

Tiberg et al. (2000) studied the relation between the capillary flow dynamics 
and interfacial adsorption. The work was devoted to experimental and theoretical 
aspects of the capillary rise dynamics exhibited by surfactant solutions in 
hydrophobic and hydrophilic capillaries. The capillary force was considered to be 
time-dependent because of surfactant adsorption is a dynamic process, affected by 
hydrodynamic conditions, mass transport, monomer-micelle conversion rates, and 
interfacial relaxation. The results showed that, for high CMC surfactants, e.g. C10E6, 
the level of liquid in the tube rises much faster than the low CMC surfactants, e.g.
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ChEô. It can be claimed that the surfactant diffusivity of micelle state is slower 
than the monomer state.

Leaist and Abdu (2001) determined diffusion coefficients for lithium 
dodecyl sulfate (LiDS) at 25 °c using the Taylor dispersion method. The results are 
given in Figure 2.4.

Figure 2.4 LiDS diffusion coefficients by Taylor dispersion method at 25°c (Leaist 
et al., 2001).

They found that the diffusion coefficient dropped very sharply in the region 
of CMC and then increased at higher concentration. These results showed the same 
trend to SDS diffusion coefficient measurements by Evan et al. (1983). They 
explained this unusual diffusion behavior by considering the changes in the mobility 
and the thermodynamic driving force caused by the association of surfactant ions and 
counterions to form charged micelles as show in equation (2.6).

q A ¥ + nD S~  o  (AqD S„y~ n (A  = N a +o rL i+) ( 2 . 6 )
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This chemical equilibrium model of micelle diffusion gives the binary 
diffusion coefficient (D) of a univalent ionic surfactant as shown in equation (2.7).

C - C + D - D +  + q 2 C - C m P  D +  + n 2c+c mD + D m  

C- D - +C+D + + ( n - q f c mD m

c _ + c + + { ท -  q f c m 
c_c+ + q 2c_cm + n 2c +c m

where ท = the numbers of surfactant ions per micelles
q = the numbers of bound counterions per micelles
D. = diffusion coefficient of the free surfactant ions
D+ = diffusion coefficient of the free counterions
Dm = diffusion coefficient of the micelles
c. = concentration of the free surfactant ions
c+ = concentration of the free counterions
cm = concentration of the micelles
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