การทำเสถียรกากตะกอนจากกระบวนการ กลั่นน้ำมันเครื่องเกา ด้วยวิธีการเผา

นางสาว สุวรรณา นทิวงศ์กิจ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมสิ่งแวดล้อม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2539 ISBN 974-635-500-7 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

STABILIZATION OF ASH FROM INCINERATION OF WASTE OIL REFINERY SLUDGE

Miss Suwanna Nateevongkij

A Thesis Submitted in Patial Fulfillment of the Requirements
for the Degree of Master of Engineering
Department of Environmental Engineering
Graduate School
Chulalongkorn University
Academic Year 1996
ISBN 974-635-500-7

	หัวข้อวิทยานิพนธ์ การทำเสถียรกากตะกอนจากกระบวนการกลั่นน้ำมันเครื่องเก่า ด้วยวิธีการเผา โดย นางสาว สุวรรณา นทีวงศ์กิจ ภาควิชา วิศวกรรมสิ่งแวดล้อม อาจารย์ที่ปรึกษา รองศาสตราจารย์ สุรี ขาวเธียร อาจารย์ที่ปรึกษาร่วม อาจารย์บุญยง โล่ห์วงศ์วัฒน
•	บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้วิทยานิพนธฉบับนี้เป็นส่วนหนึ่งของ การศึกษาตามหลักสูตรมริญญามหาบัณฑิต ————————————————————————————————————
	คณะกรรมการสอบวิทยานิพนธ์
	*** ประธานกรรมการ
	(รองศาสตราจารย์ ดร. ธีระ เกรอต)
	(รองศาสตราจารย์ สุรี ชาวเซียร)อาจารย์ที่ปรึกษาร่วม (อาจารย์บุญยง โล่ห์วงศ์วัฒน)
	(อาจารย์ศิริมา ปัญญาเมธีกุล)

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

สุวรรณา นที่วงส์กิจ : การทำเสถียรกากตะกอนจากกระบวนการกลั่นน้ำมันเครื่องเก่า ด้วยวิธีการเผา (STABILIZATION OF ASH FROM INCINERATION OF WASTE OIL REFINERY SLUDGE) อ. ที่ปรึกษา : รศ. สุรี ชาวเธียร , อ. ที่ปรึกษาร่วม : อาจารย์ บุญยง โล่ห์วงศ์วัฒน , 120 หน้า. ISBN 974-635-500-7

การวิจัยนี้เป็นการศึกษาวัสดุประสานที่เหมาะสมที่สุด ในการทำเสถียรเก้ากากตะกอนน้ำมัน โดยการทำให้เป็นก้อนแข็ง เถ้ากากตะกอนน้ำมันเป็นของเสียที่ได้จากกระบวนการเผา ในส่วนที่เรียกว่า กากตะกอนดิบ หรือ สลัดจ์กรดและดินดูดซับสีที่ใช้แล้ว จากการกลั่นน้ำมันเครื่องเก๋า โดยจะนำกากตะกอนดิบมาเผาที่อุณหภูมิต่นๆ คือ 400 °ช, 800 °ช และ 1200 °ช ได้ชี้เถ้ากาก ตะกอนน้ำมัน 3 ชนิด คือ ขี้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช, ขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช ตามลำดับ หลังจากนั้นจึงนำมาทำเสถียรและทำให้เป็นก้อนแข็ง

วัสดุประสานที่ใช้ในการศึกษา ไจ้แก่ ปูนซีเมนต์ ปูนขาว และ ปูนขาวผสมปูนซีเมนต์ (1:1 โดยน้ำหนัก) โดย แบ่งการทดลองเป็น 2 ขั้นตอน คือ (1) การทดสอบหาสัดส่วนผสมเบื้องต้น (2) การทดสอบหาสัดส่วนผสมที่เหมาะสมที่สุด วิธีที่ใช้ทดสอบประสิทธิภาพในการทำให้เป็นก้อน ได้แก่ กำลังรับแรงอัด และความเข้มข้นของโลหะหนักในน้ำสกัด

ผลการทดสอบหาสัดส่วนผสมเบื้องต้น พบว่า ปูนชีเมนต์ให้ผลการทดสอบที่ดีที่สุดสำหรับขี้เก้าหลังการเผาที่อุณหภูมิ 400 °ช และขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช โดยใช้สัดส่วนผสมปูนชีเมนต์ร้อยละ 10 สำหรับขี้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช และใช้สัดส่วนผสมปูนชีเมนต์ร้อยละ 20 สำหรับขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช สำหรับขี้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช ใช้ปูนชาวผสมปูนชีเมนต์ (1:1 โดยน้ำหนัก) ในสัดส่วนผสมร้อยละ 10 เป็นวัสดุประสานที่เหมาะสมที่สุด

สำหรับผลการทดสอบสัดส่วนผสมที่เหมาะสมที่สุด พบว่า สัดส่วนผสมวัสดุประสานที่เหมาะสมที่สุดในการวิจัยครั้งนี้ คือ ใช้สัดส่วนผสมปูนซีเมนต์ร้อยละ 7 และ 19 สำหรับขี้เถาหลังการเผาที่อุณหภูมิ 400 ซ และ ซี้เถ้าหลังการเผาที่อุณหภูมิ 1200 ซ ตามลำดับ สำหรับขี้เถ้าหลังการเผาที่อุณหภูมิ 800 ซ ใช้สัดส่วนผสมปูนชาวผสมปูนซีเมนต์ ร้อยละ 9 โดยน้ำหนัก

	วกรรมสิ่งแวคล้อม	
)	
สาขาวิชา	วิสวกรรมสิ่งแวกออน	
ป็การศึกษา	253 9	

ลายมือชื่อนิสิต สุ*วงรรนา* นุที่วงศ์ทาง ลายมือชื่ออาจารย์ที่ปรึกษา 😂 🗀 💮 ลายมือชื่ออาจารย์ที่ปรึกษาร่วม ាន ១០១០ ១៧១ រប្រហែល ស្រាន្តនេះ មានមន្ត្រីនេះ

C718049

: MAJOR SANITARY ENGINEERING

KEY WORD

SOLIDIFICATION/ STABILIZATION/ USED LUBRICATING OIL

SUWANNA NATEEWONGKIJ: STABILIZATION OF ASH FROM INCINERATION OF

WASTE OIL REFINERY SLUDGE. THESIS ADVISOR: ASSO. PROF. SUREE KHAODHIAN, THESIS

CO-ADVISOR: BOONYONG LOHWONGWATANA, 120 pp. ISBN 974-635-500-7

This research investigated the optimum amount of binders for stabilizing of ash from incineration of waste oil refinery sludge by stabilization/solidification. Oilly waste sludge is a mixture of acid sludge and used activated clay from a waste oil re-refinering plant. After incineration at 400 °C, 800 °C and 1200 °C, the products were called ash incinerated at 400 °C, ash incinerated at 800 °C and ash incinerated at 1200 °C, respectively.

The binders used in the study were portland cement, lime and a mixture of lime and portland cement at a ratio of 1:1 by weight. The experiments were divided into two stages consisting of trial test and optimization test. The method employed to assess the effectiveness of stabilization/solidification were compressive strengths and concentrations of heavy metals in extractant.

The result of the trial test unveiled that portland cement was the best binder for ash incinerated at 400 °C and ash incinerated at 1200 °C. The best proportions of portland cement to ash were found to be 10 percent and 20 percent for ash incinerated at 400 °C and ash incinerated at 1200 °C, respectively. But the best binder for ash incinerated at 800 °C was the mixture of lime and portland cement which found to be 10 percent.

In the optimization test, the best proportions of the binder in this experiment were 7 percent and 19 percent of portland cement for ash incinerated at 400 °C and ash incinerated at 1200 °C, respectively. The best proportion of ash incinerated at 800 °C was a mixture of lime and portland cement at 9 percent by weight.

ภาควิชา์	เ เลา	าล้อม
สาขาวิชา	วิสวกรรมถึงแ	
สีเวาะสีเวาเว	2530	

ลายมือชื่อนิสิต <u>สุรรณา นทาวาศ์กัก</u> ลายมือชื่ออาจารย์ที่ปรึกษา — ผู้ ผู้ไร้ ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

กิตติกรรมประกาศ

ผู้วิจัยขอขอบพระคุณ อาจารย์ที่ปรึกษาวิทยานิพนธ์ รศ. สุรี ขาวเธียร และ อาจารย์ บุญยง โล่ห์วงศ์วัฒน ที่กรุณาช[่]วยเหลือและให้คำแนะนำจนวิทยานิพนธ์ฉบับนี้สำเร็จลุล่วงด้วยดี

ขอขอบพระคุณ คณะกรรมการสอบวิทยานิพนธ์ และ คณาจารย์ทุกท่านในภาควิชาวิศวกรรม สิ่งแวดล้อม จุฬาลงกรณ์มหาวิทยาลัย

ขอขอบคุณ ภาควิชาวิศวกรรมโยธา และ ภาควิชาวัสดุศาสตร์ ที่อนุเคราะห์ในการใช้เครื่องมือ ทดสอบ

ขอขอบคุณ บริษัท อุตสาหกรรมน้ำมันไทย และ คุณสมคิด ทองศิลา ที่ให้คำแนะนำและ เตรียมกากตะกอนไว้ให้

ท้ายนี้ ผู้วิจัยใคร่ขอกราบขอบพระคุณ บิดา มารดา ที่ได้อบรมสั่งสอน ให้การสนับสนุนและ เป็นกำลังใจแก่ผู้วิจัยเสมอมาจนสำเร็จการศึกษา

สารบัญ

2/	
หนา	

บทคัด	เยอร	ำษาไทย	3
บทคัด	เยอร	าาษาอังกฤษ	จ
กิตติก	เรรม	ประกาศ	ฉ
สารบั	ŋ		ช
สารบัง	บูตา	ราง	ନି
สารบั	ภิมิก		ณ
บทที่			
	1	บทน้ำ	
	2	วัตถุประสงค์และขอบเขตการวิจัย	4
	3	การทบทวนเอกสาร	6
		โลทะหนัก	6
		ของเสียที่เป็นอันตราย	7
		กระบวนการกลั่นแบบกรดและดินเหนียว	
		1. คุณสมบัติของกากตะกอนน้ำมัน	8
		2. ปริมาณกากของเสียอันตราย	
		การบำบัดและกำจัดของเสียที่เป็นอันตราย	
		การทำเสถียรของเสียที่เป็นอันตรายโดยการทำให้เป็นก้อน	
		1. คำจำกัดความและที่มาของการทำเลถียรและการทำให้เป็นก้อน	
		2. การทำให้เป็นก้อนด้วยปูนซีเมนต์	11
		3. กลไกการยึดจับโลหะหนัก	15
		ปูนซีเมนต์	17
		ปูนขาว	18
		ปฏิกิริยาระหวางชีเมนต์กับน้ำ	19
		วิธีการสกัดสารและการทดสอบการชะละลาย	
		การประเมินคุณภาพของของเสียที่ผ่านการทำให้เป็นก้อน	20

eR.

	เกณฑ์มาตรฐานในการระบุของเสียที่เป็นอันตราย	. 22
	การศึกษาที่ผ่านมา	. 24
4	การดำเนินการวิจัย	30
	วัสดุที่ใช้ในการศึกษา	30
	1. กากตะกอนดิบ	30
	2. วัสดุประสาน	30
	เครื่องมือและอุปกรณ์	. 31
	1. การเผา	31
	2. การทดลองผสมกากตะกอนกับวัสดุประสานและการทดสอบกำลังรับแรงอัด	31
	3. การทดสอบการสกัดสาร	. 31
	วิธีการศึกษา	
	1. การทดสอบสัดส่วนผสมเบื้องต้น	. 32
	2. การทดสอบสัดส่วนผสมที่เหมาะสมที่สุด	34
	การศึกษาสมบัติของกากตะกอนดิบ	35
	1. สมบัติทางกายภาพ	35
	2. สมบัติทางเคมี	35
	ขั้นตอนการเผากากตะกอนดิบ	35
	การทดสอบสมบัติของกากตะกอนดิบและขี้เถ้าหลังการเผา	
	ที่ผ่านการทำให้เป็นก้อนด้วยวัสดุประสาน	. ,36
	1. การทดสอบสัดส่วนผสมเบื้องต้น	37
	2. การทดสอบสัดส่วนผสมที่เหมาะสมที่สุด	39
5	ผลการทดลองและวิจารณ์	41
	ลักษณะสมบัติของกากตะกอนดิบ	41
	1. สมบัติทางกายภาพ	41
	2 สมบัติทามครีเ	42

หน้า

สารบัญ(ต่อ)

ลักษณะสมบัติของขึ้เก ้าห ลังการเผาที่อุณหภูมิสูง	. 42
1. สมบัติทางกายภาพ	43
2. สมบัติทางเคมี	
ผลการทดสอบสัดส่วนผสมเบื้องต้น	44
1. กำลังรับแรงอัด	45
2. ลัษณะสมบัติของน้ำสกัด	
3. สรุปผลการทดสอบสัดส่วนผสมเบื้องต้น	55
ผลการทดสอบสัดส่วนผสมที่เทมาะสมที่สุด	58
 คุณสมบัติทางกายภาพของขึ้เถ้าหลังการเผาที่อุณหภูมิต่างๆ ที่ทำให้เป็นก้อนแข็ง 	58
2. ลัษณะสมบัติของน้ำสกัด	62
3. คาความซึมน้ำได้	70
4. สรุปผลการทดลอง	71
5. การวิจารณ์ผลการทดลอง	75
การประมาณค่าใช้จ่ายในการกำจัดกากตะกอนดิบ	76
1. คาบริการขนสงของเสียจากโรงงาน	
2. คาใช้จายในการเผา	
3. ค่าใช้จ่ายในการทำให้เป็นก้อน	77
4. คาขนส่งและขนย้ายไปยังหลุมฝังกลบ	78
5. คาผังกลบ	79
6. คาใช้จายในการกำจัดกากตะกอนดิบต่อหน่วยการผลิต	81
6 สรุปผลการวิจัย	83
7 ข้อเสนอแนะในการวิจัยเพิ่มเติม	85
รายการอ้างอิง	86
ภาคผนวก ก ข้อมูลผลการทดลอง	90
ภาคผนวก ข ภาพถ่ายก้อนตัวอย่าง	100

สารบัญ(ต่อ)

	หน _ั
ภาคผนวก ค รายการคำนวณ	105
ภาคผนวก ง วิธีมาตรฐานที่ใช้ในการวิเคราะห์	113
ประวัติผู้เขียน	

สารบัญตาราง

หน้า

ตารางที่ 3.1	เปรียบเทียบข้อดีและข้อเลียของการทำให้เป็นก้อนในแต่ละวิธีการ	12
	ประเภทของของเสียที่ไม่เหมาะสมในการทำเสถียรและทำให้เป็นก้อน	
ตารางที่ 3.3	ออกไซด์ของธาตุตางๆ และสารประกอบที่สำคัญของปูนซีเมนต์ปอร์ตแลนด์	18
ตารางที่ 3.4	เปรียบเทียบวิธีการสกัดสาร	21
ตารางที่ 3.5	แสดงช่วงของของเสียที่เป็นอันตรายและของเสียเจื่อย	23
ตารางที่ 4.1	สัดสวนของวัสดุประสานชนิดต่างๆ ที่ใช้ในการทำกากตะกอนดิบ	
	และขี้เถ้าหลังการเผาให้เป็นก้อน	. 33
ตารางที่ 5.1	ผลวิเคราะห์สมบัติทางด้านกายภาพของกากตะกอนดิบและขี้เถ้าหลังการเผา	42
ตารางที่ 5.2	คุณสมบัติของน้ำสกัดจากกากตะกอนดิบและขี้เล้าหลังการเผา	.43
ตารางที่ 5.3	ผลการทดสอบกำลังรับแรงอัดของขี้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ จากการทดสอบสัดส่วนผสมเบื้องต้น	46
ตารางที่ 5.4	ผลการทดสอบกำลังรับแรงอัดของขึ้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ จากการหดสอบสัดส่วนผสมเบื้องต้น	4'7
ตารางที่ 5.5	ผลการทดสอบกำลังรับแรงอัดของ ขึ้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ จากการทดสอบสัดส่วนผสมเบื้องต้น	48
ตารางที่ 5.6	ผลวิเคราะห ์ ลักษณะสมบัติของขี้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ ในขั้นตอนทดสอบสัดส่วนผสมเบื้องต้น	.53
ตารางที่ 5.7	ผลวิเคราะห์ลักษณะสมบัติของขี้เถ้าหลังการเผาที่อุณหภูมิ 800 ° ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ ในชั้นตอนทดสอบสัดส่วนผสมเบื้องต้น	. 54
ตารางที่ 5.8	ผลวิเคราะห์ลักษณะสมบัติของขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช ที่ทำให้เป็นก้อน	
transfer in	ด้วยวัสดุประสานชนิดต่างๆ ในขั้นตอนทดสอบสัดส่วนผสมเบื้องต้น	56
ตารางที่ 5.9	ผลการทดสอบกำลังรับแรงอัด และความหนาแน่นของ	
	ขึ้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช ให้เป็นก้อนด้วยปูนซีเมนต์	59
ตารางที่ 5.10	ผลการทดสอบกำลังรับแรงอัด และความหนาแน่นของ	
	ขึ้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช ที่ทำให้เป็นก้อนด้วยปูนชาวผสมปูนชีเมนต์	60

สารบัญจาราง (ตอ)

หนา

ตารางที่ 5.11	ผลการทดสอบกำลังรับแรงอัด และความหนาแน่นของ	
	ขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช ที่ทำให้เบ็นก้อนด้วยปูนซีเมนต์	61
ตารางที่ 5.12	ผลวิเคราะห์ลักษณะสมบัติของน้ำสกัดจากขี้เถ้าหลังการเผาที่ 400 °ช ที่ทำให้เป็นก้อน	
	ด้วยปูนชีเมนต์ ในขั้นตอนทดสอบสัดส่วนผสมที่เหมาะสมที่สุด	63
ตารางที่ 5.13	ผลวิเคราะห์ลักษณะสมบัติของน้ำสกัดจากขี้เถ้าหลังการเผาที่ 800 ° ช ที่ทำให้เป็นก้อน	
	ด้วยปูนขาวผสมปูนชีเมนต์ ในขั้นตอนทดสอบสัดส่วนผสมที่เหมาะสมที่สุด	64
ตารางที่ 5.14	ผลวิเคราะห์ลักษณะสมบัติของน้ำสกัดจากขึ้เถ้าหลังการเผาที่ 1200 °ช ที่ทำให้เป็นก้อน	
	ด้วยปูนชีเมนต์ ในขั้นตอนทดสอบสัดส่วนผสมที่เหมาะสมที่สุด	64
ตารางที่ 5.15	คาปัจจัยการเปลี่ยนแปลงปริมาตรของขี้เถ้าทั้ง 3 ประเภท	79
ตารางที่ 5.16	คาใช้จายในการกำจัดกากตะกอนดิบ	82

สารบัญรูป

		nnı
รูปที่ 3.1	การแบ่งกระบวนการทำเสฉียรและการทำให้เป็นก้อน	10
รูปที่ 3.2	กราฟแสดงพีเอชและความเป็นดางสะสมจากการสกัด 15 ครั้ง	16
รูปที่ 3.3	กราฟแสดงความสัมพันธ์ระหว่างปริมาณสะสมที่โลหะหนักถูกชะละลาย	
	ความเป็นดางถูกชะละลายและชิลิกอนถูกชะละลาย จากการสกัด 15 ครั้ง	17
รูปที่ 4.1	เตาเผา	
รูปที่ 4.2	แบบหลอก้อนตัวอย่างขนาด 5x5x5 ซม	37
รูปที่ 4.3	เครื่องมือทดสอบกำลังรับแรงอัด	38
รูปที่ 4.4		39
รูปที่ 5.1	1 1	
	ด้วยวัสดุประสานชนิดต่างๆ จากการทดสอบสัดส่วนผสมเบื้องต้น	46
รูปที่ 5.2	กราฟแท่งแสดงการรับแรงอัดของขี้เถ้าหลังการเมาที่อุณหภูมิ 800 ° ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ จากการทดสอบสัดส่วนผสมเบื้องต้น	47
รูปที่ 5.3	กราฟแท่งแสดงการรับแรงอัดของขึ้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช ที่ทำให้เป็นก้อน	
	ด้วยวัสดุประสานชนิดต่างๆ จากการทดสอบสัดส่วนผสมเบื้องต้น	48
รูปที่ 5.4	ความสัมพันธ์ระหว [่] างกำลังรับแรงอัด ของขึ้เถ ้าห ลังการเผาที่อุณหภูมิ 400 [°] ช	
	ที่ทำให้เป็นก้อนกับสัดส่วนผสมปูนชีเมนต์	59
รูปที่ 5.5	ความสัมพันธ์ระหวางกำลังรับแรงอัด ของขี้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช	
	ที่ทำให้เป็นก้อนกับสัดส่วนปูนขาวผสมปูนซีเมนต์	61
รูปที่ 5.6	ความสัมพันธ์ระหวางกำลังรับแรงอัด ของขึ้เถ้าหลังการเผาที่อุณหภูมิ 1200 [°] ช	
	ที่ทำให้เป็นก้อนกับสัดส่วนผสมปูนชีเมนต์	62
รูปที่ 5.7	ความสัมพันธ์ระหว่างพีเอชในน้ำสกัดกับสัดสวนปูนซีเมนต์	
	ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช	65
รูปที่ 5.8	ความสัมพันธ์ระหว่างพีเอชในน้ำสกัดกับสัดส่วนปูนขาวผสมปูนซีเมนต์	
	ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 800 [°] ช	65

หนา

สารบัญรูป (ต่อ)

	ความสัมพันธ์ระหว่างพีเอชในน้ำสกัดกับสัดส่วนปูนซีเมนต์	
	ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 1200 [°] ช	66
รูปที่ 5.10	ความสัมพันธ์ระหวางความเข้มข้นโครเมียมในน้ำสกัดกับ	
	สัดส่วนผสมปูนชีเมนต์ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 400 °ช	67
รูปที่ 5.11	ความสัมพันธ์ระหวางความเข้มข้นโครเมียมในน้ำสกัจกับ	
	สัดส่วนปูนขาวผสมปูนซีเมนต์ตอขี้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช	68
รูปที่ 5.12	ความสัมพันธ์ระหวางความเข้มข้นโครเมียมในน้ำสกัดกับ	
	สัดส่วนปูนซีเมนต์ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 1200 [°] ช	68
รูปที่ 5.13	ความสัมพันธระหวางความเขมขนปรอทในนำสกัดกับ	
	สัดส่วนผสมปูนชีเมนต์ตอชี้เถ้าหลังการเผาที่อุณหภูมิ 400 [°] ช	.69
รูปที่ 5.14	ความสัมพันธ์ระหวางความเข้มข้นปรอทในน้ำสกัดกับ	
	สัดส่วนปูนขาวผสมปูนชีเมนต์ต่อขึ้เถ้าหลังการเผาที่อุณหภูมิ 800 °ช	70
รูปที่ 5.15	ความสัมพันธ์ระหวางความเข้มข้นปรอทในน้ำสกัดกับ	
	สัดส [่] วนผสมปูนซีเมนต์ต [่] อขี้เถ้าหลังการเผาที่อุณหภูมิ 1200 °ช	.71