
C H A P T E R  I I

B A S IC  B A C K G R O U N D  A N D  R E L A T E D  T O P IC S

The idea of using multiple models to a given pattern recognition problem has been 
studied in the past and continued with great successes today. โท Sections 2.1 and 2.3, we 
review these prior multiple model algorithms which we intend to modify them to improve their 
performance with our theory. Section 2.2 briefly describes various methods for construction 
MCS. Sections 2.4 is devoted to a classical theory and two new formal definitions in which we 
are inspired by them for our computational classification models in the following chapters.

2.1 Introduction
There are many ways to use more than one classifier in a single classification problem — 

continuum of combination schemes. One basic approach is rather conservative, in which we 
refuse to take any specific notice of models. We can also consider this approach as p a ra lle l  
a p p ro a ch . The second approach is considered as s e q u e n tia l a p p ro a c h , in which each model 
is domain- specific trained. The advantage of the parallel combination is that it is easier than 
figuring out what is good in each classifier. This is from the fact that the training data and 
training process are usually the limiting factors. This is why many researchers still conduct 
their ongoing research in MCS toward the parallel approach.

A m u ltip le  c la s s i f ie r  s y s te m  consists of a set of classifiers and a decision combination 
function. The construction strategies of parallel approach usually fall into two categories: 
( 1 ) assume a fixed decision combination function, g e n e ra te  a set of mutually complementary, 
generic classifiers that can be combined to achieve optimal accuracy; and (2) assume a 
given, fixed set of carefully designed and highly specialized classifiers, attempt to find an 
o p tim a l  c o m b in a t io n  of their predictions (decisions).

We will refer to combination strategies of the first kind as c o v e r a g e  o p tim iza tio n  
methods and the second kind as p r e d ic t io n  o p tim iz a tio n  methods, where various techniques 
purposed for both strategies are summarized in Tables 2.1 and 2.2 respectively. It is also 
possible to apply the decision optimization methods to classifiers generated with the aim of 
coverage optimization.

In this dissertation, we mainly focus in combining strong learners approach rather than 
weak. The effectiveness of the combining strong learners approach is come from further 
reducing variance, while the combining weak learned approach is aimed at reducing both 
bias and variance. โท combining strong learners, both coverage and prediction optimization 
strategies should be chosen carefully with the aim at reducing variance; it is in this context 
that most of the techniques presented in this dissertation are studied rigorously.
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Table 2.1 Coverage optimization methods.
Method Training mechanism for introducing 

complementariness
Physical

level
noise injection inject noise to the training set input

stacking train classifiers by nonoverlapping subsamples of 
training set

input
distribution V

bagging resample the training set by bootstrap 
replicates

input
distribution V

boosting resample the training set by weights evolving with 
accuracy

input
distribution V

random subspace project training set to random chosen subspaces input
representation

stochastic
discrimination

generate random kernels to measure coverage of training set classifier

perturbation vary initial conditions or parameters of training process classifier
error correction 

output coding
force training on partial decision boundaries output

multiple 
feature sets

train classifiers using different feature subsets input
representation

Table 2.2 Prediction optimization methods.
Trainable binary or one 

of N decisions
ranked lists of 

classes
continuous prob. estimates 

or belief scores
No majority order statistics sum, product rules
Yes weighted vote logistic regression Bayes rules
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2.2 Construction Approaches for Multiple classifier Systems
In practice, many methods for constructing multiple classifier systems (MCS) [22,23] 

have been developed, which we can group them into several categories based around five 
main ideas: (1) Bayesian voting by ensembling all hypotheses h  in H ,  each weighted 
by its posterior probability P (/i/x ); (2) resampling training examples in order to find 
optimal training sample representativeness; (3) manipulating the output targets by training 
on partial coverage decision boundaries; (4) injecting randomness by perturbation sampling 
or using randomized classification algorithms; and (5) manipulating the input features, with 
corresponding to the above categorization sequence, these techniques comprise Markov chain 
Monte Carlo (MCMC) [24], Adaboost [12] and its variants, error correction output coding [4], 
perturbation and random subspace [25], and input decimation methods [26], respectively.

After some of the most remarkable recent studies in MCS, some authors [27] argue that 
the important of interpretability has been marginalized in the design of these algorithms, and 
put behind the need to devise classifiers with strong classification power. Some authors have 
pointed out the interest to define new definitions [8,28] leading to several new interpretations 
of MCS, but they are limited to the use of weak learners. They are not concerning with the 
quantification and qualification of MCS in case of using learners with strong classification 
power.

Empirically, we found that in some cases using strong learners in MCS is more efficient 
than using weak learners both in terms of computational complexity and generalization. We 
have learned that the choice of learners for MCS, which can be described using accuracy- 
simplicity space, is data dependent. Thus, putting behind the need to devise classifiers 
with strong classification power should not be indispensable in general. This is why we 
review some MCS and also their new formal definitions necessary for understanding our 
new coverage and combining algorithms.

2.3 A Review of Some Multiple classifier Systems
In this section, we review the multiple classifier systems used in our study, i.e., 

Adaboost, ECOC, and random subspace methods. Various kinds of pattern classifiers are 
studied for using with the above systems, e.g., Decision Trees, neural networks, support 
vector machine, linear discriminant analysis, and k-nearest neighbor (k-NN). The useful 
information on multiple classifier systems and pattern classifiers in general can be found in 
[23] and [29—33], respectively.

2.3.1 Bagging
Bagging [34] is a general method of combining classifiers that can be applied to any

base method. In Bagging, ท data sets are created by sampling patterns with replacement
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from the original training set. Each of the ท  data sets has the same number of patterns as 
the original training set. This sampling method (bootstrap sampling) results in each pattern 
appearing in a given data set with approximately 63.2 %  probability and for each data set, 
we train a base classifier to distinguish all classes. After training ท classifiers, we combine 
their output using simple voting. It should be noted that Bagging is not effective with nearest 
neighbor classifiers.

2.3.2 Adaboost
AdaBoost is a boosting algorithm, running a given weak learner several times on 

slightly altered training data, and combining the hypotheses to one final hypothesis, in order 
to achieve higher accuracy than the weak learner’s hypothesis would have. The main idea 
of AdaBoost is to assign each example of the given training set a weight. At the beginning 
all weights are equal, but in every round the weak learner returns a hypothesis, and the 
weights of all examples classified wrong by that hypothesis are increased. That way the weak 
learner is forced to focus on the difficult examples of the training set. The final hypothesis 
is a combination of the hypotheses of all rounds, namely a weighted majority vote, where 
hypotheses with lower classification error have higher weight.

In detail: Given
• A set E  =  {(x’i ,y i ) , ..., (.x n , y n)} of classified examples, where X 1 G X  and y  1 G Y,  

for i =  1,..., ท. Here we assume Y  =  —1, +1, e.g. instances that are not covered by 
a concept to be learned have label -1 and the ones covered have label +1.

• A weak learning algorithm deals with weighted example sets. Such a learning algorithm 
reads an example set E  and a distribution D .  In the most simple case, where all 
hypotheses that can be output are functions Y  =  — 1, +1, the algorithm tries to find 
a hypothesis h  with minimal probability of misclassification, given that an example 
is drawn from X  with respect to D .  The case of other possible hypotheses can be 
addressed by using more complex error measures.
We have shown the Adaboost algorithm in Figure 2.3.2.

2.3.3 Error Correcting Output Codes
Error correcting output codes (ECOC) proposed by Dietterich and Bakiri [4] is a method 

to creating and combining classifiers by output decomposition from multi-class problems 
into a series of two-class problems.

In ECOC, we assign a codeword or binary string for each class. Each bit position in the 
string corresponds to a two-class problem (dichotomy of classes) generated by decomposing 
the classes into two disjoint sets. For example, given four classes: A, B, c, and D, then 
the dichotomies of classes could correspond to separating {a } from {BCD}, {B} from
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{ACD}, {a d } from {Be}, and so on. For each position we train a classifier which learn to 
discriminate the two sets.

To classify an unknown pattern, the pattern is presented to all of the classifiers. The 
sequence of outputs is a new string which corresponds to the unknown pattern, when 
the dichotomies of classes are properly chosen, the output codes can tolerate errors in the 
codeword bits or corresponding classifiers, and hence improve accuracy in an ensemble of 
classifiers, where the codeword is the decoding decision of the new string within a correction 
distance, e.g., Hamming distance.

ECOC could improve decision trees and neural networks on several multi-class problems 
from the UCI repository, but ECOC will not work with classifiers that use local information, 
i.e., the k-NN classifier. The reason for the failure of ECOC in working with k-NN classifier 
is that the errors are correlated across the two-class learning problems. Figure 2.3 represents 
one of a possible coding matrix for a 10 class problem. There are at least three possible 
ways to produce a coding matrix [35], i.e., deterministic, random, and trained.

2.3.4 Random Subspace Methods
The R a n d o m  S u b s p a c e  M e th o d  (RSM) is the combining technique proposed by Ho [25], 

In the RSM, ท  data sets are created by randomly sampling features from the original training 
feature space. To be more specific, let each training pattern be described by a p-dimensional 
vector (or equivalently p  features), then we randomly select r  <  p  features from the p -  
dimensional data set. This way, one can obtain N  data sets and, each data set consists 
of r-dimensional random subspace of p-dimensional feature space. For each data set, we 
train a base classifier to distinguish all classes. After training ท classifiers, we combine their 
output using simple voting similar to Bagging.

Bagging, boosting, and RSM are designed for, and usually applied to Decision Trees 
(DT), where they often produce an ensemble of classifiers, which is superior to a single 
classification rule. However, these techniques may be performed well for classification rules 
other than DTs. They can be applied to perceptrons, k-NN classification rules. Moreover, 
they can also be used with LDA and linear classifiers [36].

Recently, the theory of s to c h a s tic  d is c r im in a n t can be used to describe why RSM and 
other MCS methods can give large improvements over using a single classifiers. In the SD 
theory, the degree of enrichment measures how well a model is able to capture a subset of 
features of class i compared with class j .  The model is called p r o je c ta b le  if its classification 
representation defined by given training data can be generalized to unseen samples. The 
definition of uniformity condition is that every data point should be covered by the same 
number of weak models (for further detail see [37] and references therein).

While Bagging, Boosting, and other SD methods start with highly projectable classifiers 
with minimum enrichment and seek optimization on uniformity, RSM starts with guaranteed 
enrichment and uniformity, and seeks optimization on projectability. It should be noted 
that some MCS methods (e.g., Adaboost, Bagging, and RSM) are related to the theory of
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The algorithm:
Let D t ( i )  denote the weight of example i  in round t .
Initialization: Assign each example ( X i , y i )  E E  the weight D 1( i )  =  1 เท .
๐ For t = 1 to T:

• Call the weak learning algorithm with example set E  and weight ร given by D t .
- Get a weak hypothesis ht  : X  —> Y .
- Update the weights of all examples.

o Output the final hypothesis, generated from the hypotheses of rounds 1 to T.
Updating the weights in round t: D t+ i ( i )  := 5 where
o Z f is chosen such, that D t +  1 is a distribution, 
o a t is chosen according to the importance of hypothesis h t .

For hf : X  —> { -1 , +1} usually Of is chosen as O', := A log 
where r t =  e l

The final hypothesis H  : X  —> { -1 , +1} is chosen as
H ( X )  -  ร /ฐ ท ( E f =  1 a t h t (x )) .

Figure 2.1 The Adaboost algorithm.

Table 2.3 Error correcting output code: an exhaustive set of codewords.
class h h i h 2 h s h 4 h$ h 6 h 7 ha hÿ h w /ill h n h i  3 h\A

0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1
1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
2 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1
3 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1
4 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
5 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1
6 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1
7 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
8 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1
9 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1
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stochastic discriminant by nature. Furthermore, some methods give well-enriched weak 
classifiers (e.g., Adaboost and RSM), while some usually give strong learner (e.g., Bagging 
and ECOC).

2.4 Recent Formal Definitions of Multiple classifier Systems
In this chapter, we first briefly describe the classical theory that can be used to 

describe why the family of MCS classifiers can give large improvements over using a single 
classifiers. We also address two important equivalencies of multiple classifier systems from 
the perspectives of Monte Carlo Methods and the functional entropy. The first equivalence 
is based on the representation of MCS as an integral estimation of the Monte Carlo Methods. 
The second equivalence is based on the Kolmogorov entropy estimation (optimal encoding). 
Although the issue of multiple classifier formation is somewhat akin to the stochastic vector 
quantization [38,391 and the source-channel model in information theory [8,9]. However, it 
is more practicable to exploit the meaning of the latter equivalence for the explanation of its 
interpretations to information transmission through a noisy channel. These two new formal 
definitions would provide US some insight information that may be useful for describing the 
success of this family.

2.4.1 Classical Theory: Bias/Variance Dilemma
In statistical regression estimation, there are two parameters that contribute to the 

generalization. Bias is the first parameter, which is characterized as a measure of a 
predictor's ability to generalize correctly to a test set once trained. The second parameter is 
variance, which can be characterized as a measure of the extent to which the same results 
would have been obtained if a different set of training data were used.

Recall that in a regression setting, it is possible to decompose the prediction error from 
using Y  to estimate Y , in the following way:

E ( Y  -  Y ) 2 =  E  ( Y  -  E { Y ) ) 2 +  ( E { Y ) -  E ( Ÿ ) ^ j 2 +  E  ( y  — E ( Y ) ^ J 2 . (2.1)

Equation (2.1) is a very useful decomposition. In this decomposition representation, the first 
term is the variance of Y . The second term is the power of the bias of the estimate Y ,  while 
the last term is the variance of the estimate. The contribution of this equation is so simple 
and important, since they guarantee that averaging random variables is always good thing to 
do (see [p.60, [35]] for details)

Also in this decomposition representation, there are two type of prediction errors: 
irreducible and reducible errors. The variance of Y  is the irreducible error in which it is 
beyond our control. However, the bias and variance of Y  are functions of our estimate and 
can therefore potentially be reduced.
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2.4.2 Relevance to Optimal Encoding of Concepts
Previously, we explored B ia s /V a r ia n c e  d i le m m a  where the concepts of bias and variance 

are generalized to classification problems. This approach has the advantage of being relative 
intuitive and it has produced some interesting results. However, so far, it has failed to 
address any construction strategies for well-coveraged classifiers or competitively embedded 
prediction optimization.

Here, we explore a new idea that suitable to bridge the gap between source-channel 
coding and MCS. First, we detail the work of Donoho [40] and Tapia et al [8] in optimal 
encoding of concepts. Then, we detail the work of Tapia et al [8] in relating MCS to 
T-repetition code with threshold decoding. Next, we address the extended idea of optimal 
encoding of concept to develop the new MCS algorithms. This lays some basic and necessary 
information needed for the extension of MCS toward the coverage optimization of combining 
strong learners in chapters 3 and 4. In particular, the benefit of this framework will lead 
to better understanding of the new MCS based on the framework of joint source-channel 
coding and two-stage channel coding methods.

2.4.2.1 Kolmogorov Entropy
Let X  be the domain, and let E be a class of functions (£( x )  : X  € X )  on that domain. 

A class E of functions is said to be totally bounded if for every t  > 0, there exists a finite 
number J \ft of functions £ 1 G E 1,1 < น <  A ft such that the L p  balls of radius e centered at 
the £ 1’ร cover E . That is, for every £ € E , there exists u  <  A fc such that

sup înf( แ£ -  £||p < e. (2.2)

The K o lm o g o r o v  t - e n t r o p y  [40,41] of E  is then by the following definition
H £ ( E )  =  \ o g 2 N £ ( E ) .  (2.3)

Particularly, it defines the least number of bits required to specify any arbitrary member of 
E to within accuracy e. In essence, Kolmogorov proposed a notion of deterministic encoding 
for c la s s e s  o f  fu n c tio n s .

To describe deterministic encoding for a class of concepts [8], let’s consider a function 
of concepts £ belonging to a target class E : X  —> {0,1}, and let E be compact for the 
norm II - II. In the Kolmogorov’s setting, we can think of the concepts E as a class of 
functions (i.e., decision boundary), to be compressed as numerical arrays B [ with integer 
index l G {1, •■ - , M } . thus giving the function of classification as in Figure 2.2, the possible 
Kolmogorov class concept with a specific e can be represented as in Figure 2.3.

This way, the representation of a class of concepts can then be encoded by a sequence 
of bits, which abstract from a deterministic encoding E  from E into a set B  of bitstreams. 
That is, the elements B  G B  are sequences of zeros and ones, as illustrated in Table 2.4.



Figure 2.2: Smooth function to be encoded. This could be the classification function of the 
observed data

Figure 2.3 Best encoding of the smooth function with distortion t.
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Table 2.4 Kolmogorov codebook. Maximum number of bits =  log2 N ( (E).

Approximate Code
Cl 0000
Ù 0001
£3 0010
£4 0011

£jVc(E) bm • • • b^blbo

Thus, an element E (£) G B is assigned for each concept £ G E by E , such that £' 
contains £. The reconstruction concept £ £ ร  is then converted from an element B e  B 
using a deterministic mapping D.

Generally, £>(£(£)) 7̂ £ and แ£ -  D (E (£ )) lip measures the error that occurs in the 
encoding of concepts. The distortion in such the Kolmogorov c-entropy system is given by

d (Z ,E ,D )  =  s w p U - D ( E ( m \ P- (2-4)

On the one hand, the distortion d(E, E , D ) means that the deterministic encoding of concepts 
has distortion <  e if we use at most flog2 iVe(E)1 bits. That is, the larger is the number of 
bits used to represent the concepts of E (or equivalently the strong learner), the smaller is 
the distortion achieved. Under the assumption that errors in generalized learning algorithm 
resembling with the distortion of the encoding of concepts, learning practically becomes 
a designing problem of constructing the deterministic mapping E s, especially in terms of 
approximating the concept function £5 and estimating its Kolmogorov entropy H f ( E). To 
use too small number of bits, we are subjected to underfitting. On the other hand, to use 
too large number of bits, we are subjected to overfitting. We can consider in the latter case 
that the number of bits transmitted into the abstracted classification channels is larger than 
the channel capacity.

2.4.2.2 T-Repetition Coding Approach and Its Connection with Adaboost
Based on the framework of encoding of concepts, let a received bitstream B  is decoded 

to be concept a,j by decoding mapping D. In communication term, the mapping E  : c  —> B 
can be modeled as a Discrete Memoryless Source (DMS) with output alphabet X ,  |Aj =  N , . 
Let q be a DMS output distribution and let H (X )  be entropy characterizing such DMS

Pu{ak) =  qk, k =  l , . . . , J \ f t) and a k  e  X  (2.5)
Let consider the transmission of information symbols from such source through a Discrete 
Memoryless channel (DMC) characterized by a finite capacity [42], As stated in Shannon’s 
Noisy Coding Theorem that reliable transmission of information over a noisy channel can
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be achieved by suitable channel coding. The criteria for error rate control in channel coding 
is that the coded information rate is less than channel capacity.

Recently [8], a linear block code called T-repetition code is used for channel coding 
based MCS scheme. It is very easy to implement T-repetition code in the context of MCS, 
which we can let a teacher to repeat the target concept T  times. Under the assumption of a 
weak learning algorithm with errors resembling a DMC channel, learning become a decoding 
problem on received sequence of lossy encoding of target concepts. As discussed in [8], 
T -repetition code with threshold decoding scheme for MCS is equivalent to Adaboost.

Moreover, let consider a specific case where the expanded concept r  =  F E  be the 
transformed concept caused from using a particular linear transform. In general, r  has a 
linear dependence between its components and the original concept sequence E. As discussed 
in [8], E  : E —> B  can be interpreted as a quantization process with output alphabet Y, 
|y |  =  M t {E). However, the quantization process in source encoding [43] always makes 
the components of r  =  E (โ') linearly independent. In other words, each components of r  
—even in excess of k —gives distinct information on the value of E, where k is the least 
number of bits required to encode A/^E). This is in fact one of the supporting ideas for the 
need of joint source-channel coding in the framework of multiple description coding [43,44] 
for MCS, which will be presented next in chapters 3.

2.4.3 Relevance to Variance Reduction Techniques in Monte Carlo Methods
Previously, we describe one of the new formal definitions for MCS. Here, we explore 

another idea related to the approximation theory for classification function representation of 
the observed data. First, we detail the work of Friedman and Popescu [28] in casting MCS 
into Monte Carlo methods. The central idea of supervised learning problems in data mining, 
machine learning, and pattern recognition is crucially related to function approximation of 
many arguments.

It is in this framework that important sampling strategies become the main ingredient 
of many popular ensemble methods. Most of the family of ensemble classifiers can be cast 
within the important sampled learning ensemble (ISLE) framework. For example, various 
randomized methods, e.g., Bagging, random forest, and Bayesian averaging are seen to 
correspond to random Monte Carlo method based on independent identical distribution (iid) 
perturbation sampling and MCMC strategies, respectively. In fact, the ensemble of base 
classifiers produced by these techniques are obtain in a parallel manner; each individual 
classifier is trained without any information about the others. Non random boosting methods, 
on the other hand, are seen to correspond to deterministic quasi-Monte Carlo integration 
techniques. In these techniques, information about the other members of the ensemble can 
be used for generating the base classifiers.

In general, there are a variety of variance reduction techniques [45] in Monte Carlo 
methods, which we can group them into several categories based around four main ideas: (1) 
analytical integration by finding a function that can be integrate analytically and is similar to
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the integrand; (2) uniform sampling placement where each subdivision region is uniformly 
sampled by its corresponding number of sampling; (3) adaptive sampling for controlling 
the sample density in order to place more samples where the integrand is large or changes 
rapidly; and (4) correlated estimators using combining samples from two or more estimators 
whose values are correlated. In detail, based on the above categories, these techniques 
comprise important sampling and control variates, stratified sampling and Quasi-Monte 
Carlo, conditional Monte Carlo, common and antithetic variate methods, respectively.

Since the main focus of this dissertation is on the construction strategies for combining 
strong learners toward the parallel approach, we are thus more interested in reducing 
variance rather than bias. As a consequence, we next detail an alternative method of utilizing 
correlated estimators toward common and antithetic variance reduction method. This lays 
some basic and necessary information needed for the extension of ISLE toward the prediction 
optimization of combining strong learners in chapter 5.

2.4.3.1 Importance Sampling
Recently, Friedman and Popescu [28] proposed an alternative view of ensemble learning 

based on Monte Carlo integration of basic linear model. Consider the problem of ensemble 
learning, the optimal target concept can be formulated as

Fix) ะ= J  a(p)f(x ;p)dp , (2.6)

where / (x; p) is a base learner (basis function), P G p  indexes particular function of X from 
/ (x; p), a(p) is the coefficient of / (x;p) 1 and F(x) represents the best target concept of 
classification output y given training samples X  under loss function, L. In statistics, / (x; p) 
can be any learning functions, i.e., tangent functions (neural networks), multivariate splines 
(MARS), or decision trees (random forest).

Introducing / (p) ะ= a (p )f(x ;p ), the integral in (2.6) can also be written as

F (x ) =  J  I(p)dp. (2.7)

Consequently, one can approximate the integral F(x) with tractable sums F m (x ). In other 
words, the estimate FM(x) is unbiased and converge almost surely to F(x) by the strong 
law of large numbers (very large r). Hence, we obtain

F(x) ~  y > m/(p m), (2.8)
7 7 1 =  1

M
-  ^ 2 w ma{ p m)f(x ;p m), (2.9)

7 7 1 = 1
M

^   ̂ ไ̂ ท Pm)-
7 7 1 = 1

(2.10)
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There are a variety of techniques for Monte Carlo evaluation of the approximated integral 
in (2.10), one method is called perturbation sampling. To perturbation sampling, sampling 
locations p m should be controlled by a monotonie decreasing function of a predetermined 
important measure J (P ). In other words, the probability density function (pdf) of the 
sampling location p m is defined by the function g (J (P )) .  For example, the sampling 
density function g (J (P ))  might be as simple as constant, when g (J (P ))  is constant, it 
means that a pool of estimators or classifiers is built without accounting for good/important 
candidates. However, if g (J (P ))  is a single delta function, then only the best single base 
learner is accounted. In between, we can balance such two situations by arranging g (J (P ))  
to take some good candidates into account. As described in Reference [28], the available 
ensemble learning methods can be effectively explained by the construction strategies of the 
g (J (P ))  and the coefficients cm. Furthermore, there is a suggestion that the coefficients Cm 
should be found by solving the set of linear regression equations of y  on M  populations of 
/ (x; p m) averaging over X.

By considering the equivalence between MCS and the Monte Carlo Methods, we can see 
how such the efficiency of MCS arise naturally in the framework of the Monte Carlo Methods. 
As discussed in Reference [28], one can view that most popular methods in ensemble learning 
are either implicitly or explicitly related to variance reduction techniques in the Monte Carlo 
methods, especially important sampling. Understanding variance reduction techniques for 
MCS is thus useful for reducing the degree of subtleness in ensemble learning error.

2.4.3.2 Antithetic and Common Variates
Essentially, the third term of (2.10 is the variance of the estimators. This term can 

be further reduced if any two estimators in the ensemble have appropriated correlations. 
Here is the idea we explore for these appropriated correlations. We first consider the case 
of simple averaging, then generalize it to weighted combining. In particular, this part is 
somewhat akin to variance reduction methods in Monte Carlo methods.

The idea of antithetic (common) variates is to find two functions g (X )  and h(Y) 
whose values are negatively (positively) correlated, and add (subtract) them, respectively. 
Consider a simple case where P \  and P y  are the known cumulative distribution functions 
(cdf) of two random variables X  and Y . The average of the two random variables will be 
the random variable with variance

Vcir \ ( X  +  Y ) = \v a r ( X )  +  -VarYY) + Y). (2.11)
We can see that the variance of | ( X  +  y )  is minimized when the covariance C ov(X , Y ) 

is strongly negative. Assume that both X  and Y  are generated by the inverse transform 
method

X  = Px\U i), (2.12)
and

y  = p; \ u2),
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where UI and บ2 are uniformly distributed on [0,1]. The method of antithetic variates is 
used when บ2 =  1 — U\. It is known that when antithetic variates are used, then C o v (X , Y) 
is strongly negative and V a r  [ i p f  +  y ) ]  is minimized.

Consider now the average of a pair of two random variables (i.e., estimation or 
classification functions)

\  M X )  +
where both random variables are real-valued measurable functions of the two random 
variables X  and y ,  respectively. Furthermore, assume that the marginal cdf p x  and Py  are 
known. Let’s define

g*(บ1) =  9 [ ^ ([/1) ] , (2.13)
and

As proved in the Reference [46], if g and h are monotonie in the same direction then

V ar พ 0  +  h (Y )) =  V a r  

=  V a r

\ ( g ) P x ' (บ 1)) +  h (P y , iU 2 )))

5 M M i)  +  h - m )

(2.14)

is optimal by the use of the antithetic variates.
Note that the above statements are always true for both the univariate and multivariate 

cases. In multivariate case, giving Px (X )  and P y (Y )  by (/-dimensional distributions

P x (X )  =  f [ P Xi(xi) a n d  P y (Y ) — PyXl/ii ) (2.15)

minimized, if 9 and h «
monotonie in the same direction.

Since there is not any very obvious way in which to apply the antithetic variates in 
the more general multidimensional case, we can transform the antithetic univariates to a unit 
cube (of the appropriate dimensionality). In particular, in the three-dimensional unit cube 
the analog of the one-dimensional function:

^ b i ( “ ) +  ฮ2(1 - m)]
contains 8 terms or 23 terms:

^ [ฐ1 (it, V, พ) + g2(1 -  น, V, พ) + g3{u, 1 -  V, พ)
+ ^ !(ฆ, ฆ, 1 -  พ) +  ฐ5(1 -  น, 1 -  น, พ) +  <76(1 -  น, ฆ, 1 -  พ)
+9i(u,  1 -  ฆ, 1 -  พ) + gร(1 -  ฆ, 1 -  ฆ, 1 -  พ)],

(2.16)
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Table 2.5: Relationship between common-antithetic variates and monotonicities of function 
g and h.

monotonicities of g and h Difference of RVs Sum of RVs
same direction Common Antithetic

opposite direction Antithetic Common

where all of Qi are monotonie in the same direction, and น, V, พ are 1-dimensional random 
variables.

So far we have showed that if g and h are monotonie in the same direction, the 
use of antithetic variates for the average of two real-valued measurable functions, that is 
บ2  =  1 — บน can effectively reduce the variance. It is straightforward to show that if g 
and h are monotonie in the opposite direction, the use of antithetic variates for the mean 
difference of two real-valued measurable functions, that is บ2 =  1 — U\, can effectively 
reduce the variance. This can be illustrated by replacing h {Y )  by t i ( Y )  =  —h (Y ) and 
subtraction t i  (Y )  to g (X )  as in (2.14). Hence, we obtain that g and t i  are monotonie in 
the opposite direction.

Having established that antithetic variates are the effective methods for reducing the 
variance of either the average or the mean difference of two real-valued measurable functions 
\{g {X )  -  h(Y )]. Depending on the monotonicity directions of the functions g and h, we 
can conclude that the variance of the average of two functions will be optimal, if g and h 
are monotonie in the opposite direction. Thus, the use of common variates, that is บ2 =  U\, 
can effectively reduce the variance. In the same way for the case of the mean difference 
of two functions, one can prove that if g and h are monotonie in the same direction. 
Similarly, the use of common variates can effectively reduce the variance (see the proofs in 
Reference [47]). Here, we can give a summary of conditions for the uses of common and 
antithetic variates in Table 2.5.

Further extension of the preceding cases is given in Reference [46], He showed that 
the mixed common and antithetic variates, called the vector of antithetic-common variates 
(VACVs), can be also constructed for multidimensional cases. For example, let g (น!, Ui) 
be monotonie increasing in น1 and monotonie decreasing in Vi and h(u2 , V2) be monotonie 
increasing in both น2 and V2 - Then the vector น2 =  {น2,v 2) — (ท1, 1 — Ui) is the optimal 
VACVs for the use of common variates. Naturally, we can generalize (2.16) for the use of 
antithetic variates in multidimensional problems to VACVs, as shown in the following

(2.17)

where M  <  d, and an appropriate dependence between Ui are induced and gi are given. 
Then, the variance of (2.17) is less than the variance in the case when the U \,.. . ,U m  are 
independent. At this point in the discussion, we can see the equivalence between the use of



ทอ«นfil
ชุพาล If 

~ 21

VACVs and simple average combination rule in ensemble learning.
In practical, one can admits correlated variates to have less optimality than the VACVs 

in a given set of learning examples. Because of the link that clearly exists between 
antithetic-common variates and variance reduction techniques, it is reasonable to define the 
partial antithetic-common variates (PACVs) as a variance reduction techniques if it can be 
determined that both the monotonicity assumption and the dependence condition between 
correlated variates are in some sense “satisfied”. As a consequence, one might expect that 
the averaging term in (2.17) can then be replaced by optimal weight combining rules.

It can also be interpreted that variance reduction method based on the antithetic and 
common variates is somewhat akin to the least square estimates of the combining-weights. 
In Chapter 4, we review some least square methods that mainly focus on the variance 
reduction of combining multiple classifiers. This is corresponded to the combining strong 
learner approach.

2.5 R ationale fo r  a New Approach
As shown in our review of methods for MCS, many alternative solutions and inter­

pretations may exist for a particular recognition problem. It should be noted that beside 
the above interpretations, the necessary of ensemble methods is to overcome three key 
shortcomings of standard learning algorithms, i.e., the statistical, computational, and repre­
sentational issues [14], This is similar to our more elaborated discussion on how to achieve 
good statistical or representational models of the observed data, in which there is too little 
dentinal given in [14]. We are now summarizing the advantages of using new extensions of 
MCS as follows:

Signal-domain channel Coding Approach. Leading to the motivation on the use of
source-channel modeling of MCS (or equivalently transmission of optimal encoding concepts 
through a noisy channel), one can easily relate any successful channel coding methods, e.g., 
joint source-channel coding, to further improve the classification accuracy of the MCS. Joint 
source-channel coding implemented here is related to multiple description coding models, 
which is also considered as signal-domain channel coding approach that is very applicable for 
both the erasure and noisy channel. This approach is somewhat akin to multiple descriptors 
for a mixture o f  features. In contrast to the conventional idea, we use multiple descriptors 
to train an ensemble of classifiers. Each classifier response to only partial information that 
characterized a pattern, when a linear combination of all classifier outputs is made, then the 
representation of concept can be finely approximated. The proposed method here is more 
deterministic than the most of the conventional MCS methods [13,25,36,48]. Moreover, 
the proposed method is systematically related to wavelet based multiple description coding 
model that it can takes several advantages of the wavelet transforms for pattern recognition.

Generalized Code Concatenation Approach. Generalized code concatenation ap­
proaches is a very efficient code scheme widely known in coding theory. It is also known
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that generalized concatenated code has several advantages over the classical concatenation 
method [49, page 288], Classical code concatenation approaches is somewhat akin to hybrid 
methods o f  ISLE. Thus, a code concatenation-like output code can further improve the 
classification accuracy over a single output code of the same length.

Prediction Optimization Scheme. To motivate the use of variance reduction techniques 
in ensemble learning analysis, one should attempt to see how well they can be used to clarify 
learning methods and their optimal choices for specific problems, especially in some difficult 
cases. One of the very difficult problems in pattern classification is related to the problem of 
prediction (decision) dependence, which is of important and difficult, remains controversy, 
and has received very little attention in recent literature. This is also one of the major 
concerns in variance reduction techniques in Monte Carlo methods.

Having believed that variance reduction techniques play an important role on the 
learning and test efficiency of MCS, we however, empirically found that there are no single 
variance reduction technique that is generalized well for all classification problems. As 
widely accepted, Adaboost always performs much better than any other MCS, if we do not 
imposed any constraints on the complexity of learning and testing of MCS. In other words, 
if we do not concern with the efficiency of the variance reduction techniques, important 
sampling-based multiple classifier systems may be the most-favorable choice in the MCS 
list. Except for the reasons that important sampling is an efficient technique for the Monte 
Carlo Methods and Adaboost is related to important sampling in term of sequential sampling 
in the Monte Carlo methods [28], the use of Adaboost for multiclass problems [50] is 
reported to be very computational expensive, especially when using with less powerful 
weak learners. Furthermore, it is more susceptible to noise and quickly overfit a data 
set [27], One of the explanations owed to the trade-off between classifier’s accuracy and 
its simplicity. In fact, one cannot in general tell what is the feasible classifier set in the 
accuracy—complexity space [27,51]. classifier strength, size of the classifiers, and nature 
of the algorithms’ outputs [27, 52] were mentioned as three factors that control the overall 
accuracy of classification design. Besides the three factors, we believe that data regularity is 
also a key factor on the overall accuracy of designed classifiers.

Thus, we should explicitly design an algorithm by keeping in mind the important of 
data regularity in conjunction with classifier strength, size of classifier, and the nature of the 
algorithms’ output. In other words, we should use an algorithm that can manipulate data in 
such a way that we can avoid not to choose too small classifier that is subject to underfitting, 
or too large that is subject to overfitting. Using different approach from Adaboost, next, 
an alternative algorithms using classifiers with strong classification power rather than weak 
will be presented, since each strong classifier is trained with respect to a particular data 
regularity (a proper coordinate system) in a diverse fashion and each learning concept is 
large enough to cover the target concept, the convergence rate of our proposed algorithms 
become faster than Adaboost. In fact, this dissertation presents new experimental evidences 
against the utility of ensemble of weak classifiers.
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In Chapter 4, we review some least square methods that mainly focus on the variance 
reduction of combining multiple classifiers. This is corresponded to the combining strong 
learner approach (as opposed to combining weak learner approach, for example, boosting, 
where bias and variance reduction are both considered).

Bayesian and Incremental Learning Framework. It is widely known that neural 
networks are universal approximator. One of the possible solution in parallel coverage 
construction of MCS is thus inspired by exploiting the interpolation power of the neural 
networks. In particular, multiresolution descriptors (or equivalently subbands) are used to 
in a multiple classifier system to highlight different information needed to characterize a 
pattern. This is another type of MCS that can be cast into Bayesian averaging framework. 
Moreover, it can be easier related this method to the incremental learning framework in the 
sense that a new output unit is created whenever the new subband information is provided.
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