PHYSICAL AND RHEOLOGICAL PROPERTIES OF NONIONIC
POLYMERS - IONIC SURFACTANTS COMPLEXES

P -

A a0 \
/N 75%
A~ N2

/ ‘:\/ 3 2 ‘\ <5\
4 - E \™ \
v ZaiN \2\
557 \) ol |
. \
wa | TR ) s/
% \Fo—p /.

Ms. Khine Yi Mya

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
The Petroleum and Petrochemical College, Chulalongkom University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2002
15BN 97406-15634



Thesis Title

By
Program
Thesis Advisors

: Physical and Rheological Properties of Nonionic
Polymers - lonic Surfactants Complexes

. Khine Yi Mya

: Polymer Science

: Assoc. Prof. Anuvat Sirivat
Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkom
University, in partial fulfillment of the requirements for the Degree of Doctor of

Philosophy.

Thesis Committee:

........................................................ College Director
(Assoc. Prof. Kunchana Bunyakiat)

...................................................... (Chairman)
(Assoc. Prof. Kunchana Bunyakiat)

N MNPV

(Asses. Pyof. Anuyat Sirivat)

(Prof. Alexander M. Jamieson)

N A )
(Asst. Prof. Nantaya Yanumet)

(Dr. Asira Fuongfuchat)



ABSTRACT

4092002063  : POLYMER SCIENCE PROGRAM
Rhine Yi Mya: Physical and Rheological Properties of Nonionic
Polymers - lonic Surfactants Complexes.
Thesis Aavisors: Prof. Alexander M. Jamieson and Assoc. Prof.
Anuvat Sirivat, 376 pp. ISBN 974-03-1553-4

Keywords ~: Polyethylene oxide/ PEO/  Hexadecyltrimethylammonium
chloride/ HTAC/ Hydroxypropyl cellulose/ HPC/ Cocamidopropyl
dimethyl glycine/ CADG/ Conductivity/ Viscosity/ Dynamic light
scattering/ DLS/ Static light scattering/ SLS/ Refractive index
increment/ Dialysis equilibrium

The formation of a polymer-surfactant complex upon mixing a nonionic
polymer, ~ polyethylene oxide) ~(PEO), with a cationic ~ surfactant,
hexadecyltrimethylammonium  chloride (HTAC), was studied by observing the
changes in conductivity, specific viscosity (sp), and hydrodynamic radius (rn). The
conductivity data showed that an interaction between PEO and HTAC occurred at a
temperature above 25 ¢, as indicated by a decrease in the critical aggregation
concentration in the presence of PEQ relative to the critical micelle concentration of
a surfactant in the absence of PEO. The binding of HTAC to PEO induced a chain
expansion due to electrostatic repulsions between bound micelles. On further
addition of HTAC, pand rn reached a maximum at the saturation of hinding, and
then decreased because of the contraction of the PEQ-HTAC complex due to
electrostatic screening from the accumulation of free micelles and counterions in the
solution.

From the static light scattering, the structures of PEQ-HTAC complexes
were determined by means of molecular weight measurement at different
concentration ratios of HTAC to PEQ. Multichain complexation was observed in
aqueous solution in the formation of the complex at the maximum binding. However,
in the presence of 0.1 M KNOs, the structure of the complex changed from



multichain to unipolymer complexation. Moreover, the number of bound HTAC
molecules per PEO chain increased from 0.12 mole HTAC per mole EO to 0.23 mole
HTAC per mole EQ in salt solution.

Rheological measurements also indicated that the storage modulus G’ and
the loss modulus G of the concentrated PEQ-HTAC complex solution show largest
values at mass concentration ratio of 1.5, which is near the maximum hinding of
HTAC to PEO in dilute aqueous solution. It was confirmed that the progressive
Increase on the PEO-HTAC aggregates induced a cross-linking between PEO and
HTAC, leading to an increase in the modulus.

Finally, the interaction between nonionic polymer, hydroxypropyl cellulose
(HPC), and amphoteric surfactant, cocamidopropy! dimethyl glycine (CADG), was
studied by means of viscosity and light scattering measurements in an isoelectric
point (pH = 9). The viscosity and dynamic light scattering showed that a maximum
and a minimum occurred [HTAC]/[PEQ] ratios (cdcp) at 0.026 and 0.43. From Zimm
plot analysis, the molecular weight of complex (MVYEwas approximately equal to
the molecular weight of pure HPC at maximum point, indicating that there was no
interaction hetween HPC and CADG at cg/cp= 0.026. The increases in MVYDnand the
number ofbound CADG to HPC were observed due to the hinding between polymer
and surfactant. At the binding condition, the minimum value was observed because
of the electrostatic attractions between positive and negative charges within the
polymer chain,
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