

REFERENCES

- Abro, E., and Johanson, G.A. (1998). Improved void fraction determination by means of multi-beam gamma-ray attenuation measurements. <u>Flow</u> Measurement and <u>Instrument</u>, 10, 22-26.
- Banerjee, S., Chan, A.M.C., Ramanathan, N. and Yuen, P.S.L. (1976). Fast neutron scattering and transmission technique for measurement of void fractions and phase distribution in transient flow boiling. <u>Heat Transfer Conference</u>, 1, 351.
- Bonilla, C. and Sha, W. (1965). Out-of-pile steam-fraction determination by neutronbeam attenuation. <u>Nuclear Application</u>, 1, 69-75.
- Frazzoli, F.R., Magrini, A., and Macini, C. and Yuen, P.S.L. (1978). Void fraction measurement in water-steam mixture by means of a Cf-252 neutron source. <u>Int. J. Appl. Radiat. Isot.</u>, 29, 311.
- Ingham, P.J., Han, P., Henschell, R.M., and Hissein, E.M.A. (1994). Non-intrusive measurement of transient flow boiling in rod-bundle channels using fastneutron scattering. <u>Nuclear Instruments and Methods in Physics Research</u>, 353(1994), 695-698.
- Harms, A.A., Lo, S. and Hancox, W.T. (1971). Measurement of time averaged void by neutron diagnosis, J. Applied Physics, 42, 4080-4082.
- Hart, D.E., Hayes, J.K., and Miciloi, S. and Trovato, S. (1989). Evaluation of equipment for measurement of steam quality in power plants. <u>American</u> <u>Society of Mechanical Engineers</u>, 22-26.
- Hussein, E.M.A. (1987). Modeling and design of a neutron scatterometer for void fraction measurement. <u>Nuclear Engineering and Design.</u>, 105(1988), 333-348.
- Hussein, E.M.A., and Waller, E.J. (1990a). A neutron steam-quality meter for a fluidized bed plant. Appl. Radiat. Isot., 41(10/11), 1049-1055.
- Hussein, E.M.A., and Waller, E.J. (1990b). A portable neutron device for void fraction measurement in a small-diameter pipe. <u>Nuclear Instruments and</u> <u>Method in Physics Research.</u>, A299(1990), 670-673.

- Hussein, E.M.A., and Han P.C. (1995). A fast-neutron techniques for volumefraction measurement in multiphase flows. <u>The American Society of</u> <u>Mechanical Engineers</u>, HO1037, 421-428.
- Kelly, A.J., and Moss, A.A. (1970). Neutron radiographic study of limiting planar heat pipe performance. <u>Int.J. Heat Mass Transfer</u>, 13, 491-502.
- Knoll, G.F. (1989). Radiation Detection and Measurement. second edition. New York.: John Wiley & Sons, Inc.
- Los Alamos National Laboratory. (2000). Monte Carlo Neutron and Photon Transport Code (MCNP4C) for Personal Computers. Los Alamos. New Mexico.
- Ma H., Ki C., and Griston S. (1997). Measuring device used in a four-parameter measuring system and in a high temperature and high pressure condition. US 5 731 517.
- Tsoulfanidis, N. (1995). Measurement and Detection of Radiation. 2nd ed.U.S.A.: Taylor&Francis publisher.
- Rousseau, J.C., Cnerny, J., and Riegel, B. (1976). Void fraction measurement during blowdown by neutron absorption and neutron scattering method. <u>OECD/NEA Specialists Meeting on Transient Two-Phase Flow</u>, Toronto, Ontario.
- Waller, E.J. (1990). A portable neutron device for void fraction measurement in a small diameter pipe. Canada: University of New Brunswick.
- Wilkes, J.O., (1999). Fluid Mechanics for Chemical Engineers. 1st ed. U.S.A.: Prentice Hall.
- Yuen, P.S.L., and Meneley, D.A. (1988). Development of an epithermal/fast neutron scattering technique for void fraction measurement in two-phase system with portable neutron sources: Effect of incident energy spectrum. Int. J. Multiphase Flow, 14,401-412.

APPENDIX A COUNTING STATISTICS

A.1 Neutron Counting

Neutron counting follows a Poisson distribution, which estimates the variance in the count as

$$\sigma^2 = \mathsf{N} \tag{A.1}$$

where N is the number of neutrons counted, Knoll(1979)

For a neutron counting measurement repeated K times from the same source for equal counting periods, the uncertainty in N can be expressed as the standard error of mean. The sample average N_x is as below (Knoll, 1979).

$$N_{x} = \sum_{i=1}^{K} \frac{N_{i}}{K}$$
(A.2)

The standard error of the mean is given by:

$$\varepsilon = \sqrt{\frac{N_x}{K}}$$
(A.3)

The percent error of the mean is:

$$\% \Delta N_{x} = \sqrt{\frac{100}{N_{x}K}}$$
(A.4)

For this work, each measurement was repeated ten times to ensure that the uncertainty or the standard error associated with all measurement was less than one percent.

A.2 Void Fraction Measurement

The neutron count rates can be converted to a linear representation of liquid volume fraction by following relationship:

$$\widehat{\rho} = \frac{N(\rho) - N(0)}{N(1) - N(0)}$$
(A.5)

where $\hat{\rho}$ is the estimated liquid fraction. N(ρ), N(1) and N(0) are the scatterometer responses corresponding to respectively the test section with the actual liquid fraction, the test section full of liquid and test section full of vapor. There is a propagation error in the measurement of the liquid fraction since it is a function of many values. The propagation error can be expressed as follow.

$$\Delta \hat{\rho} = \frac{\partial \hat{\rho}}{\partial N(x)} \Delta N(x)^2 + \frac{\partial \hat{\rho}}{\partial N(0)} \Delta N(0)^2 + \frac{\partial \hat{\rho}}{\partial N(1)} \Delta N(1)^2$$
(A.6)

Using a differential identity, the final form of the error can be stated as:

$$\Delta \hat{\rho} = \frac{\sqrt{(N(1) - N(0))^2 \Delta N(x)^2 + (N(x) - N(1))^2 \Delta N(0)^2 + (N(x) - N(0))^2 \Delta N(1)^2}}{(N(1) - N(0))^2}$$
(A.7)

It should be noted however the counts N(0) and N(1), being reference counts, can be pre-determined so that they possess a low uncertainly. The count rate $N(\rho)$ is usually measured on-line within a short period and tends to have a relatively large variance, in comparison to the reference measurements.

I20694932

APENDIX B

THE DATA OF STATIC RESULTS

 Table B.1
 The count rate for 2 minutes of Lucite fraction of zero

Exp.	Count rate
1	1745
2	1733
3	1764
4	1721
5	1738
6	1736
7	1712
8	1704
9	1749
10	1711

mean	1731.30
%standard error	0.76
Variance	364.01
standard error	13.16

 Table B.2
 The count rate for 2 minutes of Lucite fraction of 0.086

exp.	count rate
1	1734
2	1723
3	1750
4	1698
5	1736
6	1752
7	1803
8	1763
9	1724
10	1758

mean	1853.70
%standard error	0.73
Variance	904.23
standard error	13.62

Exp.	Count rate
1	1756
2	1737
3	1760
4	1760
5	1782
6	1751
7	1709
8	1726
9	1723
10	1770

 Table B.3
 The count rate for 2 minutes of Lucite fraction of 0.173

mean	1747.40
%standard error	0.76
Variance	527.60
standard error	13.22

Table B.4 the count rate for 2 minutes of Lucite fraction of 0.259

Count rate
1758
1739
1760
1721
1770
1769
1761
1803
1790
1768

mean	1763.90
%standard error	0.75
Variance	534.32
standard error	13.28

Exp.	Count rate
1	1779
2	1770
3	1749
4	1731
5	1769
6	1758
7	1780
8	1765
9	1789
10	1800

Table B.5 The count rate for 2 minutes of Lucite fraction of 0.345

mean	1769.00
%standard error	0.75
Variance	396.00
standard error	13.30

 Table B.6
 The count rate for 2 minutes of Lucite fraction of 0.432

Exp.	Count rate
1	1802
2	1788
3	1728
4	1803
5	1745
6	1806
7	1799
8	1747
9	1783
10	1774

mean	1777.50
%standard error	0.75
Variance	790.50
standard error	13.33

.

Exp.	Count rate
1	1767
2	1844
3	1781
4	1857
5	1772
6	1779
7	1800
8	1793
9	1811
10	1782

Table B.7 The count rate for 2 minutes of Lucite fraction of 0.518

mean	1798.60
%standard error	0.75
Variance	926.04
standard error	13.41

 Table B.8
 The count rate for 2 minutes of Lucite fraction of 0.604

Exp.	Count rate
1	1852
2	1799
3	1838
4	1825
5	1772
6	1853
7	1849
8	1789
9	1787
10	1835

mean	1819.90
%standard error	0.74
Variance	924 .77
standard error	13.49

Exp.	Count rate
1	1815
2	1847
3	1883
4	1839
5	1887
6	1903
7	1860
8	1856
9	1831
10	1816

 Table B.9
 The count rate for 2 minutes of Lucite fraction of 1.00.

mean	1853.70
%standard error	0.73
Variance	904.23
standard error	13.62

APENDIX C

THE DATA OF DYNAMIC RESULTS

Table C.1 The count rates for 12 seconds at temperature 50° C and pressure 5 MPa

Exp.	Count rate
1	183754
2	179607
3	179644
4	178182
5	179106
6	177814
7	178851
8	179634
9	179821
10	179510

mean	179592.30
%standard error	0.07
Variance	2591195.79
standard error	134.01

Table C.2 The count rates for 12 seconds at temperature 100°C and pressure 5MPa

Exp.	Count rate
1	153214
2	167193
3	169014
4	169984
5	168361
6	163144
7	169618
8	168164
9	168318
10	171614

mean	166862.40
%standard error	0.08
Variance	27868684.04
standard error	129.18

Exp.	Count rate
1	146314
2	147028
3	146892
4	146462
5	147396
6	153831
7	151014
8	150312
9	147487
10	147918

Table C.3 The count rates for 12 seconds at temperature 150° C and pressure 5 MPa

mean	148465.40
%standard error	0.08
Variance	6031036.27
standard error	121.85

Table C.4 The count rates for 12 seconds at temperature 200°C and pressure 5 MPa

exp.	count rate
1	132544
2	134778
3	133906
4	132045
5	133862
6	133710
7	133449
8	133116
9	132172
10	132413

mean	133199.50
%standard error	0.09
Variance	799603.61
standard error	115.41

APPENDIX D

THE EXAMPLE OF INOUT AND OUTPUT FOR MCNP4C

- 1- c cell card
- 2- 1 1 -0.78401 -1 -2 -3 imp:n=1 \$ inside pipe
- 3- 2 2 -8.2 1 -2 imp:n=1 \$ pipe
- 4- 3 0 3 imp:n=0 \$ outside
- 5- 4 0 2 -3 1 imp:n=1 \$ source
- 7- c surface
- 8- 1 cz 0.501 \$ inside radius
- 9- 2 cz 0.62546 \$ outside radius
- 10- 3 cz 3
- 12- c source
- 13- sdef pos=0 -1 0 erg=d1 dir=d2 vec=0 -1 0
- 14- sc1 energy spectrum cf252
- 15- sp1 -3 1.025 2.926
- 16- sb2 -31 1
- 17- c material
- 18- m1 1001 0.66667 8016 0.33333
- 19- m2 26000 1
- 20- c neutron
- 21- phys:n
- 22- c detecter
- 23- fc5 flux at a point in the void
- 24- f5:n 0 0 1 0
- 25- nps 1000000

CURRICULUM VITAE

Name: Miss Aonsurang Boonyanuwat

Date of Birth: August 19, 1978

Nationality: Thai

University Education:

1997-2000 Bachelor Degree of Engineering in Chemical Engineering, Faculty of Engineering, Mahidol University, Bangkok, Thailand

