สมบัติเชิงกลของวัสคุเชิงประกอบพอลิเอทิลีนเสริมแรงด้วยเถ้ากระดูกเผา

นางสาว วิมลรัตน์ ศรีจรัสสิน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภากวิชาวัสดุศาสตร์ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

W.M. 2538

ISBN 974-631-340-1

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

I16758560

MECHANICAL PROPERTIES OF CALCINED BONE ASH REINFORCED POLYETHYLENE COMPOSITES

Miss Wimonrat Sricharussin

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Materials Science

Graduate School

Chulalongkorn University

1995

ISBN 974-631-340-1

Thesis Title	Mechanical properties of calcined bone ash
	reinforced polyethylene composites
Ву	Miss Wimonrat Sricharussin
Department	Materials Science
Thesis Advisor	Assistant Professor Khemchai Hemachandra, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree/

Santi Throngsuran

......Dean of Graduate School

(Associate Professor Santi Thoongsuwan, Ph.D.)

Thesis Committee

Ulul Udu Chairman

(Associate Professor Werasak Udomkichdecha, Ph.D.)

Khenchei Khunachendry Thesis Advisor

(Assistant Professor Khemchai Hemachandra, Ph.D.)

(Associate Professor Pibul Itiravivong, M.D.)

Paipon South. Member

(Assistant Professor Paipan Santisuk)

พิมพ์ต้นฉบับบทกัดย่อวิทยาสิพนธ์ภายไมกรอบสีเขียวนี้เพียงแผ่นเดียว

วิมลรัตน์ ศรีจรัสสิบ : สมบัติเขิงกลของวัสคุเชิงประกอบพอลิเอทิลีนเสริมแรงด้วยเถ้ากระคูกเผา (MECHANICAL PROPERTIES OF CALCINED BONE ASH REINFORCED POLYETHYLENE COMPOSITES ๒.ที่ปรึกษา : ผศ.คร.เซ็มชัย เทมะจันทร , 129 หน้า. ISBN 974-631-340-1

งานวิจัยนี้มีจุดประสงค์เพื่อศึกษาสมบัติเชิงกลของวัสคุเชิงประกอบพอลิเอทลีนเสริมแรงด้วยเถ้า กระดูกเผาที่อัตราส่วนโดยปริมาตรต่างๆกันจนถึง 0.50 และนับเป็นการบุกเบิกวัสคุเชิงประกอบที่สามารถทดแทน กระดูกได้ สมบัติเชิงกลที่ศึกษาได้แก่ โมตุลัสของยัง ความทนแรงดึง ความเครียดที่จุดแตกหัก ความทนแรงดัด โด้งและความแข็ง เปรียบเทียบผลการวิจัยกับแบบจำลองทฤษฎีที่เกี่ยวข้อง และใช้กล้องจุลทรรพปอเล็กตรอน แบบสแกน ศึกษาสัณฐานของทั้งสองเฟส การกระจายตัวของเถ้ากระดูกเผาในเนื้อพอลิเอทลีน และผิวการ แตกหักของวัสคุเพิงประกอบ

จากการศึกษาพบว่า ค่าโมคุลัสของยังเห็มขึ้นเมื่อเพิ่มอัตราส่วนโดยปริมาตรของเถ้ากระดูกเผา แต่ในขณะเตียวกันความทนแรงตึงและความเครียดที่งุดแตกหักกลับสดลง ผลของสมบัติเชิงกลสามารถเปรียบ เทียบกับทฤษฎีบางขุดได้ ส่วนค่าความแข็งของขึ้นงานเพิ่มขึ้น เมื่ออัตราส่วนโดยปริมาตรของเถ้ากระตูกเผาเพิ่มขึ้น และพบว่า ค่านี้เป็นตัวทานายค่าโมคุลัสของบังของวัลดุเชิงประกอบได้ดี ผลของกล้องจุลหรรศน์อิเล็กตรอนแบบ สแกน แสดงให้เห็นว่า การเสียรูปทางพลาสติก มีอิทธิพลงากปริมาณของเถ้ากระดูกเผา ดังนั้น การวิเคราะห์ การแตกหักที่อัตราส่วนโดยปริมาตรเพิ่มขึ้น จึงเปลี่ยนจากลักษณะอิตหยุ่นเป็นเปราะ

ภาควิชาวัสดุสาสตร์ สาขาวิชา วิทยาศาสตร์พอลิเมอร์ประยุกต์และเทกโนโลลี ปีการศึกษา2537.......สิ่งหอ

ลายมีสมือมีสิด ()การ กายมือ 2010 เรยที่ปรึกษา /55080 (Mars250) ลายมือขออาจารย์ทำไร้กษาร่วม

**C527126 :MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY KEY WORD: CALCINED BONE ASH / PARTICULATE-FILLED POLYETHYLENE / BONE REPLACEMENT WIMONRAT SRICHARUSSIN : MECHANICAL PROPERTIES OF CALCINED BONE ASH REINFORCED POLYETHYLENE COMPOSITES. THESIS ADVISOR : ASSIS. PROF. KHEMCHAI HEMACHANDRA,Ph.D. 129 pp. ISBN 974-631-340-1

The mechanical properties of calcined bone ash reinforced polyethylene composite at various volume fractions up to 0.50 was investigated. Such composites have been pioneered as analogue materials for cortical bone replacement. The dependence of the Young's modulus, tensile strength, strain to failure, flexural strength and hardness on the amount of filler was presented. The experimental results were compared with a few theoretical model predictions to explore the validity of the models at high filler loading. Scanning electron microscope was used to examine the morphology of the two phases, the dispersion of calcined bone ash in polyethylene matrix and the fracture surface of them.

The results show that the Young's modulus increases with an increase in calcined bone ash volume fraction, whereas the tensile strength and strain to failure decrease over the same range. The theoretical models have been examined for fit to the experimental data. At the same time, microhardness test increases with increasing calcined bone ash content and then it is a good predictor for Young's modulus of the composite. Microscopic method reveals that plastic deformation is strongly influenced by the amount of calcined bone ash content. Hence, failure analysis changes from ductile to brittle mode.

ภากวิชา รัสกุศาสตร์ ลายมือชื่อนิสิต Wimourat Suichanusain สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกศ์และเทคโบลายมือชื่ออาจารย์ที่ปรึกษา Kunchai Hunachund m โลยีสิงหอ ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

Acknowledgements

I am grateful to my advisor, Dr. Khemchai Hemachandra for his help, advice and guidance through the course of this task. Special thanks are also due to the staff of the Metallurgy and Materials Science Research Institute (MMSRI), especially to Mr. Parinya Puangnak for Instron universal testing measurements.

I wish to thank Department of Materials Science, Chulalongkorn University for graduate course. My thanks to the technical staffs of Scientific and Technological Research Equipment Centre for their guidance and help in testing. I would like to appreciation to Department of Chemical Engineering, Faculty of Engineering, Rajamangala Institute of Technology for help in density measurement.

The continuing support of the National Science and Technology Development Agency is acknowledged. Finally, I would like to thank to my mother for encouragement and my friends for their mindfulness.

Table of Contents

VII

Abstract (Th	nai) IV	V
Abstract (En	nglish)V	
Acknowledg	ments V	I
Table of cor	ntentsV	Π
List of Table	es D	ζ
List of Figur	resX	Ι
<u>Chapter 1</u>	Introduction	
<u>Chapter 2</u>	Literature Survey	3
	Natural Bone	•
	Materials for Bone Replacement	5
	1. Metals	5
	2. Ceramics	7
	3. Polymers10	0
	4. Composites1	0
	Biocompatibility of Implant Materials1	5
	1. Tissue responses1	5
	2. Blood responses1	6
	Particulate-filled Polymer Composites1	б
	1. Particle-filled brittle plastics1	7
	2. Particle-filled tough plastics1	9
	Theoretical Models in Particulate-filled Polymers2	4
	1. Tensile modulus	24
	2. Tensile strength	29

pa	ge
F (

	3. Elongation to break	30
	Compounding Process	31
<u>Chapter 3</u>	Materials and Methods	37
	Materials	37
	Processing Methods	
	Mechanical Testing Methods	42
	1. Tensile testing	42
	1.1 Preparation of specimen	43
	1.2 Testing procedure	
	1.3 Effects of strain rate on tensile	
	properties	45
	2. Flexural testing	47
τ,	2.1 Flexural strength	48
	2.2 Testing procedure	49
	3. Hardness	51
	Density Measurements	53
	Dispersion of Filler	
	Fractography	55
<u>Chapter 4</u>	Results	56
<u>Chapter 5</u>	Discussion	83
<u>Chapter 6</u>	Conclusions	111
Future Work113		
References114		
Appendix		121

List of Tables

	page
Table 2.2.1	Bioceramic classifications
Table 2.2.2	Comparison of mechanical properties of
	current implant materials with those of
	cortical bone13
Table 2.2.3	Mechanical behaviour and bioactivity of
а Х	various hydroxyapatite particle reinforced
	polyethylene composites
Table 2.4.1	The mechanical properties of unfilled
	nylon 66, and nylon 66 containing 30% of
	glass spheres
Table 2.5.1	Maximum packing fraction, ϕ_m
Table 3.1.1	Materials used in the experiment
Table 3.1.2	Types of composite materials tested
Table 3.2.1	Conditions of co-rotating twin screw extruder
Table 4.1.1	Tensile properties of calcined bone ash and synthetic
	hydroxyapatite reinforced high density polyethylene
	composites as a function of volume fraction of filler
	at crosshead speed of 0.5 mm min ⁻¹
Table 4.1.2	Tensile properties of calcined bone ash and synthetic
	hydroxyapatite reinforced high density polyethylene
	composites as a function of volume fraction of filler
	at crosshead speed of 1.0 mm min ⁻¹

Table 4.1.3	Flexural results of 0.45 volume fraction of
	calcined bone ash reinforced polyethylene
	composite
Table 4.1.4	Microhardness results of calcined bone ash
	and synthetic hydroxyapatite reinforced
	high density polyethylene composites
Table 4.2.1	Density measurement results of calcined bone
	ash and synthetic hydroxyapatite reinforced
	high density polyethylene composites at 23°C71
Table 5.1.1	Estimates of Young's modulus of calcined bone
	ash reinforced polyethylene composites based on
	rule of mixtures calculation
Table 5.3.1	Equations relating microhardness (VHN) to mineral
	volume fraction (ϕ_t) and Young's modulus (E) for
	bone and the calcined bone ash reinforced
	polyethylene composite

List of Figures

	page
Figure 2.1.1	Microstructure and macrostructure of bone
Figure 2.4.1	Flexural modulus as a function of volume
	fraction of filler18
Figure 2.4.2	The tensile behaviour of unfilled nylon 6621
Figure 2.4.3	Effect of volume fraction of glass beads on
	yield strength of poly (phenylene oxide)
Figure 2.4.4	Effect of volume fraction of filler on fracture
	toughness of PPO composites
Figure 2.5.1	Dependence of relative modulus (composite/
	polymer) on concentration for (A) the original
	Kerner equation; (B) the modified Kerner
	equation ; (C) the Mooney equation
Figure 2.5.2	Theoretical curves for the relative elongation
	to break of filled polymers as a function of
	filler concentration
Figure 2.6.1	Different twin screw extruders
Figure 2.6.2	Constructural features of BTS extruder
Figure 3.2.1	Typical barrel configuration of Betol co-rotating
	twin screw extruder model BTS40 40
Figure 3.2.2	Processing of calcined bone ash reinforced
	high density polyethylene composites41
Figure 3.2.3	A diagram to show injection moulded plaques42

Figure 3.3.1	A diagram of the ISO/DIS 6239/1 tensile
	test specimen
Figure 3.3.2	Instron universal testing machine
Figure 3.3.3	Test-piece held in the grips
Figure 3.3.4	The three-point fixture configuration
Figure 3.3.5	Experimental arrangement for a flexural test50
Figure 3.3.6	Zwick hardness tester
Figure 3.4.1	The density-gradient column used in the
	experimental
Figure 4.1.1	Stress-strain curve of calcined bone ash reinforced
	polyethylene composite at 0.45 volume fraction
	at crosshead speed of 0.5 mm min ⁻¹
Figure 4.1.2	Stress-strain curve of calcined bone ash reinforced
	polyethylene composite at 0.50 volume fraction
	at crosshead speed 0.5 mm min ⁻¹
Figure 4.1.3	Stress-strain curves of calcined bone ash reinforced
	polyethylene composites at various volume fraction
	at crosshead speed 0.5 mm min ⁻¹ 60
Figure 4.1.4	Stress-strain curves of calcined bone ash reinforced
	polyethylene composites at various volume fraction
	at crosshead speed 1.0 mm min ⁻¹

Figure 4.1.5	Young's modulus for various volume fraction of
	calcined bone ash and synthetic hydroxyapatite
	reinforced polyethylene composites at crosshead
	speed of 0.5 mm min ⁻¹
Figure 4.1.6	Tensile strength for various volume fraction of
	calcined bone ash and synthetic hydroxyapatite
	reinforced polyethylene composites at crosshead
	speed of 0.5 mm min ⁻¹
Figure 4.1.7	Strain to failure for various volume fraction of
	calcined bone ash and synthetic hydroxyapatite
	reinforced polyethylene composites at crosshead
	speed of 0.5 mm min ⁻¹
Figure 4.1.8	Energy to failure for various volume fraction of
	calcined bone ash and synthetic hydroxyapatite
	reinforced polyethylene composites at crosshead
	speed of 0.5 mm min ⁻¹ 65
Figure 4.1.9	Toughness for various volume fraction of
	calcined bone ash and synthetic hydroxyapatite
	reinforced polyethylene composites at crosshead
	speed of 0.5 mm min ⁻¹
Figure 4.1.10) The effect of crosshead speed against Young's
	modulus for calcined bone ash reinforced
	polyethylene composites

XIII

Figure 4.1.11	Stress-strain curve of flexural test for 0.45 volume
	fraction of calcined bone ash reinforced
	polyethylene composite
Figure 4.1.12	2 Variation of microhardness with volume fraction
	of filler70
Figure 4.2.1	Comparison of calculated and measured densities
	of calcined bone ash reinforced polyethylene
	composites at various volume fraction72
Figure 4.3.1	SEM observation of 0.20 calcined bone ash
	reinforced polyethylene74
Figure 4.3.2	SEM observation of 0.30 calcined bone ash
	reinforced polyethylene74
Figure 4.4.1	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.20 calcined bone ash
	volume fraction75
Figure 4.4.2	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.30 calcined bone ash
	volume fraction
Figure 4.4.3	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.35 calcined bone ash
	volume fraction
Figure 4.4.4	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.45 calcined bone ash
	volume fraction

Figure 4.4.5	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.50 calcined bone ash
	volume fraction
Figure 4.4.6	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.20 synthetic hydroxyapatite
	volume fraction
Figure 4.4.7	Scanning electron micrograph of fracture surface
	of tensile specimens for 0.35 synthetic hydroxyapatite
	volume fraction
Figure 4.4.8	Scanning electron micrograph of fracture surface
	of flexural specimen for 0.45 calcined bone ash
	volume fraction
Figure 5.1.1	A comparison of the Young's modulus of the
	calcined bone ash reinforced polyethylene with
	the literature data
Figure 5.1.2	The relationship between the Young's modulus
	and mineral volume fraction in the calcined bone
	ash reinforced polyethylene and in natural bone
	tissue
Figure 5.1.3	The difference of the relative Young's modulus
	for the two strain rates
Figure 5.2.1	Comparison of theoretical models and experimental
	data of the relative Young's modulus against
	volume fraction

Figure 5.2.2	Comparison of theoretical models and experimental
	data of the relative tensile strength against volume
	fraction
Figure 5.2.3	Variation in the relative strain to failure of
	theoretical model and experimental data
Figure 5.3.1	The relationship between microhardness and mineral
	volume fraction in natural bone tissue
Figure 5.3.2	The relationship between microhardness and
	volume fraction of filler in the calcined bone ash
	reinforced polyethylene composite100
Figure 5.3.3	The relationship between microhardness and
	Young's modulus in natural bone tissue101
Figure 5.3.4	The relationship between microhardness and
	Young's modulus in the calcined bone ash
	reinforced polyethylene composite102
Figure 5.3.5	The relationship between microhardness and
	mineral volume fraction for both natural bone
	tissue and the calcined bone ash reinforced
	polyethylene composite103
Figure 5.3.6	The relationship between microhardness and
	Young's modulus for both natural bone tissue
	and the calcined bone ash reinforced polyethylene
	composite104

XVI

Figure 5.4.1	SEM images of a single calcined bone ash particle	
	during tensile test	106
Figure 5.4.2	Schematic for proposed craze formation process	
	in filled polyethylene	107

.

.