

REFERENCES

- Alnaizy, R., and Akgerman A. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4, 233-244.
- Andreozzi, R., Caprio, Z., Insola, A., and Maratta, R. (1999a). Advanced oxidation process (AOP) for water purification and recovery. <u>Catalysis Today</u>, 53, 51-59.
- Andreozzi, R., Caprio, V., Insola, A., Marotta, R., and Sanchirico, R. (1999b). Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. <u>Water Research</u>, 2, 620-628.
- Aplin, R., and Waite, T.D. (2000). Comparision of three advanced oxidation processes for degradation of textile dyes. <u>Water Science and Technology</u>, 42, 345-354.
- Beltran, F.J., Rivas, J., Alvarez, P.M., Alonso, M.A., and Acedo, B. (1999). A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to Phenanthrene and Nitrobenzene. <u>Industrial & Engineering Chemistry Research</u>, 38, 4189-4199.
- Crittenden, J.C., Hu, S., Hand, D.W., and Green, S.A. (1998). A Kinetic model for UV/H₂O₂ process in a completely mixed batch reactor. <u>Water Research</u>, 33, 2315-2328.
- Ghaly, M.Y., Härtel, G., Mayer, R., and Haseneder, R. (2001). Photochemical oxidation of p-chlorophenol by UV/ H₂O₂ and photo-fenton process. A Comparative Study. <u>Waste Management</u>, 21, 41-47.
- Kang, S.K., Liou, C.H., and Hung, H.P. (1999). Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions. <u>Journal of Hazardous Materials</u>, 65, 317-333.
- Lin, S.H. and Lo, C.C. (1997) Fenton process for treatment of desizing wastewater. <u>Water Research</u>, 31, 2050-2056
- Mishra, V.S. and Mahajani, J.B. (1995). Wet air oxidation. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 34, 2-48.

- Pedit, J., Iwamasa, K., Miller, C., and Glaze, W. (1997) Development and application of a gas-liquid contactor model for simulated advanced oxidation processes <u>Environment Science Technology</u>, 31, 2791-2796
- Perez, M., Torrades, F., Garcia-Hortal, J., Domenech, X., and Peral, J. (2002)
 Removal of organic contaminants in paper pulp treatment wffluents under fenton and photo-fenton conditions. <u>Applied Catalysis</u>, 36, 63-74
- Plant, L. and Jeff, M. (1994). Hydrogen peroxide: a potent force to destroy organics in wastewater. <u>Chemical Engineer</u>, 15-20
- Tock, R.W., Rege, M.A., and Bhojani, S.H. (1993). Simulataneous evaporation and advanced oxidation process (AOP) for Process Water Treatment. <u>Hazardous Waste & Hazardous Materials</u>, 2, 195-207.
- Wanpeng, Z., Zhihua, Y., and Li, W. (1996) Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater. <u>Water Research</u>, 30, 2949-2954
- Fogler, H.S.(1999). Elements of Chemical Reaction Engineering.

APPENDICES

APPENDIX A Fenton process and Fenton/Air process.

Table A.1 %TOC remaining when the simulated wastewater was treated with Airwith different air flow rates at any time

	Air flow rate									
Time	1/min		2	l/min	3 l/min					
(hr)										
	TOC	% TOC	TOC	% TOC	TOC	% TOC				
	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining				
0	5846.5	100.00	5687.0	100.00	6152.3	100.00				
0.5	5637.5	96.43	5464.8	96.09	5742.0	93.33				
1.0	5461.5	93.41	5299.8	93.19	5452.7	88.63				
1.5	5395.5	92.29	5249.2	92.30	5144.7	77.95				
2.0	5329.5	91.16	5128.2	90.17	4796.0	75.95				
2.5	5314.1	90.89	5033.6	88.51	4660.7	75.76				
3.0	5313.0	90.87	4950.0	87.04	4562.8	74.15				
3.5	5308.6	90.80	4868.6	85.61	4530.9	73.65				
4.0	5306.4	90.76	4747.6	8348	4446.2	72.27				
4.5	5305.3	90.74	4745.4	83.44	4434.2	72.07				
5.0	5305.0	90.69	4744.3	83.42	4424.2	71.91				

Т:		% wt ethanol	l	% wt isopropanol			
	Air	Air	Air	Air	Air	Air	
(nr)	1 l/min	2 l/min	3 l/min	1 l/min	2 l/min	3 l/min	
0	1.0011	0.912	1.1094	0.2050	0.2017	0.2080	
0.5	0.9668	0.9431	0.9579	0.1959	0.1930	0.1930	
1.0	0.9439	0.9233	0.9065	0.1936	0.1891	0.1829	
1.5	0.9285	0.9156	0.8422	0.1896	0.1866	0.1741	
2.0	0.9153	0.8996	0.7828	0.1878	0.1822	0.1621	
2.5	0.9139	0.8887	0.7607	0.1868	0.1784	0.1574	
3.0	0.9131	0.8694	0.7551	0.1848	0.1756	0.1542	
3.5	0.9120	0.8517	0.7456	0.1846	0.1725	0.1522	
4.0	0.9117	0.8315	0.7228	0.1836	0.1690	0.1492	
4.5	0.9101	0.8263	0.7144	0.1834	0.1680	0.1476	
5.0	0.9089	0.8193	0.7138	0.1833	0.1679	0.1464	

Table A.2 Composition of contaminant when the simulated wastewater was treated

 with Air with different air flow rates at any time

	Air	1 l/min	Air	2 l/min	Air 3 l/min		
lime	TOC	% TOC	TOC	% TOC	TOC	% TOC	
(hr)	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining	
0	5930.1	100.00	5677.1	100.00	5710.1	100.00	
0.75	5584.7	94.18	5154.6	90.80	5192.6	89.89	
1.50	5243.7	88.43	4819.1	84.89	4760.3	83.37	
2.25	4921.4	82.99	4507.8	79.40	4389.7	76.84	
3.00	4833.4	81.51	4235.0	74.60	4030.4	70.58	
4.00	4433.0	74.75	3985.3	70.20	3608.4	63.19	
5.00	4284.5	72.25	3753.2	66.11	3417.2	59.84	
6.00	4044.7	68.21	3531.0	62.20	3226.3	56.50	
7.00	3940.5	66.44	3278.0	57.74	2754.4	48.24	
8.00	3605.8	60.81	3080.0	54.25	2686.2	47.04	

Table A.3 %TOC remaining when the simulated wastewater was treated with H_2O_2 /Air with different hydrogen peroxide flow rates at any time

Time	No	FeSO ₄	FeSO ₄	0.0075 g	FeSO ₄ 0.015 g		
	TOC	% TOC	TOC	% TOC	TOC	% TOC	
(nr)	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining	
0	7797.9	100.00	7691.2	100.00	7607.6	100.00	
0.3	6965.2	89.32	6913.5	89.89	6861.8	90.20	
0.7	6963.0	89.29	6882.7	89.49	6910.2	90.83	
1.0	6947.6	89.10	6821.1	88.69	6793.6	89.30	
1.5	6982.8	89.55	6803.5	88.46	6782.6	89.16	
2.0	6989.4	89.63	6740.8	87.64	6782.6	89.16	
2.5	7004.8	89.83	6726.5	87.46	6781.5	89.14	
3.0	6966.3	89.34	6721.0	87.39	6619.8	87.02	
3.5	6967.4	89.35	6719.9	87.37	6619.8	87.02	
4.0	6964.1	89.31	6681.4	86.87	6653.9	87.46	
5.0	6965.2	89.32	6663.8	86.64	6633.0	87.19	

Table A.4 %TOC remaining when the simulated wastewater was treated withFenton (batch) with different ferrous sulfate amounts at any time

Time	No F	eSO ₄	FeSO	4 0.003 g	FeSO ₄ 0.0075 g		
(ha)	TOC	% TOC	TOC	% TOC	TOC	% TOC	
	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining	
			-				
0	7884.8	100.00	6998.2	100.00	7833.1	100.00	
0.75	7505.3	95.19	6770.5	96.75	7489.9	95.62	
1.50	7315.0	92.77	6733.1	96.21	7439.3	94.97	
2.25	7064.2	89.59	6336.0	90.54	7257.3	92.66	
3.00	6838.7	86.73	6136.96	87.69	7119.2	90.89	
3.75	6515.3	82.63	65743.1	86.17	6713.3	85.70	
4.50	6271.1	79.53	5743.1	82.07	6465.8	82.54	
5.25	6084.1	77.16	5481.3	78.32	6073.1	77.53	
6.00	5924.6	75.14	5181.0	74.03	5700.2	72.77	
7.00	5718.9	72.53	5077.6	72.56	5305.3	67.73	
8.00	5467.0	69.34	4637.6	66.27	4786.1	61.10	

Table A.5 %TOC remaining when the simulated wastewater was treated withFenton (semi-batch) with different ferrous sulfate amounts at any time

Table A.5 continued

Time	No	FeSO ₄	FeSO ₄	0.0113 g	FeSO ₄ 0.015 g		
(hr)	TOC	% TOC	TOC	% TOC	TOC	% TOC	
	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining	
0	7884.8	100.00	7889.3	100.0	9194.9	100.00	
0.75	7505.3	95.19	7588.9	94.99	8906.7	96.87	
1.50	7315.0	92.77	7629.6	95.50	8526.1	92.73	
2.25	7064.2	89.59	7224.8	90.43	8143.3	88.56	
3.00	6838.7	86.73	6865.1	85.93	7832.0	85.18	
3.75	6515.3	82.63	6697.9	83.84	7614.2	82.81	
4.50	6271.1	79.53	6371.2	79.75	7393.1	80.40	
5.25	6084.1	77.16	5991.7	75.00	7242.4	78.77	
6.00	5924.6	75.14	5787.1	72.44	6857.4	74.58	
7.00	5718.9	72.53	5473.6	68.51	6619.8	71.99	
8.00	5467.0	69.34	5145.8	64.41	6362.4	69.19	

Time		% wt ethanol				% wt isopropanol			
	FeSO ₄								
(m)	0.003g	0.0075g	0.0113g	0.015g	0.003g	0.0075g	0.0113g	0.015g	
0	1.0080	1.0594	1.0979	1.0793	0.2260	0.2166	0.2312	0.2329	
0.75	1.0026	1.0100	1.0016	1.0496	0.2230	0.2043	0.2210	0.2262	
1.50	0.9609	0.9789	0.9425	0.9720	0.2157	0.1938	0.2116	0.2209	
2.25	0.9362	0.9043	0.9207	0.9622	0.2114	0.1876	0.2036	0.2180	
3.00	0.9183	0.8854	0.8827	0.9117	0.2084	0.1752	0.1967	0.2075	
3.75	0.8456	0.8327	0.8545	0.8654	0.1954	0.1714	0.1882	0.2052	
4.50	0.7664	0.7802	0.8200	0.8348	0.1837	0.1594	0.1841	0.2017	
5.25	0.7200	0.7463	0.7769	0.8078	0.1773	0.1526	0.1780	0.1965	
6.00	0.6925	0.7172	0.7404	0.7973	0.1711	0.1461	0.1682	0.1891	
7.00	0.6660	0.6625	0.7191	0.7782	0.1644	0.1383	0.1580	0.1822	
8.00	0.6800	0.6383	0.6927	0.7266	0.1507	0.1362	0.1497	0.1678	

Table A.6 Composition of contaminants when the simulated wastewater was treatedwith Fenton (semi-batch) with different ferrous sulfate amounts at any time

T .'	FeSO₄ 0.0015g		FeSO₄ 0.003g		FeSO₄ 0.0075g		FeSO₄ 0.01g	
	TOC	%TOC	TOC	%TOC	TOC	%TOC	TOC	%TOC
(nr)	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining	(ppm)	remaining
0	5176.6	100.00	6829.9	100.00	6486.8	100.00	5907.0	100.00
0.75	4860.4	93.90	6277.7	91.91	6155.6	94.90	5800.3	98.19
1.50	4603.5	88.93	5728.8	83.88	5658.9	87.56	5314.1	89.96
2.25	4349.4	84.02	5265.7	77.10	5376.4	82.86	5124.9	86.76
3.00	4142.6	80.03	4480.3	65.60	5003.9	77.14	4798.2	81.23
3.75	3950.1	76.31	4215.3	61.72	4681.9	72.17	4337.3	73.43
4.50	3603.6	69.61	3730.1	54.61	4463.3	69.39	4250.4	71.96
5.25	3331.9	64.36	3439.7	50.36	4473.4	64.34	3837.4	64.97
6.00	2954.2	57.03	3339.6	48.90	3896.3	60.06	3495.8	59.18
7.00	2732.4	52.78	3248.3	47.56	3680.6	56.74	3313.2	56.09
8.00	2541.6	48.58	3092.1	45.27	3468.3	53.47	3152.6	53.37
	1							

Table A.7 %TOC remaining when the simulated wastewater was treated withFenton/Air (semi-batch) with different ferrous sulfate amounts at any time

Time		% wt ethanol				% wt isopropanol			
Time	FeSO ₄								
(hr)	0.0015g	0.003g	0.0075g	0.01g	0.0015g	0.003g	0.0075g	0.01g	
0	0.9748	0.9907	1.0020	0.9129	0.2123	0.2256	0.2132	0.1857	
0.75	0.9447	0.8396	0.9392	0.8465	0.1830	0.1937	0.1995	0.1840	
1.50	0.9475	0.7507	0.9239	0.8020	0.1707	0.1672	0.1953	0.1779	
2.25	0.9465	0.7158	0.8991	0.7776	0.1568	0.1517	0.1826	0.1677	
3.00	0.7963	0.6586	0.8667	0.7567	0.1417	0.1487	0.1637	0.1611	
3.75	0.6773	0.6222	0.8496	0.7227	0.1158	0.1364	0.1587	0.1541	
4.50	0.6176	0.6088	0.7435	0.7076	0.1102	0.1163	0.1471	0.1485	
5.25	0.5641	0.5495	0.6937	0.6751	0.1022	0.1103	0.1409	0.1453	
6.00	0.4853	0.5082	0.6369	0.6304	0.0903	0.1029	0.1294	0.1263	
7.00	0.4558	0.4641	0.5637	0.5401	0.0893	0.0921	0.1187	0.1032	
8.00	0.4436	0.4227	0.4829	0.4696	0.0831	0.0821	0.1040	0.0916	

Table A.8 Composition of contaminant when the simulated wastewater was treated

 with Fenton/Air (semi-batch) with different ferrous sulfate amounts at any time

APENDIX B FORTRAN program.

PROGRAM FENTON_AIR

IMPLICIT NONE DOUBLE PRECISION H,AL,BE,H2,FSO,Fe2,VV,V,T DOUBLE PRECISION Fe3,OHR,OH,ET,ISO,HH,OOH,X INTEGER I,J,M,N,Q PARAMETER (M=11) DOUBLE PRECISION K(M)

K(1)=76.51 K(2)=3.1E-3 K(3)=2.7E-3 K(4)=2E+3 K(5)=2.7E+7 K(6)=8.3E+5 K(7)=3. K(8)=3.6E+9 K(9)=5.5E+9 K(11)=1.4E+11

C *** GUESS K, ALPHA, BETA ***

K(10)=1E+9 AL=1. BE=1. DO I=1,12 K(I)=K(I)/60.

C **** INTIAL CONCENTRATION **** H2=H2O2 X=FeOOH2+ C0=VV

H=0.00001 H2=30. V=H2/60.

VV=((V*1.1*1000./(500.))/34.) FSO=0.0075 FSO=FSO/278.02 Fe2=FSO*1000./500. Fe3=0. OH=0. OHR=0. HH=0. OOH=0. ET=(1/46.)*(1000./500.) ISO=(0.2/60.)*(1000./500.) X=0. H2=0. T=0.

J=50000000.

Q=1.

```
OPEN(1,FILE='data1.dat')
WRITE(1,101)T,ET,ISO,H2,Fe2,Fe3,OHR,X,HH,OOH,OH
```

CALL E(T,H,AL,BE,H2,Fe2,VV,V,Fe3,OHR,OH,ET,ISO,HH,OOH,K,X) T=T+H N=I/100000.

IF (N.EQ.Q) THEN

WRITE(1,101)T,ET,ISO,H2,Fe2,Fe3,OHR,X,HH,OOH,OH

Q=Q+1

ELSE

ENDIF

ENDDO

101 FORMAT(E15.4,10E15.3)

STOP END

SUBROUTINE

E(T,H,AL,BE,H2,Fe2,VV,V,Fe3,OHR,OH,ET,ISO,HH,OOH,K,X)

```
IMPLICIT NONE
DOUBLE PRECISION H,AL,BE,H2,Fe2,VV,V,T,A,AAA
DOUBLE PRECISION Fe3,OHR,OH,ET,ISO,HH,OOH,X
DOUBLE PRECISION Q,TEMP,MWA,P,MW
INTEGER M
PARAMETER (M=11)
DOUBLE PRECISION K(M),R(M),AC(M),PVAP(M),AA(M),B(M),C(M)
```

```
Q=2.
AC(1)=0.
AC(2)=0.
MW=18.
```

```
R(7)=K(7)*OOH*H2
R(8)=K(8)*OOH*OHR
R(9)=K(9)*OHR*OHR
R(10)=K(10)*(ET**AL)*(ISO**BE)*OHR
R(11)=K(11)*HH*OH
Fe2=Fe2+(H*(-R(1)-R(2)-R(3)))
```

R(2)=K(2)*((-X*HH)+(Fe3*H2))

```
Fe3=Fe3+(H^{*}(-R(1)-R(2)-R(3)))
OHR=OHR+(H^{*}(R(1)-R(2)-R(3)))
X=X+(H^{*}(R(2)-R(3)))
HH=HH+(H^{*}(R(2)-R(3)))
OOH=OOH+(H^{*}(R(3)+R(5)-R(6)-R(7)-R(8)))
```

```
AA(2)=8.11778
B(2)=1580.92
C(2)=219.61
PVAP(1)=(EXP(AA(1)-(B(1)/(TEMP+C(1)))))/14.696
PVAP(2)=(EXP(AA(2)-(B(2)/(TEMP+C(2))))/14.696
```

```
MWA=494.+(V*T)
AA(1)=8.32109
B(1)=1718.10
C(1)=237.52
AA(2)=8.11778
```

R(1)=K(1)*Fe2*H2

R(3)=K(3)*X

R(4)=K(4)*Fe3*OOH

R(5)=K(5)*OHR*H2

R(6)=K(6)*OOH*OOH

TEMP=273.15+25.

P=1.

OH=OH+(H*(R(1)-R(11)))

```
AAA=((R(10)-(V*ET/(500.+(V*T)))))
ET=ET+(H*(AAA-((Q*MW*PVAP(1)*ET*AC(1)/(22.4*MWA*P)))))
```

AAA=((R(10)-(V*ISO/(500.+(V*T))))) ISO=ISO+(H*(AAA-((Q*MW*PVAP(2)*ISO*AC(2)/(22.4*MWA*P)))))

 $A=(-R(1)-R(2)-R(5)+R(6)-R(7)-R(9)-R(10)+(V^{*}(VV-H2)/(500.+(V^{*}T))))$ $H2=H2+(H^{*}A)$

RETURN

END

CURRICURUM VITAE

Name: Mr. Apipong Chitvarodom

Date of Birth: Jun 12, 1979

Nationality: Thai

University Education:

1997-2000 Bachelor Degree of Engineering, Chemical Engineering, Mahodol University, Bangkok, Thailand.

