การพัฒนาสารช่วยแตกกระจายตัวประสิทธิภาพสูงจากแป้งมันสำปะหลัง

นาวาอากาศเอก ทวีศักดิ์ เทรูยา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตร ดุษฎีบัณฑิต สาขาวิชาเภสัชกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2538

ISBN 974-632-681-3 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF SUPER DISINTEGRANT FROM TAPIOCA STARCH

GROUP CAPTAIN THAVISAK TERUYA

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Program of Pharmaceutics

Graduate School

Chulalongkorn University

1995

ISBN 974-632-681-3

Department Pharmacy and Manufacturing Pharmacy Thesis Advisor Assistant Professor Poj Kulvanich, Ph.D. Thesis Co-Advisor Associate Professor Sunibhond Pummangura, Ph.D. Associate Professor Gampimol C.Rittidej, Ph.D. Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree. Sant Throngsun Dean of Graduate School (Associate Professor Santi Thoongsuwan, Ph.D.) Thesis Committee Duangelut Panomuna Chairman (Associate Professor Duangchit Panomvana, Ph.D.) P. Kolvanik Thesis Advisor (Assistant Professor Poj Kulvanich, Ph.D.) Smithma Prime Thesis Co-Advisor (Associate Professor Sunibhond Pummangura, Ph.D.) Member Member (Tongpaan Tiamraj, Ph.D.) Panida Vayumhasuran Member (Panida Vayumhasuwan, Ph.D.)

Development of Super Disintegrant from Tapioca Starch

Gr. Capt. Thavisak Teruya

Thesis Title

 $\mathbf{B}\mathbf{y}$

พิมพ์ต้นฉบับบทกัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

ทวีศักดิ์ เหรูยา, น.อ.: การพัฒนาสารช่วยแตกกระจายตัวประสิทธิภาพสูงจากแป้งมัน สำปะหลัง (DEVELOPMENT OF SUPER DISINTEGRANT FROM TAPIOCA STARCH) อ. ที่ปรึกษา ผศ.คร. พจน์ กุลวานิช, 226 หน้า. ISBN 974-632-681-3 รศ.คร. สุนิพนธ์ ภุมมางกูร

การพัฒนาแบ้งคัดแปรจากแบ้งมันสำปะหลังธรรมชาติ เพื่อใช้เป็นสารช่วยแตกกระจายตัว ประสิทธิภาพสูงค้วยวิธีทางเคมี โดยใช้ปฏิกิริยาแทนที่ด้วยหมู่คาร์บอกซี่เมทธิล และปฏิกิริยาเชื่อมขวาง ด้วยฟอสเฟต ศึกษาปรับระดับการแทนที่ และเชื่อมขวางให้อยู่ในช่วงที่เหมาะสมเพื่อให้ได้แบ้งมันสำปะหลัง คัดแปรที่มีคุณสมบัติเป็นสารช่วยแตกกระจายตัวที่ดีที่สุด ทำการประเมินคุณสมบัติทางกายภาพ ซึ่งเป็น คุณสมบัติพื้นฐาน สำหรับสารช่วยแตกกระจายตัว เปรียบเทียบกับผลิตภัณฑ์ที่มีจำหน่ายในท้องตลาด เช่น Explotab และ primojel ทั้งนี้ได้ทดสอบคุณสมบัติของผงแบ้งมันสำปะหลังคัดแปรคังนี้ คือ water uptake, bulk swelling, hydration capacity, sedimentation volume, cold water soluble fraction และviscosity และทำการศึกษาประเมินประสิทธิภาพในการเป็นสารช่วยแตก กระจายตัวในยาเม็ดที่มีคุณสมบัติทั้งที่ละลายน้ำ ไม่ละลายน้ำ และไม่ขอบน้ำ

ศึกษาอิทธิพลของตัวแปร ในกระบวนการผลิตยาเม็คที่อาจมีผลต่อคุณสมบัติการช่วยแตก กระจายตัวของแบ้งมันสำปะหลังคัคแปร อาทิเพ่น วิธีการเติมสารช่วยแตกกระจายตัวในสูตรตำรับ ชนิคของตัวทำละลายที่ใช้ในการเตรียมยาเม็ค แรงตอกอัค สภาพการเก็บผงแบ้งมันสำปะหลังคัคแปร ก่อนนำมาใช้ การแตกตัวของยาเม็คที่ใช้แบ้งมันสำปะหลังคัคแปรเป็นสารช่วยแตกกระจายตัว เมื่อเก็บไว้ ในช่วงเวลาหนึ่ง

ผลจากการศึกษาพบว่า แบ้งมันสำปะหลังคัดแปรที่ได้พัฒนาขึ้นนี้มีประสิทธิภาพเป็นสารช่วย แตกกระจายตัว จัดอยู่ในประเภทสารช่วยแตกกระจายตัวประสิทธิภาพสูง (Super disintegrant) แม้ว่าคุณสมบัติพื้นฐานทางกายภาพจะมีความแตกต่างจากผลิตภัณฑ์แบ้งที่มีจำหน่าย คุณสมบัติที่แตกต่าง นี้ขึ้นอยู่กับ กระบวนการ และสภาวะ ขณะทำการเตรียมแบ้งคัดแปรนี้ และคุณสมบัติตามธรรมชาติ ของแบ้งขึ้งเป็นต่างชนิดกัน

ภาควิชา <u>เภสัชอุตสาหกรรม</u> –เภสัชกรรม	ลายมือชื่อนิสิต 🔑 🗸
สาขาวิชาเภสัชกรรม	ลายมือชื่ออาจารย์ที่ปรึกษา 🔭 🛧
ปีการศึกษา ²⁵³⁸	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม Phun Cy

The state of the surface of the contraction of the surface of the

#C 375385 : MAJOR PHARMACEUTICS

KEY WORD: SUPER DISINTEGRANT/MODIFIED TAPIOCA STARCH/PHYSIC-CHEMICAL

PROPERTIES

THAVISAK TERUYA, GR. CAPT.: DEVELOPMENT OF SUPER DISINTEGRANT FROM TAPIOCA STARCH THESIS ADVISOR: ASSIST. PROF. POJ KULVANICH, Ph.D. 226 pp. ISBN 974-632-681-3 : ASSO. PROF. SUNIBHOND PUMMANGURA,

Ph.D.

Modified starch derived from native tapioca starch was developed for the purpose of employing as a powerful disintegrant by chemical modification via carboxymethyl substitution and crosslinking by means of phosphate bridge. To establish the utmost disintegrant efficiency of modified tapioca starch (MTS) developed, degree of substitution and crosslinking of MTS have been optimized. Fundamental physical properties commonly related to disintegrant efficiency have been evaluated in comparison to commercial modified starch products, Explotab and Primojel. The bulk MTS powder was tested for water uptake, bulk swelling, hydration capacity, sedimentation volume, cold water soluble fraction and viscosity. The disintegrating action was evaluated in various tablet systems possessing water soluble, water insoluble and hydrophobic property, in order to demonstrate its effectiveness.

Influence of process variables in tablet manufacture on its disintegrant property were examined: methods of disintegrant incorporation in formulation, type of granulating solvent, compression force during tabletting, bulk disintegrant powder storage conditions and disintegrating property of tablet containing MTS after aging.

MTS developed has shown to have very acceptable properties to be used as highly effective disintegrant which could be categorized in the class of the so-called super disintegrant. Though the fundamental properties of the MTS are different from other existing products. The difference in such propeties was certainly dependent on the process and conditions of modification and inherent property of the starting starch material used.

ภาควิชา	ลายมือชื่อนิสิต 🔑 🔑
สาขาวิชาสัชกรรม	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา ²⁵³⁸	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDEGMENTS

I would like to express my deepest appreciation and sincere gratitude to my advisor, Assistant Professor Dr. Poj Kulvanich, Department of Manufacturing Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his excellent supervision, interest, correction, meaningfully guidance and encouragement throughout this study.

I am very grateful of my co-advisor, Associate Professor Dr. Sunibhond Pummangura, Dean of Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his valuable advice, supervision, comment and helpful suggestion for this research.

I wish to express my sincere gratitude to my co-advisor, Associate Professor Dr. Garnpimol C. Rittidej, Department of Manufacturing Pharmacy Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her helpful advice, guidance and encouragement throughout this study.

My special thanks is to Thai Wah Co.Ltd., for kindly supporting of Tapioca Starch in this experiment.

I am indebted to Royal Thai Air Force, for granting financial support to fulfill this investigation.

Finally, I gratefully acknowledge the help and encouragement received from scores of individual, too numerous to mention by name.

CONTENTS

		Page
ABSTRAC	Г (ТНАІ)	IV
ABSTRAC	T (ENGLISH)	V
ACKNOWI	LEDGEMENTS	VI
LIST OF T	ABLES	IX
LIST OF FI	GURES	XI
ABBREVIA	ATIONS	XVII
CHAPTER		
I	GENERAL INTRODUCTION	1
II	GENERAL BACKGROUND	6
III	PRELIMINARY INVESTIGATION ON	
	DISINTEGRATING PROPERTIES OF	
	CARBOXYMETHYL STARCH FROM VARIOUS	
	NATIVE STARCHES	15
IV	FACTORS INFLUENCING PHYSICO-CHEMICAL	
	PROPERTIES OF CARBOXYMETHYL TAPIOCA	
	STARCH	35
V	EFFECT OF VARIATION OF MOLECULAR	
	STRUCTURE ON PHYSICO-CHEMICAL	
	PROPERTIES OF MODIFIED TAPIOCA	
	STARCH	64
VI	COMPARATIVE STUDY OF PHYSICO-CHEMICAL	
	PROPERTIES OF MODIFIED TAPIOCA	
	STARCH	106
VII	EVALUATION OF MODIFIED TAPIOCA STARCH	
	AS TABLET DISINTEGRANT IN PARACETAMOL	
	TADIETO	151

			Page
1	VIII	EFFECT OF AGING ON DISINTEGRATING	
		EFFICIENCY OF MODIFIED TAPIOCA	
		STARCH	167
	IX	CONCLUSIONS	183
REFE	RENCE	S	186
APPE	NDICE	S	197
VITA.			226

LIST OF TABLES

Table		Page
1.	Chemical Composition of Starch Granules	2
2.	Amount of Amylose and Amylopectin and Their Degree of	
	Polymerization in Starches	3
3.	Disintegration Times of Dicalcium Phosphate Tablets	
	Containing Various Disintegrants	25
4.	Disintegration Times of Lactose Tablets Containing	
	Various Disintegrants	27
5.	Disintegration Times of Erythromycin Stearate Tablets	
	Containing Various Disintegrants	29
6.	Specification of Experimental Tapioca Starch	48
7.	Degree of Substitutions (DS) of Carboxymethyl Tapioca	
	Starch (CMTS)	49
8.	Sodium Chloride Contents of CMTS	51
9.	Water uptake of CMTS	52
10.	Viscosities of CMTS	61
11.	Some Physical Properties of CMTS	62
12.	Chemical Modification of Modified Tapioca Starch	
	Studies	69
13.	Degree of Substitutions of Synthesized CMTS	74
14.	Phosphate Contents of Native Tapioca Starch before and	
	after Modification in Comparison to Modified Potato	
	Starclies	78
15.	Effect of Substitutions and Crosslinkings on Physical	
	Properties of MTS	82

Tabl	es	Page
16.	Disintegration Times of Dicalcium Phosphate	
	Tablets Containing 4% Various MTS as	
	Disintegrant	97
17.	Disintegration Times of Lactose Tablets Containing	
	4% Various MTS as Disintegrant	99
18.	Specification of Carboxymethyl Starch	
	(Sodium Starch Glycolate)	115
19.	Rates and Extents of Water Uptake of Various	
	Disintegrant Powders	117
20.	Bulk Density, Tapped Density and Compressibility	
	of Various Disintegrants	138
21.	Hardness of Paracetamol Tablets Containing 4%	
	Various Disintegrant, after Aging	170
22.	Disintegration Time and Hardness of Paracetamol	
	Tablets after Aging Disintegrant Powder	175

LIST OF FIGURES

Figu	re	Page
1.	Glucose Unit	7
2.	Starch Amylose	7
3.	Starch Amylopectin	7
4.	Scanning Electron Micrograph of Corn Starch	17
5.	Scanning Electron Micrograph of Rice Starch	17
6.	Scanning Electron Micrograph of Glutinous	
	Rice Starch	18
7.	Scanning Electron Micrograph of Wheat Starch	18
8.	Scanning Electron Micrograph of Arrow Root	
	Starch	19
9.	Scanning Electron Micrograph of Tapioca Starch	19
10.	Dissolution Profiles of Erythromycin Stearate	
	Tablets Containing 4% Various Native Starches	
	as Disintegrant	30
11.	Dissolution Profiles of Erythromycin Stearate	
	Tablets Containing 4% Various Carboxymethyl	
	Starches as Disintegrant	31
12.	Dissolution Profiles of Erythromycin Stearate	
	Tablets Containing 4% Various Disintegrants	32
13.	Comparative Dissolution Profiles of Erythromycin	
	Stearate Tablets Containing 4% Native Tapioca	
	Starch and 4% Carboxymethyl Tapioca Starch	
	as Disintegrant	34

Figu	re	Page
14.	Apparatus for Determination of water uptake of	
	Disintegrant Powders	44
15.	Apparatus for Determination of water uptake of	
	Tablets	44
16.	Normal Probability of the Estimated Effect for Degree of	
	Substitutions	50
17.	Bulk Swelling of CMTS	54
18.	Sedimentation Volumes of CMTS in water	55
19.	Sedimentation Volumes of CMTS in 0.1N Hcl	57
20.	Hydration Capacity of CMTS	58
21.	Cold Water Soluble Fractions of CMTS	60
22.	Infrared Spectrum of Prepared CMTS	73
23.	Infrared Spectrum of Carboxymethyl	
	Tapioca Starch	75
24.	Infrared Spectrum of Tapioca Starch Phosphate	77
25.	Phosphate Contents of Crosslinked Carboxymethyl	
	Starches	79
26.	Sodium Chloride Contents of Modified Tapioca	
	Starches	80
27.	Effect of Degree of Substitution on water Uptake of	
	Tapioca Starch	83
28.	Effect of Crosslinking on Water Uptake of Tapioca	
	Starch	84
29.	Effect of Substitution and Crosslinking on water	
	Uptake of Tapioca Starch	86

Figu	re	Page
30.	Effect of Substitutions and Crosslinkings on water	
	Uptake of MTS (Surface Plot)	87
31.	Effect of Substitutions and Crosslinkings on water	
	Uptake of MTS (Radar plot)	88
32.	Bulk Swelling of MTS	90
33.	Effect of Substitutions and Crosslinkings on Bulk	
	Swelling of MTS (Surface Plot)	91
34.	Effect of Substitutions and Crosslinking on Bulk	
	Swelling of MTS (Radar Plot)	92
35.	Hydration Capacity of MTS	93
36.	Sedimentation Volume of MTS	94
37.	Cold Water Soluble Fraction of MTS	95
38.	Viscosity of MTS	96
39.	Disintegration Time of Dicalcium Phosphate Tablets	
	Containing 4% Various MTS as Disintegrant	98
40.	Disintegration Time of Lactose Tablets Containing 4%	
	Various Disintegrant	100
41.	Effect of Substitutions and Crosslinkings of MTS	
	on Disintegration Times of Dicalcium Phosphate Tablets	
	(Surface Plot)	101

Figu	re	Page
42.	Effect of Substitutions and Crosslinkings of MTS	
	on Disintegration Times of Dicalcium Phosphate Tablets	
	(Radar Plot)	102
43.	Water Uptake of Various Disintegrant Powders	116
44.	Water Uptake of Dicalcium Phosphate Tablets	
	Containing 4% Various Disintegrants	118
45.	Water Uptake of Lactose Tablets Containing 4%	
	Various Disintegrants	120
46.	Bulk Swelling of Various Modified Starches	121
47.	Swelling Characteristics of Tapioca Starch	123
48.a	b Swelling Characteristic of Modified Tapioca	
	Starch (MTS)	124
49.	Photograph Showed Swelling of Modified Tapioca	
	Starch (Side View)	126
50.	Swelling Characteristics of Primojel R	128
51.	Photograph Showed Swelling Characteristic of	
	Primojel R (Side View)	129
52.	Swelling Characteristics of Explotab ^R	130
53.	Photograph Showed Swelling Characteristics of	
	Explotab R (Side View)	131
54.	Sedimentation Volume of Various Modified	
	Starches	132
55.	Hydration Capacity of Various Modified Starches	133

Figure	Figure Pa	
56.	Cold Water Soluble Fraction of Various Modified Starches	134
57.	Viscosity of Various Modified Starches	136
58.	Sorption Isotherm of Various Modified Starches	137
59.	Disintegration Times of Dicalcium Phosphate Tablets	
	Containing 4% Various Modified Starches as	
	Disintegrant	139
60.	Photograph of Disintegrating Characteristics of	
	Dicalcium Phosphate Tablets	140
61.	Photograph of Disintegration of Dicalcium Phosphate	
	Tablets Using Tapioca Starch as Disintegrant	141
62.	Photograph of Disintegration of Dicalcium Phosphate	
	Tablets Using Different Disintegrants	142
63.	Disintegration Times of Lactose Tablets	
	Containing 4% Various Disintegrant	144
64.	Effect of MTS Concentration on Disintegration	
	Times of Erythromycin Stearate Tablets	146
65.	Disintegration Times of Erythromycin Stearate Tablets	
	Using 8% Various Disintegrants	147
66.	Effect of Particle Sizes on DT. of Erythromycin Stearate	
	Tablets using 8% MTS as Disintegrants	150
67.	Disintegration Time of Paracetamol Tablets Containing	
	Various Disintegrants	160
68.	Dissolution Profiles of Paracetamol Tablets Containing	
	4% Various Disintegrants	161
69.	Effect of Compression Forces on Hardness of	
	Paracetamol Tablets	163

Figur	e e	Page
70.	Effect of Compression Forces on DT. of Paracetamol	
	Tablets	164
71.	Effect of Incorporating Methods of MTS. on DT. of	
	Paracetamol Tablets	165
72.	Disintegration Time of Paracetamol Tablets after Storage	
	at Various Time Intervals (52.0% RH)	172
73.	Disintegration Time of Paracetamol Tablets after Storage	
	at Various Time Intervals (71.3% RH)	173
74.	Dissolution Profile of Paracetamol Tablets Containing	
	4% MTS as Disintegrant, after Aging	
	(52.0% RH)	176
75.	Dissolution Profile of Paracetamol Tablets Containing	
	4% MTS as Disintegrant, after Aging	
	(71.3% RH)	177
76.	Dissolution Profile of Paracetamol Tablets Containing	
	4% Various Disintegrants, after Aging for 12 weeks	
	(52.0% RH)	178
77.	Dissolution Profile of Paracetamol Tablets Containing	100
	4% Various Disintegrants, after Aging for 12 weeks	
	(71.3% RH)	179
78.	Dissolution Profile of Paracetamol Tablets Containing	
	4% MTS Powder after Aging at Various Time Intervals	
	(52.0% RH)	181
79.	Dissolution Profile of Paracetamol Tablets Containing	
	4% Powder after Aging at Various Time Intervals	
	(71.3% RH)	182

ABBREVIATIONS

BS = Bulk Swelling

cps = Centipoise

CM = Carboxymethyl

CMS = Carboxymethyl Starch

CMTS = Carboxymethyl Tapioca Starch

CWS = Cold Water Soluble Fraction

DC = Degree of Crosslinking

DS = Degree of Substitution

DT = Disintegration Time

HC = Hydration Capacity

kp = Kilopound

Min = Minute

MTS = Modified Tapioca Starch

PVP-XL = Polyplasdone ^{R}XL

RH = Relative Humidity

rpm = Round per Minute

Sec = Second

SV = Sedimentation Volume

Vis = Viscosity

WU = Water Uptake