

CHAPTER V

RESULTS AND DISCUSSION

Temperature Programmed Oxidation of coke on catalysts was studied for the amount of coke on catalysts from carbon nano-tube lab. The catalysts investigated were as follow:

Symbol	Type of catalysts(carrier gas, Temperature©	Coke Amount (%(w/w))
H1	CoMo 1:1/MgO(CH,,750)	12.60
H2	CoMo 1:1/MgO(CO,750)	14.65
Нз	CoMo 1:1/MgO(CH ₄ +CO,750)	12.37
H4	CoMo 1:2/MgO(CH,,750)	8.43
H5	CoMo 1:2/MgO(CO,750)	13.83
H6	CoMo 1:2/MgO(CH ₄ +CO,750)	11.82
H7	CoMo 2:1/MgO(CH ₄ ,750)	13.75
H8	CoMo 2:1/MgO(CO,750)	11.35
H9	CoMo 2:1/MgO(CH ₄ +CO,750)	27.18
I1	FeMo 1:1/MgO(CH ₄ ,750)	20.49
I2	FeMo 1:1/MgO(CO,750)	7.63
Із	FeMo 1:1/MgO(CH ₄ +CO,750)	16.13
I4	FeMo 1:2/MgO(CH ₄ ,750)	13.84
I5	FeMo 1:2/MgO(CO,750)	6.66
I6	FeMo 1:2/MgO(CH ₄ +CO,750)	21.70
I7	FeMo 2:1/MgO(CH ₄ ,750)	18.60
I8	FeMo 2:1/MgO(CO,750)	5.49
I9	FeMo 2:1/MgO(CH ₄ +CO,750)	14.52

5.1 Table of Catalyst

Figure 5.2.1 TPO curves of H1,H4 and H7.

Table 5.2.1 % coke amount of H1,H4 and H7

According to the experimental results, 3 TPO curves significantly depict that coke on CoMo/Mgo is an amorphous due to evidently smooth curve. In the first case, when Co-Mo ratio increase from 1:1 to 2:1 in ratio, the quantity of coke will grow up from 12.6% to 13.75%. In contrary, if the ratio of Co-Mo is reduced from 1:1 to 2:1, the quantity of coke will distinctly decrease from 12.6% to 8.43%.

Figure 5.2.2 TPO curves of H2,H5 and H8.

Table 5.2.2% coke amount of H2,H5 and H8

	Co:Mo Carier Gas	.1: 1	.1 :2	.2: 1
Case 1	co	H2	H5	H8
	Coke Amount (%)	14.65	13.83	11.35

The second case, the smooth three curves points that the coke on CoMo/Mgo is an amorphous. In term of coke quantity, the Co-Mo ratio is reduced from 1:1 to 1:2 resulting in decreasing value of 14.65% to 13.83%. Oppositely, constantly increasing of Co-Mo ratio from 1:1 to 2:1 caused the quantity of coke still remains reducing.

Figure 5.2.3 TPO curves of H3,H6 and H9.

Table 5.2.3 % coke amount of H3,H6 and H9

	Co:Mo Carier Gas	.1:1	.1 :2	.2; 1
Case 3	CH4+CO	H3	H6	H9
	Coke Amount (%)	12.37	11.82	27.18

In case of the third, the advent of involving H3 and H6 graphs characteristic presents graph in smooth. These significantly depict that coke/catalyst is an amorphous, theoretically. Obscurely, there are two peaks in H9 graph resulting a couple of coke, amorphous and single wall, respectively. Consider coke quantity, the less of Co-Mo ratio from 1:1 to 1:2, the less of coke quantity from 12.37% to 11.82%. While the Co-Mo ratio increases from 1:1 to 2:1, the coke quantity also increases from 12.37% to 27.18%, twice as much as the first case.

Figure 5.2.4 TPO curves of I1,I4 and I7.

Table 5.2.4 % coke amount of I1,I4 and I7

In the fourth case, all three graphs are smooth illustrated the coke on CoMo/MgO is an amorphous in theory. Concerning coke quantity, the ratio of Fe-Mo is reduced from 1:1 to 1:2 for which the coke quantity is just reduced from 20.49% to 13.84%. On the contrary, the ratio of Fe-Mo increases from 1:1 to 2:1 for which the coke quantity is just reduced from 20.49% to 18.60%.

Figure 5.2.5 TPO curves of I2, I5 and I8.

Table 5.2.5 % coke amount of I2, I5 and I8

	Fe:Mo Carier Gas	.1: 1	.1 :2	.2: 1
Case 5	СО	12	15	18
	Coke Amount (%)	<u>(63</u>)	6.66	-5.49

In the fifth case, all three graphs are smooth illustrated the coke on CoMo/MgO is an amorphous in theory. Concerning coke quantity, the ratio of Fe-Mo is reduced from 1:1 to 1:2 for which the coke quantity is just reduced from 7.63% to 6.66%. On the contrary, the ratio of Fe-Mo increases from 1:1 to 2:1, the coke quantity is reduced from 7.63% to 5.49%.

Figure 5.2.6 TPO curves of I3, I6 and I9.

Table 5.2.6 % coke amount of I3, I6 and I9

	Fe:Mo Carier Gas	.1: 1	.1 :2	.2: 1
Case 6	CH4#CO	13	16	19
	Coke Amount (%)	16.13	21.70	14.52

The final can be implied that coke on I3, I6 and I9 are amorphous coke. There are smooth lines on 3 curves that are indicator. From Co- Mo ratio increasing, I6 has the largest area, result in, the highest amount of coke.