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I N T R O D U C T I O N

signal understanding abounds with different models. For example, speech is highly 
redundant — it is intelligible despite large distortions, and there are multiple cues for each 
phoneme [1,2]. Redundancy leaves room for variability of speech, in which speakers can use 
different feature subsets of cues. Different models in signal understanding can be different 
feature processing, statistical models, or search techniques. The essential idea of redundancy 
exploitation in signal is to estimate signal parameters in many different ways, leading to 
different kind of errors.

In adaptive filtering, multiple models for signal processing is proposed for u n iversa l  
p r e d ic t io n  [3], In this technique, the performance of a single specific model order can be 
improved by using a weighted combination over all possible predictors. This favorite ideas 
are also further applied to other fields in electrical and computer engineering communities, 
e.g., space-time multiantenna systems, multi-carrier code division multiple access, affine 
projection algorithm for least square estimation, temporal and spatial averaging for direction 
of arrivals, decorrelated predictor for lossless image compression, and multiple classifier 
systems to name a few.

Recently, a unifying conceptual framework for a variety of multiple classification 
algorithms, and a mathematical model of reliable transmission of information through a 
noisy channel has been established. This has lead to new interpretations of multiple classifier 
systems (MCS) which are Error C o rre c tin g  O u tp u t C o d e  (ECOC) [41 and its variants [5-8], 
The basic idea in ECOC is to generate multiple independent decisions such that each 
decision (concept description) independently describes the data, and when a predefined set 
of descriptions is presented, they can be combined to enhance the classification.

As discussed in general classification problems [4, 8], text classification [9, 10], 
and automatic speech recognition [11], classification task can be viewed as a type of 
communication problem, where the correct category (class information) is being encoded 
and transmitted over a medium or channel. The channel consists of the input features, the 
training examples, and the learning algorithm. Because of the errors introduced by the finite 
training sample, poor choice of input features, and limitations or invalid assumptions made 
in the learning process, the class information is distorted. Regarding to the source—channel 
model for Machine Learning, the encoder and channel are purely conceptual, while the 
final classification becomes a decoding problem on the received codeword. The motivation 
behind the ECOC has been from mapping the output string to the nearest codeword. Most 
of the prior works on ECOC have been restricted to fo r w a r d  e r ro r  c o r r e c t in g  (FEC) based 
algorithms, which use different kinds of codes including random codes [9], repetition and
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algebraic codes [4], domain and data-specific codes [5,6,10], and low density parity check 
codes (LDPC) with iterative decoding [8].

In the next section, we review several existing subspace methods of pattern recognition 
and relate them to multiple classifier algorithms, while much research has been done in the 
ECOC methods perform the decomposition a priori, the possibility of decomposing problems 
in feature space for improving generalization performance and interpretability has not been 
seriously explored. Motivated by this observation, we first propose the signal-domain channel 
coding approach for pattern recognition. The basic idea is to consider decomposing the 
feature space into a number of informative and overcomplete feature subsets, also called 
d e s c r ip tio n s . In fact, this approach is based on the overcomplete subspace expansion, called 
o v e r c o m p le te  w a v e le t  r e p r e se n ta tio n , widely known in signal processing community. We 
also propose a framework for cascading the signal-domain channel coding approach with 
state-of-the-art multiple classifier systems in order to achieve higher accuracy than a single 
multiple classifier system. We name this framework, the g e n e r a l i z e d  c o d e  c o n c a ten a tio n  
framework. Moreover, we explore several combining methods that can be used to promote 
a framework of learning by diversity models.

These approaches are applied to an public released MSTAR automatic target recognition 
and UCI repository problems. The major advantages of using these approaches are (1) 
improvement in generalization performance over state-of-the-art multiple classifier systems 
and (2) improvement in computational complexity.

1.1 Subspace Methods o f Pattern Recognition
It is believed that the successful solution in pattern classification depends upon the 

interaction between four spaces: (1) the in p u t s p a c e  in which the data are available; (2) the 
fe a tu r e  s p a c e  or the reduced input space obtained from applying any specific information 
preserved transform to the training data; (3) the o u tp u t  s p a c e  or the exhaustive set of all 
the classes to which any input pattern might belong; and (4) the h y p o th e s is  s p a c e  or a 
space of models in which a classifier is sought according to the training data. Most real 
World classification problems are characterized by large input spaces and moderately large 
output spaces, leading to very complex pattern classification spaces — i.e., the domain of 
the input space can be very complex, not only in terms of its dimensionality, but also in 
terms of finding manifolds of distributions of different classes within the input space when 
the amount of training data available is too small compared to the size of the hypothesis 
space; the dimensionality of the input is too large, leading to the c u r v e  o f  d im e n s io n a li ty  
problem; the learning output classes are too complex; and the true classification (or the best 
hypothesis) function cannot be representional due to the problems of finite available training 
sample, wide variety of classifier families, and available architecture choices within each 
family. Evidently, it is not easy to quantify the appropriateness of a hypothesis space for the 
given problem.
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When all the spaces are too complex, it would be useful to think in some kind of 
space decomposition (or subspace expansion) so that each space can be represented and 
reconstructed from a fixed number of its simple base subspaces (most of the time, one 
prefers a f r a m e  of learning hypothesis). Learning by decomposing classification spaces can 
also be viewed as a le a rn in g  b y  d iv e r s i t y  m o d e ls . For example, an output space can be 
represented by some kind of an expansion

h ( x )  =  รp a n ( h 0 ( x ) ,  h i ( x ) , . . .  , h k { x ) ) , (1.1)

where h i ( x )  denotes the i t h  learning classifier, and X  the training sample.
This subspace method for output representation can be easily explained in case of 

implementing ECOC method [4], where an M-valued target output function is decomposed 
into k  >  lo g 21 functions. This way, the components in the s p a n  expansion is implicitly 
defined by the selecting encoding scheme, while the s p a n ~ l reconstruction function is 
defined by the minimum distance Hamming criterion. In boosting [12], the create of each 
input subset is dependent on previous classification results, and the estimated probability 
distribution of input space is dynamically adapted to class samples on which previous 
classifiers are incorrect. Multiple feature subsets method [13] can also be viewed as the 
subspace methods of pattern recognition. In this method, a frame of feature subsets is 
created for an ensemble of fc-Nearest Neighbor classifiers. Subspace methods can also be 
easily applied to hypothesis space, when we use a wide variety of classifier families, or 
different architecture choices within each family.

Recently, multiple classifier systems allow us to achieve higher accuracy, which is 
not often achievable with single models. Evidently, most of the classification methods 
mentioned above are the subspace methods of pattern recognition. They are also in the 
family of multiple classifier systems as well. It should be noted that the necessary of multiple 
classifier systems is to overcome three key shortcomings of standard learning algorithms, 
i.e., the statistical, computational, and representational issues [14].

1.2 Motivations
The use of multiple classifier systems is motivated by their achievement in higher 

accuracy, which is not often achievable with single models. This achievement is come from 
the existence of diversity occurred in multiple predictions. The diversity of predictions is 
well-known for all stages in learning e.g., feature extraction, and classification.

There are at least two frameworks that can further improve generalization performance 
of multiple classifier systems, and are left unexplored. The first framework involves with 
an algorithm that can extract informative features, and at the same time, expand the feature 
space so that the complex true classification function can be represented and reconstructed 
from a fixed number of its simple base classification subspaces. Moreover, we are interested 
in optimal combining all the multiple classifiers obtained from the above algorithm. The
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second framework is relating to the interesting question regarding to the integration of two 
or more multiple classifier systems in a more systematic manner, e.g., code concatenation. 
This dissertation attempts to provide such frameworks.

1.3 Overview of the Dissertation
We first review the basic principles of multiple classifier systems, i.e., construction 

approaches for multiple classifier systems (MCS) and several popular MCS, and define 
two important formal definitions of MCS precisely with the purpose to tie the links with 
signal-domain channel coding in chapter 3, generalized code concatenation in chapter 4, 
and prediction optimization method in chapter 5.

The original contribution of this dissertation starts from chapter 3, where we consider 
the application of signal-domain channel coding to multiple classifier systems. We consider an 
efficient feature extraction algorithm that particularly selects a basis suitable for classification 
from a library of orthonormal bases. There is a key observation that more resistance to 
overtraining is obtained when we use classifier with the basis. However, the Coiflet bases 
seem to be less resistant to overtraining than the bases obtained from other wavelet filters, 
as they are adapted too well to training data [15], Based on this observation, we derive 
an algorithm that can produce multiple feature subsets (descriptions) in order to reduce the 
overfitting and increase the efficiency of using only one single feature basis. In fact, the 
technique we use here is inspired from the joint source-channel coding techniques, called 
m u ltip le  d e s c r ip t io n  c o d in g  m o d e ls .

In Chapter 4, we derive a series of algorithms for encoding concatenated output codes 
based on either classical or generalized approaches in coding theory. Using two public data 
sets, we demonstrate the superiority of our proposed methods over the method based on a 
single multiple classifier system.

Chapter 5 compares several least square estimation techniques and discusses the 
singularity of the ensemble output matrix that contributes to the ill-conditioned effect (or 
harmful collinearity problem) always occurred in combining multiple classifiers. Inspiring 
from the early least square methods that proposed to overcome the correlated variates 
estimates, we study several least square methods that can be used to alleviate the harmful 
collinearity problem. We consider the modified ridge estimator that works effectively both in 
terms of computational complexity and robustness with regarding to the amount of variation 
caused from using different number of features.

In Chapter 6, a new method of coverage construction of multiple classifier systems is 
developed and applied to the public Yale face database. Several frameworks are considered 
and discussed for their equivalencies with an ensemble of transform networks derived using 
local discriminant basis algorithm. In addition to these discussions, a proof is provided that 
the linear combination of individual network weights of an ensemble of transform networks is 
a more generalized representation for multiple classifier systems than other simple methods,
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e.g., constant or weighted sample mean of the weights.
Note that from this point onward, the meaning of a multiple classifier system, a classifier 

ensemble, a pool of classifier, an ensemble of classifiers, and a collection of classifier are 
the same, and these terms can be used interchangeably whenever it is appropriated. Finally, 
we conclude in chapter 7 with some discussion on some further developments.

We would like to note that the following chapters are the detailed and expanded version 
of our published materials, chapter 3 is based on [16,17]. chapter 4 is based on [18, 19]. 
Chapter 6 is based on [20,21],
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