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Appendix A
List of Abbreviations

Automatic Target Recognition
addition time unit

Discrete Wavelet Transforms

Error Correcting Output Codes
Forward Error Correcting Codes
Generalized Coce Concatenation
Important Sampled Learning Ensemble
Local Discriminant Bases

Local Discriminant Frame Expansions
Least Squares

Markov chain Monte Carlo

Multiple Description

Multiple Description Coding

Multiple Classifier Systems

Most Discriminant Bases

Synthetic Aperture Radar



Appendix B
Numerical Computations

This appendix presents the numerical computations concerning with all the algorithms
listed in this dissertation, the numerical computation of the algorithms is calculated in term
of addition time units, where 1 addition time unit (atu) is the time required to perform
one addition. Based on a micro-processor based artificial neural networks [110], we as-
sume that the execution of a comparison operation to be equal to 1 atu, the execution time
of multiplication to be equal to 2 atus, and the time required for nonlinear function to be 2 atus.

The Computational Complexity of Neural networks [110]

For a conventional backpropagation neural networks utilizing the gradient algorithms,
the computation in one iteration per sample of two-hidden-layer networks consists of

O3H1H2+ 2HIM +3H2N + Hi+ H2+ 2n additions,

o JHiH2T 2H\M + HIN + 2H2n + Hi + H2 multiplications,

oand w\ + w2 Sigmoid function computations,
where wy, and # 2 are the numbers of the nodes in the first and the second hidden layers,
respectively. m denotes the dimension of the input data, and n is the number of nodes of
the output layer.

The Computational Complexity of Local discriminant bases

In computing local discriminant bases (LDB), we require to compute the local discrim-
inant bases with respect to the discrete wavelet transform computation framework [57,60],
This computation is summarized as follows:

02¢(L —1)( - log|r)+ ([j —1)log(|/ —1) + L additions,

02-L(lylog -)+ +log -+ 23+ 2 -2 multiplications,

0 2J log function computations,

and 23 comparisons,

where  is the analysis filter length, and m is the dimension of the input data before
transform. 5 denotes the highest resolution level of the local discriminant bases (LDB) tree.

The Computational Complexity of Local discriminant Bases Neural Network
Ensembles

For Local discriminant Bases Neural Network Ensembles (LDBNNE) system, Mt
becomes the ktn numbers of pixels obtained as the resolution-specific subband using for
training the «w classifier in the ensemble. Specifically, k networks are trained using the
k resolution-specific subbands. As a consequence, the computation in one iteration per
sample is the same as the conventional backpropagation before, but with much fewer weight
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connections.

It is well-known that in gradient-based neural network algorithms, the eigenvalue
spread, Amex/Amin, is approximately proportional to the time-constant for the square error
convergence and its effects on the performance [29, 106]. In fact, the convergence rate of
the training objective function of neural networks will be much faster, when the eigenvalue
spread of the input correlation matrix is much smoother [29].

In fact, the eigenvalue spread of the input correlation matrix for a critically decimated
one dimensional signal system [56] has become smoother, if the input power spectral of
the input data is well-behaved. This way, the training objective function are more likely
smoother when we apply LDBNNE to a classification problem, which will lead vs to better
convergence speed.
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