CRYSTALLIZATION, MECHANICAL PROPERTIES AND PROCESSABILITY OF CALCIUM CARBONATE-FILLED SYNDIOTACTIC POLYPROPYLENE

Ms. Wipasiri Harnsiri

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1609-3

Thesis Title	:	Crystallization, Mechanical Properties and
		Processability of Calcium Carbonate-Filled
		Syndiotactic Polypropylene
By	•	Wipasiri Harnsiri
Program	•	Polymer Science
Thesis Advisor	•	Dr. Pitt Supaphol

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahiat. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

D Cycle.

(Dr. Pitt Supaphol)

Ratema Rijinvanit

(Dr. Ratana Rujiravanit)

(Dr. Manit Nithitanakul)

ABSTRACT

4372023063 : POLYMER SCIENCE PROGRAM

Wipasiri Harnsiri: Crystallization, Mechanical Properties and Processability of Calcium Carbonate-Filled Syndiotactic Polypropylene.

Thesis Advisor: Dr. Pitt Supaphol, 56 pp. ISBN 974-03-1609-3

Keywords : Syndiotactic polypropylene/ Calcium carbonate/ Crystallization/ Mechanical properties/ Processability

Calcium carbonate (CaCO₃)-filled s-PP was prepared in a self-wiping, corotating twin-screw extruder. The effects of CaCO₃ content (0 to 40% by weight), particle size (1.9, 2.8 and 10.5 µm), and surface modification (neat, stearic acidtreated, and paraffin-treated) on crystallization behavior, mechanical properties and processability of the compounds were investigated. Both non-isothermal and isothermal crystallization studies indicated that CaCO₃ acted as a good nucleating agent for s-PP. Nucleation efficiency of CaCO₃ was found to depend strongly on its crystal structure, surface treatment, and size. Tensile strength was found to decrease, while the Young's modulus increased, with increasing CaCO₃ content. Both types of surface treatments on CaCO₃ reduced the tensile strength and the young's modulus, but helped improve impact resistance. Melt viscosity of CaCO₃-filled s-PP was found to increase with increasing CaCO₃ content and decreasing particle size. Both types of surface treatment resulted in a reduction in melt viscosity, probably due to reduced inter-particular interactions and extent of agglomeration of the filler. Morphology observations of the fracture surfaces of CaCO₃-filled s-PP samples revealed an improvement in CaCO₃ dispersion as a result of surface treatment.

บทคัดย่อ

วิภาศิริ หาญศิริ : การศึกษาผลของแคลเซียมคาร์บอเนตต่อการตกผลึก, สมบัติเชิงกล และความสามารถในการผลิตในซินดิโอแทคติกพอลิโพรพิลีน (Crystallization, Mechanical properties, and Processability of Calcium Carbonate-Filled Syndiotactic Polypropylene) อ. ที่ปรึกษา : ดร. พิชญ์ ศุภผล 56 หน้า ISBN 974-03-1609-3

ซินดิโอแทคติกพอลิโพรพิลีนถูกผสมกับแคลเซียมคาร์บอเนตในเครื่องอัครีคชนิดเกลียวคู่ งานวิจัยนี้ทำการศึกษาผลของปริมาณ (0-40% โดยน้ำหนัก), ขนาดของอนุภาค (1.9, 2.8 และ 10.5 ใมครอน) และสารเคลือบผิว (กรดสเตรียริก และพาราฟิน) ของแคลเซียมคาร์บอเนตต่อการตก ผลึก สมบัติเชิงกลและความสามารถในการผลิตในซินดิโอแทคติกพอลิโพรพิลีน จากการศึกษา การตกผลึกทั้งแบบอุณหภูมิคงที่ และอุณหภูมิไม่คงที่พบว่า แคลเซียมคาร์บอเนตเป็นสารก่อผลึกที่ ดีสำหรับซินดิโอแทคติกพอลิโพรพิลีน อย่างไรก็ตามความสามารถในการก่อผลึกของแคลเซียม การ์บอเนตขึ้นกับโครงสร้างผลึกสารเคลือบผิวและขนาดของอนุภาค จากการศึกษาสมบัติเชิงกล พบว่าความทนแรงดึงลดลง แต่ยังมอดุลัสเพิ่มขึ้นเมื่อปริมาณแคลเซียมคาร์บอเนตเพิ่มขึ้น เมื่อ เคลือบผิวด้วยกรดสเตรียริก และพาราฟิน มีผลทำให้ความทนแรงดึงและยังมอดุลัสลดลง แต่ทำให้ กวามทนแรงกระแทกเพิ่มขึ้น ก่าความหนืดของสารประกอบซินดิโอแทคติกพอลิโพรพิลีนและ แกลเซียมคาร์บอเนตเพิ่มขึ้น ก่าความหนืดจองสารประกอบซินดิโอแทคติกพอลิโพรพิลีนและ แกลเซียมคาร์บอเนตเพิ่มขึ้น ก่าความหนืดจองสารประกอบซินดิโอแทคติกพอลิโพรพิลีนและ แกลเซียมคาร์บอเนตเพิ่มขึ้น ก่าความหนืดจองสารประกอบซินดิโอแทคติกจอง แต่ทำให้ กวามทนแรงกระแทกเพิ่มขึ้น ก่าความหนืดจองสารประกอบซินดิโอแทคติกงองนาคอนุภาคลดง แต่ เมื่อเคลือบผิวแลเซียมการ์บอเนตด้วยกรดสเตรียริกและพาราฟินช่วยลดแรงดึงดูดระหว่างอนุภาค และการรวมด้วจองอนุภาค มีผลทำให้ความหนืดลดลง เมื่อศึกษาการกระจายตัวจองแลลเซียม คาร์บอเนตพบว่าแคลเซียมการ์บอเนตที่ถูกเคลือบด้วยกรดสเตรียริกและพาราฟินกระจายตัวได้ดี ในซินดิโอแทลติกพอลิโพรพิลีน

ACKNOWLEDGEMENTS

The author would like to thank the Petroleum and Petrochemical College, Chulalongkorn University where the author have gained the invaluable knowledge in Polymer Science program and the author greatly appreciates all professors who have tendered knowledge to her at this college.

The author would like to express the grateful appreciation to the author advisor, Dr. Pitt Supaphol for his intensive suggestion, invaluable guidance and vital help throughout this research work.

The author would like to give special thanks to Assoc. Prof. Anuvat Sirivat and Mr. John W. Ellis for providing technical knowledge and helpful suggestion. The author would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance and in helping the author to use the research facilities.

The author wishes to extend appreciation to Ato-Fina Oil (La Porte, Texas), and Calcium Products Co., Ltd., for supporting of the raw materials used throughout this work.

Ultimately, extreme appreciation is to the author family for their love, understanding, and encouragement during the author studies and thesis work.

TABLE OF CONTENTS

	Title Page				i			
	Abstra	Abstract (in English) Abstract (in Thai)						
	Abstra	Abstract (in Thai) Acknowledgements						
	Acknowledgements							
	Table of Contents							
	List of	List of Tables						
	List of	Figu	ires		x			
CHAI	PTER							
	I INTRODUCTION				1			
	II LITERATURE SURVEY			3				
		2.1	Effect	of Organic Nucleating Agents on Isotactic				
		Polypropylene (i-PP)2.2 Effect of CaCO₃ on Isotactic Polypropylene (i-PP)			3			
					4			
			2.2.1	Effect on Crystallization	4			
			2.2.2	Effect on Mechanical Properties	5			
			2.2.3	Effect on Rheological Properties	7			
		2.3	Crysta	allization in Syndiotactic Polypropylene (s-PP)	7			
	III	EX	PERIN	IENTAL	9			
		3.1	Mater	ials	9			
	3.2		Metho	odology	10			
			3.2.1	Sample Preparation	10			
			3.2.2	Compression	10			
			3.2.3	Thermal Analysis	11			
				3.2.3.1 Crystalline structure	11			
				3.2.3.2 Crystallization behavior	11			

	3.2	2.4	Mechar	nical Testing	12
			3.2.4.1	Tensile properties	12
			3.2.4.2	Impact resistance	12
	3.2	2.5	Rheolo	gical Measurement	12
			3.2.5.1	Steady shear measurement	12
			3.2.5.2	Oscillatory shear measurement	15
	3.2	2.6	Micros	tructure Characterization	15
IV	RESUI	LTS	S AND D	ISCUSSION	16
	4.1 Th	4.1 Thermal Analysis			16
	4.1	1.1	Crystall	ine Structure	16
	4.1	1.2	Crystall	ization Behavior	20
			4.1.2.1	Isothermal crystallization	20
				a) Effect of fusion temperature	20
				b) Effect of crystallization temperature	23
			4.1.2.2	Non-isothermal crystallization	24
				a) Effect of particle size	24
				b) Effect of surface modification	30
				c) Subsequent melting behavior	30
	4.2 Me	echa	nical Pro	operties	33
	4.2	2.1	Tensile	Properties	33
			4.2.1.1	Effect of particle size	33
			4.2.1.2	Effect of surface modification	34
	4.2	2.2	Impact I	Resistance	35
			4.2.2.1	Effect of particle size	35
			4.2.2.2	Effect of surface modification	36
	4.3 Mo	orph	ology of	Fracture Surface	38
	4.3	.1	Effect o	f Particle Size	38
	4.3	.2	Effect o	f Surface Modification	39

CHAPTER

V

PAGE

4.4 Rheological Measurement		
4.4.1 Steady Shear Behavior	41	
4.4.1.1 Effect of particle size	41	
4.4.1.2 Effect of surface modification	44	
4.4.2 Oscillatory Shear Behavior	47	
CONCLUSIONS		
REFERENCES		
CURRICULUM VITAE	56	

LIST OF TABLES

TABLE

PAGE

3.1	Physical properties of s-PP	9
3.2	Characteristic of CaCO ₃ used in this study	10
3.3	Processing condition used in this study	10
4.1	Effect of crystallization temperature on s-PP/CaCO ₃ compounds	24
4.2	DSC non-isothermal crystallization data for various CaCO ₃ -filled	
	s-PP at cooling rate 10°C/min	29
4.3	DSC melting data for various CaCO ₃ -filled s-PP at heating rate	
	20°C/min	32
4.4	Tensile properties of s-PP filled with uncoated CaCO ₃ at various	
	particle sizes	34
4.5	Tensile properties of s-PP filled with CaCO ₃ at various surface	
	Modifications	35
4.6	Dispersion (γ^d) and polar (γ^p) components of the surface energy (γ)	
	of PP and CaCO ₃	40

LIST OF FIGURES

FIGURE

PAGE

4.1	X-ray diffractogram of s-PP sample	16
4.2	X-ray diffractogram of uncoated-1.9 μ m CaCO ₃	17
4.3	X-ray diffractogram of uncoated-10.5 μ m CaCO ₃	18
4.4	X-ray diffractograms of (1) neat s-PP, and (2) 5 wt.%, (3) 20 wt.%,	
	and (4) 40 wt.% uncoated-1.9 µm CaCO ₃ -filled sPP	19
4.5	X-ray diffractograms of (1) neat s-PP, and (2) 5 wt.%, (3) 20 wt.%,	
	and (4) 40 wt.% uncoated-10.5 μ m CaCO ₃ -filled sPP	19
4.6	Effect of CaCO ₃ content on half-time of crystallization, $t_{0.5}$ as	
	a function of fusion temperature T_f for (o) neat s-PP, (\Box) 20%	
	uncoated-1.9 μm CaCO3-filled and (Δ) 40% uncoated-1.9 μm	
	CaCO ₃ -filled s-PP	21
4.7	Effect of CaCO ₃ size on half-time of crystallization, $t_{0.5}$ as	
	a function of fusion temperature, T_f for (o) neat s-PP, (\Box) 20%	
	uncoated-1.9 μm CaCO3-filled and () 40% uncoated-1.9 μm	
	CaCO ₃ -filled s-PP	22
4.8	Effect of CaCO ₃ surface modification on half-time of	
(Crystallization, $t_{0.5}$ as a function of fusion temperature, T_f for	
	(o) neat, (\Box) 40% uncoated-1.9 µm CaCO ₃ -filled, (Δ) 40%	
	stearic acid-coated-1.9 μ m CaCO ₃ -filled, and (∇) 40%	
	paraffin-coated-1.9 µm CaCO ₃ -filled s-PP	23
4.9	Crystallization exotherms of uncoated-1.9 μ m CaCO ₃ -filled s-PP	
	as a function of filler content at cooling rate 10°C/min	25
4.10	Effect of scanning times on 40% uncoated-1.9 μ m CaCO ₃ -filled s-PP	26
4.11	Effect of holding time on 40% uncoated-1.9 μ m CaCO ₃ -filled s-PP	26
4.12	Relationship between onset crystallization temperature, $T_{c,onset}$ of	
	s-PP/uncoated CaCO ₃ and filler content with various particle sizes	28

FIGURE

4.13	Melting endotherms of uncoated-1.9 µm CaCO ₃ -filled s-PP at	
	various filler contents at heating rate 20°C/min	31
4.14	Izod impact resistance of CaCO ₃ -filled s-PP as a function of CaCO ₃	
	content with different particle sizes	36
4.15	Izod impact resistance of 1.9 μ m-CaCO ₃ -filled s-PP as a function	
	of filler content with various surface modifications	37
4.16	Scanning electron micrographs of fractured surfaces of s-PP filled	
	with different CaCO ₃ particle size: (a) 1.9 μ m, (b) 2.8 μ m, and	
	(c) 10.5 µm, at 20 wt.%. Corresponding micrographs of s-PP filled	
	with 40 wt.% CaCO3 are represented in (d), (e) and (f), respectively	38
4.17	Scanning electron micrographs of fractured surfaces in s-PP filled	
	with 20 wt.% $CaCO_3$ for (a) stearic acid-coated, and (b) parafin-coated	
	systems. Corresponding micrographs of s-PP filled with 40 wt.%	
	CaCO ₃ are presented in (c) and (d), respectively	39
4.18	Shear viscosity as a function of shear rate for s-PP/uncoated-1.9 μm	
	CaCO ₃ melts at 200°C	42
4.19	Shear viscosity as a function of shear rate for s-PP/uncoated-2.8 μm	
	CaCO ₃ melts at 200°C	43
4.20	Shear viscosity as a function of shear rate for s-PP/uncoated-10.5 μm	
	CaCO ₃ melts at 200°C	43
4.21	Comparison between zero shear viscosity and CaCO ₃ content with	
	various particle sizes	44
4.22.	Shear viscosity as a function of shear rate for s-PP/stearic acid-coated-	
	1.9 μm CaCO ₃ melts at 200°C	45
4.23.	Shear viscosity as a function of shear rate for s-PP/paraffin-coated-	
	1.9 μm CaCO ₃ melts at 200°C	46
4.24	Comparison between zero shear viscosity and CaCO ₃ content with	
	various surface modifications	46

FIGURE

4.25	Storage modulus as a function of frequency of s-PP/uncoated	
	1.9 µm CaCO ₃ melts at 200°C	48
4.26	Storage modulus as a function of frequency of s-PP/stearic acid-	
	coated-1.9 μ m CaCO ₃ melts at 200°C	48
4.27	Storage modulus as a function of frequency of s-PP/paraffin-coated-	
	1.9 μm CaCO ₃ melts at 200°C	49
4.28	Loss modulus as a function of frequency of s-PP/uncoated-1.9 μ m	
	CaCO ₃ melts at 200°C	50
4.29	Loss modulus as a function of frequency of s-PP/stearic-acid-coated-	
	1.9 μm CaCO ₃ melts at 200°C	50
4.30	Loss modulus as a function of frequency of s-PP/paraffin-acid-coated-	
	1.9 μm CaCO ₃ melts at 200°C	51