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C H A T E R  I I I
F E Y N M A N  P A T H  I N T E G R A L S  A P P R O A C H  T O  

Q U A N T U M  T R A N S P O R T  P R O B L E M S

I n t r o d u c t i o n

T h e  sta r tin g  p o in t for th e  tran sp ort p h en o m en a  is to  c a lc u la te  th e  e x p e c 

ta t io n  va lue o f th e  v e lo c ity ,

V  =  <  V  >  =  ^lim T r ( r p t )  (78)

w h ere p  is th e  d en s ity  m a tr ix  o f th e  sy s te m , p t  m u st b e  k n ow n  very  a cc u r a te ly  

in  order to  get a sen sib le  resu lt. A t zero te m p e r a tu r e , as in  th e  ca se  o f  a ran d om  

p o te n tia l, th e  sy s te m  is in  a w ell d efined  s ta te  at a ll t im e s , th e n  th e  e x p e c ta t io n  

va lu e can  b e  d eterm in ed  from  its  w ave fu n c tio n ,

V  =  < v >  =  ^lim J  t y * ( r , t ) r $ ( r , t ) d r ,  (79)

w h ere ^ (r , t )  is th e  w ave fu n ctio n  o f  th e  sy s te m . In  b o th  ca ses , e ith e r  th e  

d en sity  m a tr ix  or th e  s ta te  w ave fu n c tio n s  m u st b e  k n ow n  very  a ccu ra te ly . It 

is q u ite  d ifficu lt to  get such  in fo rm a tio n  from  a sy s te m  w ith  im p e r fe c t io n s  or 

h a v in g  in tera ctio n s w ith  its  en v iro n m en t. F e y n m a n ’s p a th  in teg ra ls  m e th o d s  can  

b e u sed  to  cure th ese  p rob lem s[4 , 19]. T h e  tr ick  is  th a t  w e first e l im in a te  th e  

d y n a m ica l variab les o f  th e  e n v ir o n m e n t^ ], su ch  as th e  o sc illa t io n  m o d e s , r e su lts  in  

th e  in flu en ce  fu n ctio n a l or average th e  d e n s ity  m a tr ix  ov er  a ll in te r a c tio n  en erg ies  

w ith  im p erfectio n s [18], resu lts  to  th e  im p u r ity  in flu en ce  fu n ctio n a l[6 ].
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In n e x t  sec tio n  w e w ill show  how  w e can  w rite  dow n th e  eq u a tio n  for 

m o m e n tu m  an d  en ergy  con servation s and in th e  fo llow in g  sec tio n  w e w ill sh ow  how  

w e can  d e te r m in e  th e  ex p e c ta tio n  va lue o f th e  v e lo c ity  at s te a d y  s ta te , ca lcu la ted  

b y  u s in g  F e y n m a n ’s p ath  in tegra ls. W e also d iscuss th e  effec tiv en ess o f  th is  m eth o d  

o n  th e  s tu d y  o f  th e  n on-linear prop erty  o f tran sp ort p rob lem s, or th e  so -ca lled  

stro n g -fie ld  case . In th e last sec tio n  w e w ill d iscuss th e  w eak field  case , a lso  ca lled  

th e  lin ea r  tra n sp o rt p rob lem . W e w ill also d iscuss th e  tran sp ort o f an e lec tro n  in  

tw o -d im e n s io n a l sy stem  in th e  p resen ce of m a g n etic  field.

C o n s e r v a t io n  L a w s a n d  C o n s ta n t s  o f M o tio n

T w o  o f  th e  m ost u sefu l exp ression s in  th e  tran sp ort th eo ry  are eq u a tio n s  

e x p r e ss in g  th e  con servation  o f m o m en tu m  and con servation  o f energy. T h e se , as 

w ell as m o st o th er  relations o f a sim ilar n atu re, can  b e  d erived  in  th e  p a th  in teg ra l 

rep resen ta tio n  as follow s [11]. C onsider th e  id en tity

in  w h ich  (xt,x[) and (yuy't) are eq u ivalen t pairs o f  in teg ra tio n  variab les. Ffaqx'] 

is a n y  fu n c tio n  in ( X ( , x ' f ) .  If now  w e le t yt =  xt + Art, w h ere  A < <  1, rt is 

fu n c tio n  o f t im e , and v[xt\ = v[yt\. Inserting  th is  in to  th e  le ft h an d  sid e  ab ove  

an d  ex p a n d in g  to  th e  low est order in  A, w e ob ta in

/  J  V[xt}V[x't}ex?(S[x,x'}) =  J  J  ^[yt]'D[y't\exp(S[y,yr\) (80)
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If w e le t rT =  n ( r  — <2)) th en  w e recover th e  eq u a tio n  for th e  co n serv a tio n  o f  

m o m en tu m  in  th e  d irection  ท at t im e  <2- T h is  is th e  sa m e  as rep la c in g  th e  p a th  

Xt b y  th e  p a th  xt +  An6(r — t 2), w hich  in  c la ssica l m ech a n ic s  lea d s to  L a g ra n g e’s 

eq u a tio n  o f m o tio n . L ettin g  r T =  ทน(r  — f 2) lead s to  a co n sta n t o f  th e  m o tio n  

an alogou s to  th e  m o m en tu m  in  th e  d irection  ท.

T im e  invariance lies at th e  root o f  en ergy  co n serv a tio n . T h u s , r ep la c in g  yt 
by x(t + \y(t)) — x(t)i-Xr](t)xt im p lies  th a t le tt in g  rT = ?7( r ) i r in  e q .(8 1 )  w ill  y ie ld  

th e  eq u ation  for en ergy  con servation  at f 2 if 77(f)  = 6(t — t2). For 77( f )  =  น(f — f 2) 

on e o b ta in s  th e  con stan t o f th e  m o tio n  corresp on d in g  to  energy. E q u iv a len ty , on e  

cou ld  rep lace each  p a th  xt in th e  orig inal p a th  in teg ra l b y  x ( f +  A?7( f ) ) .  T h e  ch a n g e  

of variab les T — f T  A77(f) can  b e  u sed  to  avoid  th e  fu n c tio n a l d ifferen tia tio n s;  

how ever, care m u st b e  tak en  to  tak e an y  x ( f  — f') in to

x ( f  — t' - f  A77(f — f'))  =  x ( f  +  A77(f) — t' — A77(f')

+A7?(f -  0  -  At7 ( 0 )

dt = dr(l — and d/dt — (1 +  A ^ (r ) )d /d r

th e  la tter  tw o b ein g  valid  to  first order in  A.

W e first consider th e  fo llow in g  s im p le  e x a m p le . If th e  c la ss ica l a c t io n  Sc is 

g iven  by

(82)
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th e n  th e  p a th  varia tion  yt = xt +  Xii(t)xt, w hich  resu lts  in

6SC = X J  dty(t)xt(6C/6xt) =  0 (83)

w o u ld  y ie ld , u p o n  le tt in g  T =  t +

S c  =  J  dr(\ -  A jj(r ))£ (a :T, i r ( l  +  Aj/ ( t ) ) , t -  Xt](t)) (84)

so  th a t

cc1 . f  , (  d c  d ( x Td C / d x T) d c \ssc .  xjdr̂r ) ( ^ -  - f ) = 0 -  (85>

H en ce

<777 d ( x d c / d x )  d c  d c  d H
dt dt dt d t  dt

th e  u su a l exp ressio n  for con servation  o f energy  in c la ssica l m ech an ics. (N o te  th a t  

x6C/6x =  dc/dx — d(xdc/dx)/dt — dc/dt)

A p p ly in g  th e  a b ove m eth o d  to  our in flu en ce  fu n ctio n a l s ^ z ,a : ' ] ,  as e x 

p ressed  in  e q .(7 6 ) , w e o b ta in  for th e  con servation  o f m o m en tu m  th e  ex p ressio n

,  1 e B  /  d$(x,x')\
f t  +  <  X  > t - m  < X  > 1 =  ^ ------ ^ ------ y  (87)

w h ere  $ ( z , x ' )  is th e  im p u r itie s  in flu en ce fu n ction al;

$ ( * , * ' )  -  2 f t  J  d s ' ( พ ( x ร - x ร ' ) - 2 พ ( x ร - x '3' )  + พ ( x '11- x ' ร ' ) ) -  ( 8 8 )

T o ca lcu la te  th e  invariant corresponding  to  m o m en tu m , on e in teg ra te s  

e q .(8 7 )  b e tw een  so m e in it ia l t im e  and som e final t im e  t, and o b ta in

m  <  X  > t  +  e- d < A > t +

ะ= constant of the motion (89)
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Here A is the vector potential for the constant magnetic field B , A = - \ B  X X. For 

A independent of X, < mx^A  > is a constant of the motion for a free particle 

(<  p > ). (Recall that the kinetic momentum is usually defined to be ไทX =
t

p — \ A. )  However, for uniform magnetic fields, the invariant for a free particle is 

< m x  +  -2A > as long as A independent of time. The remaining terms in eq.(89) 

express the residual between momentum gained from the applied field and that 

loss to the medium and to the Hall current.

The principle utility of quantities such as eq.(89) is that constant of the 

motion represent invariants which can be used to label basis states in an expan

sion. For example, in writing out evolution equations (Liouville’s equations) for 

the density m atrix of the system, it is customary to use as a basis the m om entum  

state of either free or uniformly accelerating carriers corresponding to zero-order 

Hamiltonians for non-interacting particles. The interactions then drive the evo

lution of the system. Such an approach is adequate when indeed the state of the 

carrier is well characterized by one of these basis states at any given time. How

ever, when the scattering becomes sufficiently strong that the particles cannot 

be described, either theoretically or experimentally, as occupying a well-defined 

momentum state at any time (i.e., the drift time in a given state is so small 

that the state is unacceptably broadened), then the utility of this basis and the 

applicability of expansions in such a basis are called into serious question. In 

the absence of dissipation the concept of quasiparticles is sometimes adequate 

to handle self-energy renormalizations. But in the presence of the applied fields
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and dissipation, where energy and momentum are continually acquired from the 

applied fields and transferred to the medium at nonnegligible rates, quasiparticle 

bases are inadequate for the reasons given.

In sharp contrast to bases of particles or quasiparticles behaving ballisti- 

cally between collisions, the representation developed below in the context of an 

approximate influence functional describes carriers whose motion mimics that of 

the carriers under the actual conditions of the problem. For particles in these 

states, constants of the motion such as eq.(89) are preserved between scatterings 

characterized by scattering rate reflecting differences between the actual evolution 

of the system and its stimulated evolution. In this manner such invariants of an 

approximate influence functional can serve as an adequate basis for working out 

evolution equations.

The corresponding equation for conservation of energy and the related 

constant of the motion can be obtained from time invariance as indicated. The 
result is

f < i > t J d _ < i m i > 1  m  <  $ ( 1 , 1 ') > 1 
2 at at

Expression eq.(90) illustrates how the energy absorbed from the applied fields is 

distributed to the kinetic and interaction energies. From eq.(90), we note that 

there is an absence of a term  in the magnetic field, since a static magnetic field 

cannot alter the energy of a charged particle.

1  ท 1 ฯ น 1 ร
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As with momentum, an integration over time of eq.(90) will give US an 

energy related invariant in the following form

=  constant of the motion (91)

Here, as in eq.(87), each term, each expectation value, is represented by its path 

integration expectation value indicated above.

The primary purpose of expressions eq.(87)-eq.(91) lies not only in their im

plications for steady state quantities but in that such quantities evaluated for more 

general models can be used as bases for density matrices in place of free-particle 

energy and momenta. We turn now to the evaluation of the above expectation 

values.

N o n - l in e a r  T r a n s p o r t

To determine the transport problem of our model system, let we consider

the equation for the conservation of momentum expressed in eq.(87),
e B  •_ z, /  d ( f ) ( r ,  f*) \ft  +  —̂ - z < r >t —m < f  >t = (^— QP— y (92)

where the expectation is made with respect to the density m atrix of the system 
in Feynman path integrals representation,

( 0 ( f ) )  =  J  d f t  J  drt6(rt -  rt) J  df0 j  dr0p(r0, r 0)
■ J  V [ r a) J  I>[r's ]0 ( f , ) e x p | ^ 5 [ f , r / ] |

^ < xm x  >t +  < $ (z , x') >t — J  d t ' f  < X >t'

(93)
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where the action fucntion ร, [r, r1] is the short hand notation of the one appear 

in eq.(76);

At steady state of eq.(92), < r  =  0, the rate of momentum gains from the applied 

fields is balanced to the rate to the momentum lose into the system by scattering 

with impurities, then eq.(92) reduces to

At this steady state condition, we say that an electron will move with constant 

drift velocity บ £).

To consider this equation more explicitly, let US move our problem on to 

the moving reference frame, R,  which moves with the same velocity of an electron, 

R  =  น£). That is let US make the transformation

where น and น' are the fluctuations of the electronic paths on the moving frame 

result from scattering with impurities. In transport problem, the im portant quan

tity  is the drift velocity of the carriers which is expressed in terms of the applied 

fields, then we will neglect the equation for the fluctuations on the left hand side 

of eq.(95) and we will get

rt -  R t +  น t

R  — t + u't (96)
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The right hand side of this equation is the task of our calculation in this thesis 

work. We first simplify them by looking at the expression of the im purity influence 

functional <f>(r,r'), eq.(8 8 ), and then write the potential correlation function in 

term s of its Fourier transformed form

พ  ( r t - r v )  =  ^ u » ( J t ) e a ( r ' - r*') ( 9 8 )
k

Since in our model system, we will use the gaussian function for the potential 

correlation function, then its Fourier component will have the property พ (k) = 

พ ( —k) .

Under the transformation of eq.(96), the symmetry property of the พ (k) 

and the condition for the averaging process, we can write the expression for eq.(97) 

as

f t  --------C V £) =  j^ R  e -^ ^ ^ w (k )k  J  dae ik'lo{'T~^

. / J k(uT~น,t)\ (99)

where the expectation appear on the right hand side of this equation has an 
expression as

(<eik(Ur~uU) — J  dujdu' jร{นJ — u'j) J  du0 J  du'0p(u0, น'0)

■ J  V[ut) J  V[u't]eik
e x p  { h  Jo ^ ( พ , ) ^ / l ) ) +  ^ (ฆ , ฆ, ) J ( 1 0 0 )

where f l  is the Lorentz force which acts on electron on the moving frame. The 

right hand side of eq.(ioo) contains all information of the applied fields, B  and
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ร. If we do not cut any terms or make no approximation about the fields, this 

equation will cause the non-linear relation of the drift velocity to the applied 

fields. This is the effectiveness of this technique to look for such a non-linearity 

in transport problem.

L in e a r  T r a n s p o r t

The expression of the averaging exp{i&(ur — น<7)} is a kind of generating 

functional, so let define

where fs is defined to be equal to %k(6(t — r )  — — a )), the delta force. The

linear transportation is considered in the case of weak field, then, empirically, we 

can expand g ( / ร) into series of the applied fields as

where go is the term  which contains no applied fields. <7i contains term  in the 

first order and so on. In this case, the transport coefficients are considered as the 

linear term  of the applied fields by defining the relaxation time Tr as, see eq.(9 9 ),

(101)

g{fs) =  go +  <?1 +  9 2  +  ••• (102)

and from eq.(99) we have
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From eq.(103), to keep the efect of <7i term , we rewrite it as

r  e B  f  1 'Jt +  — evD =  m v D —  c Vre/A
(105)

The mobility is defined from the relation

V D  = (106)

which from eq.(105), we get

= ( - e )
m

/

V
l / r e//

ภ l / r e//

-1

(107)

Our task of this thesis work is to calculate the mobility of an electron in our model

system in the linear transformation regime. And then determine the conductivity 

a of an electron from the Kubo-Greenwood formula [20], [21];

O- =  J i E  ( - ^ ^ )  ( - « ) " ( £ ) K E )  (103)

where ท(E)  is the density of states of an electron in such a system and fi(E) is the 

mobility, calculated at absolute zero tem perature, eq.(107). If we have applied 

the electric field in X- direction , the longtitudinal component of the conductivity 
will have the expression

^  =  J d E  j  ท(E)fixx(E)  (109)

but for the transverse component, an electron will drift in the transverse direction 

to the applied electric field by Lorentz force. Also our system was added with 
some imperfections, then the transverse component of the conductivity should be 

determined from the expression[20], [21 ]

Gyx ~ J â  J  iE J ( E )n (E ) i i ,1(E) (110)
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These expressions of conductivity have given some sign of quantum Hall conduc

tivity as has been studied by Sa-yakanit[22] in the lowest order of approximation. 

My work will extend his studies up to the long correlation length limit.
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