CHAPTER 7

COUNTERMEASURE

After cause of each problem was analyzed, action plan and implementation will be done. This chapter will describe the countermeasure, action plan and result for each problem.

7.1 Inspection

Causes of inspection are from measuring instrument, frequency of inspection, and equipment, which are difficult to operate. All of countermeasure will be evaluated by concerning of beneficial and feasibility (table 7.1). Countermeasure, which high beneficial and feasibility, will be selected to apply.

7.1.1 Improvement plan

itermeasure							
-		Evaluation	Action	tion plan			
	Benefit	Feasibility	Score	Apr	Мау	Jun	July
nge to nute gage	0	0	1	4	*4		•
nge to ute gage	0	0	1	4	-		-
k out side line Ie leader	0	0	1	4 } 4			
ove process bility	0	X	5				
	nge to pute gage nge to pute gage ck out side line ne leader ove process ibility	Benefit nge to 0 pute gage nge to 0 pute gage ck out side line 0 ne leader ove process 0 ability	BenefitFeasibilityngeto0oute gage00ngeto0oute gage00oute gage00ck out side line00ne leader0Xoveprocess0X	BenefitFeasibilityScorengeto001nute gage001ngeto001nute gage001nute gage001nute gage001nute gage005ne leader0X5	BenefitFeasibilityScoreAprngeto001ngeto001ngeto001nute gage001nute gage001ck out side line001ne leader0X5ability0X5	BenefitFeasibilityScoreAprMayngeto001ImageImagengeto001ImageImagengeto001Imagenute gage001ImageImageck out side line001Imagene leader0X5Image	BenefitFeasibilityScoreAprMayJunngeto001

Note : 0:Good, A : Fair, X: Poor

Score code: 0*0=1, 0*A=2, A*0=3, A*A=4, 0*X=5, A*X=6.

(Apply from: Katsuya Hosotani, the QC problem solving approach, 1992)

To reduce inspection loss, measurement gage will be changed to attribute gage and inspected out side line by line leader. Time period for implementation is shown in table 7.1.

7.1.2 Countermeasure

To solve these 3 causes, improvement plan can be separated into 3 stages

1. Emergency measures

Frequency for inspection can not be reduced because it is a tool for control quality of product.2 methods for solving high frequency of inspection are improve capability of process and inspect

by line leader. The first method is efficiently but it is difficult to implement because of highly investment.

 The other method for reduce lost time from inspection is check outside line by line leader. In case of, production quantity is lower than plan leader who control line will do inspection.(Figure 7.1)

Figure 7.1inspection flow chart

- 2. Medium term plan,
- Using attribute gage.

Attribute gage takes shorter time than variable measuring gage. The examples of attribute gage are plug gage, snap gage, ring gage. At the first stage, the problem of cylinder gage will be improved.

Cylinder gage is equipment for measuring inside diameter of a hole. Plug gage is commonly used for holes too. Plug gages have 2-sides, go side and no go side. The Go side is smaller than the not go gage and slides into any hole whose smallest dimension is less than the diameter of the gage. The not- go gage must not go into the hole.

Improvement plan for change cylinder gage will be focused on the inspection point which check 5 times / shift. There are five positions, as shown in table 7.2. The frequency of using cylinder gage was reduced from five times/ shift to 2 times / shift. Estimation time after using plug gage (Table 7.3) time will reduce from 20 minutes to 10.4 minutes per shift. Dimension point, which checked by cylinder gages are diameter 90,53,11,60,28,18.5,17 and 15. The small size of diameter (11,18.5,17,15) will be changed to plug gage.

Although plug gages are easy to use and inexpensive, they only indicate whether a part is too small or too large, compare to an established standard. They do not measure actual dimension. From these reasons, cylinder gage still use 2 times/ shift to control trend of diameter.

Assumption	Frequency	Total	Cycle time	Total time	Total time after
	(checking	frequency	(min)	Before	improve
	point)	(times/shift)		improve	
Cylinder gage	8 points	5 times/ shift	0.5	40x0.5 = 20	2 times/shift
		=8×5= 40			=16x0.5=8
		times			
If change Plug gage	4 points	3 times/shift	0.2	0	3 times/shift
70%		=4x3= 12			= 0.2x12=2.4
		times			
			Total	20	10.4

Table7.2 Estimate plan for change instrument.

Table 7.3-inspection instrument improvement.

PROCESS	CURRENT METHOD	IMPROVEMENT PLAN
Boring diameter 90	Cylinder gage, 5 times/shift	-
Boring diameter 53	Cylinder gage, 5 times/shift	-
Reamer diameter 11	Cylinder gage, 5 times/shift	Cylinder gage, 2 times/shift
		Go-no go gage,3 times/shift
Boring diameter 60	Cylinder gage, 5 times/shift	-
Boring diameter 28	Cylinder gage, 5 times/shift	-
Reamer diameter 18.5	Cylinder gage, 5 times/shift	Cylinder gage, 2 times/shift
		Go-no go gage,3 times/shift
Reamer diameter 17	Cylinder gage, 5 times/shift	Cylinder gage, 2 times/shift
		Go-no go gage,3 times/shift
Reamer diameter 15	Cylinder gage, 5 times/shift	Cylinder gage, 2 times/shift
		Go-no go gage,3 times/shift

- 3. Long term plan
- Up date the related document in quality system such as control plan, operation standard, and check sheet.
- For further plan, in case of high production rate, the inspection can be eliminate by make auto check machine.

7.2 Adjustment time.

Tool which take long adjustment time are reamer diameter 15 in process M0508 and boring cutter diameter 90 and 53 in process M0502, M0503. Major causes of these tools are

Root cause can not be solved

Lack of cross-functional approach for solving problem

Lack of follow up system and the continuous problem solving system.

7.2.1 Countermeasure

Countermeasure for reduce adjustment time can be separate into three stage.

1. Emergency measure.

At this stage, time for solving problem will be reduced by

- 1. Make work instruction or manual for solving problem. (in case of root cause can't be solved)
- 2. Make jig & fixture for easier adjustment.
- 2. Medium term plan.

To reduce quality problem in production line we should use a cross-functional team approach for improving and solving problem.

Improvement system flow chart (Figure 7.3).

- 1. Improvement system will be requested when
 - 1.1 Quality control section found non-conforming product in manufacturing line
 - 1.2 Manufacturing section can not solve the chronic cause
 - 1.3 Production engineer section needs to increase productivity in manufacturing line.
- 2. Data collection by production engineer section
- 3. Cause and countermeasure will be analyzed by production engineer and manufacturing
- 4. Planning for countermeasure
- 5. Implementing and checking result
- 6. Established working standard

The example of improvement report was shown in figure 7.4. Main information of improvement report compose of

- Cause effect analyzing
- Immediate countermeasure
- Planning and cost evaluation for further improvement.

For example, in the case of burnishing reamer diameter 15, the immediate countermeasure is to control tool life and the permanent countermeasure is the use of tooling which supplied coolant from inside.

7.2.2 Improvement plan

Table 7.4 Improvement plan for adjustment

Tool name	Cause	countermeasure	plan
Reamer diameter 15	Not suitable cutting	Increase coolant	Mid of April 98
 Surface roughness 	condition	concentrate	
Diameter too small		Set tool life	
		Use reamer with	
		inside coolant hole.	
Boring cutter diameter	Machine equipment	Change cutting tool	April 98
90	failure		
 Surface roughness 			
Boring cutter diameter	Machine equipment	Change cutting tool	April 98
53	failure		
Surface roughness			

Critical problem will be considered for analyze cause of adjust tool. Three problems of cutting tool will be solved as shown in table 7.4. The highest frequency and time for adjust is burnishing reamer diameter 15 of machine No. M0508. Analyzing cause and countermeasure is in Appendix c. after improvement, adjust time of this tool was reduced 60%. As shown in figure 7.2, table 7.5. Tool adjustment time of these tools was reduced from 597-minutes/ month to 290 minutes/month.

7.2.3 Result after improvement

Figure 7.2 result after improvement

Table 7.5 data of time and percent of working time after improvement

TOOL NAME	JA	N	FE	В	MA	NR .	Ał	PR	M	AY	JU	NE
	Time	%	Time	%	Time	%	Time	%	Time(%	Time(%
	(min)		(min)		(min)		(min)		min)		min)	
BURNISHING REAMER DIA 15	216	1.3	385	2.4	230	0.7	190	0.9	190	0.9	185	0.6
BORING CUTTER DIA 90	143	0.8	200	1.2	200	0.6	0	0	70	0.33	75	0.2
BORING CUTTER DIA 53	103	0.6	180	1.1	210	0.6	10	0.05	135	0.6	15	0.05
Total	462	2.7	690	4.4	640	1.9	200	0.95	395	1.83	275	0.85

Figure 7.3Improvement-system flow chart.

IMPROVEMENT REPORT

FROM: PRODUCTION ENGINEER DEPT.

DATE	1/3/98
M.C. No.	

1. ข้อมูลจากแผนกผลิต/MANUFACTURING INFORMATION

LINE	M05	PART NAM oil pump case	PROBLEM	Roughness of valve hole	
MACHINE	M0508	PROCESS burnishing valve hole			

2. การตรวจสอบและสาเหตุ / DISCOVERY AND CAUSE OF DEFECT

Roughness failure from steel which melt at tool tip. Cause of melt come from

1. Tool wear . If tool not sharp the resistance between material and tool is high, it will cause of melt at tool tip

2. Coolant not enough. Because valve hole is a long hole ,length 35.7, coolant was apply from external. The cutting fluid may not directly through hole.

3. การแก้ไขเบื้องต้น / IMMEDIATE COUNTERMEASURE ACTION/TAKEN:

1. Control tool life by make tool counter box and setting at machine

Tooling section responsible for colloct tool life data of burnishing reamer diameter 15

4. การแก้ไขระยะยาว / PERMANENT COUNTERMEASURE

ACTIVITY PLAN							
Action Item	by	Date		Action Iter	m	by	Date
Design tool and order(1.5 month)	surasa	15may					
Modify machine (contact OKK m	Tsuchiya	20 may					
Test machine	Tsuchiya	22 May					
ประมาณราคา/COST EVALUATIO	N						
Variable cost		Initial cost					
Tool 1 Pcs 10,000		Modify machine)	48,000			
		Tool holder		42,000			
					Approved	Checked by	Report by
					Tsuchiya	Surasa	

Figure 7.4 example of improvement report for burnishing tool diameter 15

7.3 Tool change time

Causes of longer tool change time are composed of short tool life, quality of tool and tool hard to set up. Tools that take longest time for set up is burnishing reamer diameter 15, boring cutter diameter 90,53.

7.3.1 Improvement plan

Table 7.6 Improvement plan for tool change losses. ------ Implementation, ----- check result

Tool	ool Cause Countermeasure			Evaluation				Action plan			
name			Benefit	Feasibility	Score	Apr	May	Jun	July		
Reamer diameter 15	Tool hard to set up	Set spare tool	0	0	1	4	+4				
	Tool quality	Inspection by tool maker	A	0	3	***		,	>		
Boring cutter diameter 90	Short tool life	Change tool material	0	0	1	4 > 4					
Boring cutter diameter 53	Short tool life	Change tool material	0	0	1	4 • 4					

Note : 0:Good, A : Fair, X: Poor

Score code: 0*0=1, 0*A=2, A*0=3, A* A=4, 0*X=5, A*X=6.

(Apply from: Katsuya Hosotani, the QC problem solving approach, 1992)

Plan for reduce lost time from tool change, was shown in table 7.6. Implementation period started from April for preparing a spare tool, inspection by toolmaker and changing material of cutting tool.

7.3.2 Countermeasure

1. Set spare tool for burnishing reamer diameter 15.

Table 6.5 - 6.6 shows the method for change tool, it can be found that the method of setting precision tool for CNC machine, the external work take time more than internal work.(External work = 328 sec, Internal work = 73 sec)

The other alternative to reduce waiting time for setup tool is to prepare a spare tool for change. Tool, which takes a long time for setting, will be set before changing time. To reduce lost time in setting tool, spare for tool which high frequency to use will be prepared (As time chart in figure 7.5). Working step was reduced from 9 step to 5 step. It will cause of fewer machines set up time.

Figure 7.5 Tool change procedure

Before	Extract	Take	Set tool	Prepare	Set run-	Set	Take	Input	Set
	tool	tool to	at jig, unclamp	jig for	out and lock	height of tool	tool to	data of	new
	form	tooling	tool,	set run-	tool.	and	machi	new tool	tool to
	machine	room	clean and	out		write tool	ne.	offset.	spindle
			change			length			-
			new			at tool			
			tool.			holder.			
After	Extract	Take	Take	Input	Set new				
	tool	tool to	tool to	data of	tool to				
	form	tooling	machine	new tool	spindle.				
	machine	room		offset.					

2 lost time because of tooling quality

- Improve quality of tooling by introduce tooling supplier to inspect before delivery.
 - Tooling problem always occur with special tool. At present, tooling section does not set system for tool incoming inspection. Supplier shall take full responsibility for the quality of their products and improve product quality. Requested tooling supplier delivery tool with inspection sheet. The special characteristics for each tool will be identify by tooling section. Figure 7.6 shows inspection report of reamer diameter 15.

3 Short tool life

Tool life was defined as the period of time that the cutting tool performs efficiently. Short tool life resulted in a high frequency of tool change.

• Establish tooling evaluation system.

Study new tool type, which is longer tool life. The objective is to reduce frequency for change tool. For Boring cutter diameter 90 and diameter 53, diamond insert will be used instead of carbide insert because tool life of diamond insert is longer than carbide insert about 10 times. Tool evaluation sheet in figure 7.7 used for compare other tool type when tooling section need to change new tool.

INSPECTION	REPORT

CUSTOMER	Too	LNET		MFG. N	0.		80617	1			
TOOL NO.	BD-	105.5		DWG. N	10.		5P-113	19			
TOOL NAME	Bugan	NING 2	ermer	P.O. NO). TNT033 - 06/98						
QUANTITY		1		INSPEC	CTOR Kam			DATE 8	DATE 8/13/98		
DICODUDTION	1		AFFARE	Zrn car	rinky		atter	AWP	1000		
DISCRIPTION	D.D.	O.D.	0.D.	O.D.	0.1	D.	LENGTH	LENAM	Leventi		
DIMENSION	19.995	20.0	14.5	15012	10.	0	10.0	26.0	51.75		
TOLERANCE	+0.005	±0.02	+0.02	+0.004	-8.0	2	±0.12	\$0.10	±0.10		
1	19.991	19.996	16.488	15.000	9.9	90	9.990	26.01	2 31.768		
2			1			_					
3											
4						-					
5											
6								_			
7							1				
8								-			
9											
10											
DESCRIPTION		R	NOUT	-	111.7	MIA]				
DIMENSION	A	B	(D	F	-	5	6			
TOLERANCE		A ()	474	AID	12	0	.010	.020			
1	.020	.010	.007	- or o		2	and				
2	.005	.007	ood	.007	.00	2	.007				
3											
4											
								-			
/			1								
8		/									
9											
		1									
10						-	F -		and the second second		

Figure 7.6 Tool inspection report

								<u> </u>							
Cutting Tool Evaluation Report				Company											
Turnin Milling Endmilling Drilling				Name:											
⊠ ^{Boring}						Date									
Customer						t	Diagram/Wo	irk Piece size	, dimensions/To	aling/Numbe	er of Passes/e	etc.			
Product ite	ـــــــــــــــــــــــــــــــــــــ								DAI 90 +0.0	046,0					
Part name	oil pump ca	se				1		4				1		+	
Work mate	rial	ADC12				1								1	
	HRC							μ				1		1	
Hardness	🗆 нв						11					11/	; 11	1	
	🗆 нs						/	///		/	17				
	NC lathe (🗙 Machinin	g center			Į									
Maching	Special	purpose m	achine			Į									
type	Horsepower		HP			ļ									
	19	(Kw)												
	Manufacturer		1(su	1(sumitomo)			2(sumitomo)			3()			4()		
	Insert Cat. No. TPGA110304		4		TPGA221										
Tool	Grade DIAMOND				CARBIDE										
L	Holder (Cut	ter Body)						-				───			
	Revolution (R.P.M.) 1500			1500											
	Speed:V	(m/min or SF	-M)	424			424					ļ			
Cutting	; Feed 1 (mm/rev or IPA)		γA) DW	0.05			0.05								
Conditions	Depth of cut		PM)	80			80								
	Depth of cut (mm or inch)														
	Coolant (dry or wet)		l et) V	VET		WET									
			No, of pcs	T	Reason for	No. of pcs		Reason for	No. of pcs	+	Reason for	No. of Dcs		R eason for	
					in depind*			in decing*			indexed.			u de vena"	
	1st Edge		2666	-	(3)	310		(1)			sidentity	+			
	2nd Edge		2000		(0)	350		(1)							
Test	3rd Edge					330		(1)							
data	4th Edge														
	Average per E	dge				330									
				Excellent			Excellent			Excellent		†	Excellent		
				Good			Good			Good			Good		
	Results		Satisfactory			Satisfactory			Satisfactory			Satisfactory			
			Poor			Poor			Poor			Poor			
Tested Inserts															
(Please attach on the right)															
*Please select the (1) When surface finish deteriorates unacceptably (4) When power consumption reaches limit															
number corresponding (2) When a fixed amount of tool wear is reached (5) Sparking or Chip Discoloration and															
to the reason for Disfigurement															
indexing (3) When work piece dimension is out of tolerance (6) Cutting Time or Component Quantity															

Figure 7.7 Tool evaluation report

<u>Conclusion</u>

The countermeasure of lost time from inspection, adjustment and tool change can be concluded as table 7.7.

Table 7.7	Countermeasure	report

Problem	Tool	Cause	Countermeasure		
Inspection time		Using measuring gage	Change to		
			attribute gage		
		Equipment difficult to use.	Change to		
			attribute gage		
		High checking frequency	Check out side		
			line by line leader		
Adjustment time	Reamer diameter 15	Not-suitable cutting	Increase coolant		
		condition	concentrate		
			Set tool life		
	Boring cutter diameter 90	Machine equipment failure	Change cutting		
			tool		
	Boring cutter diameter 53	Machine equipment failure	Change cutting		
			tool		
Tool change	Reamer diameter 15	Tool hard to set up	Set spare tool		
time					
		Tool quality	Inspection by tool maker		
	Boring cutter diameter 90	Short tool life	Establish tool		
			system.		
	Boring cutter diameter 53	Short tool life	Establish tool evaluation system.		