

รายการอ้างอิง

- 1. Loyen, G., and Dereinda, R. The Rubber International Magazine (January 2000): 73-98.
- วราภรณ์ ขจรไชยกูล. <u>การผลิตยางธรรมชาติ.</u> เอกสารทางวิชาการ, เลขที่ 92 (กุมภาพันธ์). ศูนย์ วิจัยการยางสงขลา อ.หาดใหญ่ จ.สงขลา, 2524.
- 3. Brydson, J.A. <u>Rubber Chemistry.</u> London: Applied Science Publishers ,1978.
- 4. <u>น้ำยาง.</u> ภาควิชาเทคโนโลยีการยาง คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลา นครินทร์ วิทยาเขตปัตตานี, 2531.
- วราภรณ์ ขจรไชยกุล, ผลชิต บัวแก้ว และ ภัทรา กานตศิลป์. <u>น้ำยางข้นและการผลิตถุงมือยาง.</u> (ม.ป.ท, ม.ป.ป.).
- 5. วิวัฒน์ ตัณฑะพานิชกุล, บรรณาธิการ. ค่มืออุปกรณ์การผลิตในอุตสาหกรรมเคมี. สมาคมส่ง เสริมเทคโนโลยี (ไทย-ญี่ปุ่น). พิมพ์ครั้งที่ 3, 2533.
- Tasakorn, P. Liquid-Liquid Dispersion in Relation to Suspension Polymerization.
 Doctoral dissertation, Department of Chemical Engineering, University
 College of Swansea, University of Wales, 1977.
- Hinze, J.O. Fundamentals of the Hydrodynamic Mechanism of Spitting in Dispersion Processes. <u>AIChEJ</u> 1(1955): 289.
- Clay, P.H. 1940. Proc. Roy. Acad. Sci. (Amsterdam), 43, 852. Cited in Tasakorn, P. Liquid-Liquid Dispersion in Relation to Suspension Polymerization.
 Doctoral dissertation, Department of Chemical Engineering, University College of Swansea, University of Wales, 1977.
- 10. Shinnar, R., and Church, J.M. Predicting Particle Size in Agitated Dispersion. Ind.Eng. Chem. 52(1960): 253.
- 11. Miller, S.A., and Mann, C.A. Agitation of Two-Phase System of Immiscible Liquids. <u>Trans. AIChE</u> (1944): 709.
- 12. Vermulen, T., Williams, G.M. and Langlois, G.E. Interfacial Area in Liquid-Liquid and Gas-Liquid Agitation. <u>Chem. Eng. Progr</u> 51(1955): 85F-95F.
- Chen, H.T., and Middleman, S. Drop Sizes Distribution in Agitated Liquid-Liquid System. <u>AIChEJ</u> 13(1967): 989.

- 14. Calderbank, P.H. Physical Rate Processes in Industrial Fermentation. <u>Trans. Instn.</u> <u>Chem. Engrs.</u> 36(1958): 443.
- Mlynek, Y., and Resnick, W. Drop Sizes in an Agitated Liquid-Liquid System. <u>AIChEJ</u> 18 (January 1972): 122- 127.
- Roger, W.A., Trice, V.G., and Rushton, J.H. Effect of Fluid Motion on Interfacial Area of Dispersions. <u>Chem. Eng. Progr.</u> 52(1956): 515.
- 17. Zerfa, M. and Brooks, B.W. Prediction of Vinyl Chloride Drop Size in Stabilized Liquid-Liquid Agitated Dispersion. <u>Chem. Eng. Sci.</u> 51(November 1996): 3223-3230.
- Grossman, G. Determination of Droplet Size Distribution in Liquid-Liquid Dispersions.
 <u>Ind. Eng. Chem. Proc. Des. Development</u> 11(1972): 537.
- รัตนา จิระรัตนานนท์. <u>การถ่ายเทมวล</u>. ภาควิชาวิศวกรรมเคมี สถาบันเทคโนโลยีพระจอมเกล้า ธนบุรี, 2538.
- Sprow, F.B. Drop Size Distribution in Strongly Coalescing Agitated Liquid-Liquid Systems. <u>AIChEJ.</u> 13(September 1967): 995-998.
- Johnson, T. and Thomas, S. Nitrogen/Oxygen Permeability of Natural Rubber, Epoxidised natural Rubber and Natural Rubber/Epoxidised Natural Rubber Blends. <u>Polymer</u> 40(1999): 3223.
- 22. Reis-Nunes, R.C., Compan, V. and Rainde, E. Gas Transport in Vulcanized Natural Rubber-Cellulose.II. Composites. <u>J. Polvm. Sci</u> 38(2000):393-402.

ภาคผนวก

ภาคผนวก ก

ตารางที่ ก.1 ค่าแรงตึงระหว่างผิวของ สารละลายพอลิไวนิลแอลกอฮอล์ และ o-xylene ที่ 25 องศาเซลเซียล

สารละลายพอลิไวนิลแอลกอฮอล์	ค่าแรงตึงระหว่างผิว		
(ร้อยละโดยน้ำหนัก)	(มิลลินิวตันต่อตารางเมตร)		
0.0005	31.2		
0.001	29.8		
0.003	20.1		
0.005	17.3		
0.01	15.2		
0.05	14.6		
0.1	13.5		
0.5	10.5		
1.0	10		

ตารางที่ ก.2 สมบัติทางกายภาพของสารอินทรีย์

สมบัติทางกายภาพ	o-xylene
(ที่ 25 องศาเซลเซียส)	
ความหนาแน่น (กิโลกรัมต่อลูกบาศก์เมตร)	876
แรงตึงผิว (มิลลินิวตันต่อตารางเมตร)	30
ความหนึด (mNs/m²)	0.756

ภาคผนวก ข

ข้อมูลการทดลองการกระจายขนาดหยด

ตารางที่ ข.1 แสดงการกระจายขนาดหยดที่สัดส่วนระหว่างเฟส 0.1

- ปริมาตรสารละลายพอลิไวนิลแอลกอฮอล์ 5.68×10⁻⁴ ลูกบาศก์เมตร

- ปริมาตร o-xylene 6.4x10⁻⁵ ลูกบาศก์เมตร

ขีดจำกัดบนของอันตรภาคชั้น	Į		จำนวเ	เหยด		
× 10 ⁶		ความ	แร้วรอบใบกวเ	เ (รอบต่อนาที)	
(ไมโครเมตร)	500	700	900	1000	1100	1200
		· ·				
3.4	12	583	540	520	818	732
6.3	18	345	360	343	356	406
9.2	10	116	119	109	134	77
12.2	9	88	77	51	38	14
15.1	6	60	24	4	6	2
18.0	12	20	4	3	2	0
21.0	10	9	1	1	1	0
23.9	200	1	2	1	0	0
26.8	150	2	1	0	1	0
29.8	360	1	1	0	2	0
32.7	420	2	1	0	0	0
35.6	120	2	1	1	0	0
38.6	100	1	0	0	0	0
41.5	50	1	0	1	0	0
44.4	20	1	0	0	0	0
47.4	5	1	0	0	0	0
จ้ำนวนหยุดทั้งหมด	1502	1233	1131	1034	1358	1231
D ₃₂ =	27.7	20.7	13.9	13.7	11.1	7.2

ตารางที่ ข.2 แสดงการกระจายขนาดหยดที่สัดส่วนระหว่างเฟส 0.15

- ปริมาตรสารละลายพอลิไวนิลแอลกอฮอล์ 5.37x10⁻⁴ ลูกบาศก์เมตร

- ปริมาตร o-xylene 9.5x10⁻⁵ ลูกบาศก์เมตร

ขีด	จำกัดบนของอันตรภาคชั้น	จำนวนหยด						
	× 10 ⁶			ความเร็วรอ	บใบกวน (รร	อบต่อนาที)		
	(ไมโครเมตร)	500	700	900	1000	1100	1200	1300
	3.4	63	381	367	439	458	543	695
	6.3	43	228	262	287	245	264	309
	9.2	25	147	164	125	181	174	55
	12.2	80	68	183	105	146	53	10
	15.1	69	53	93	42	13	7	2
	18.0	200	79	25	2	3	1	2
	21.0	150	60	4	1	2	0	0
	23.9	200	26	4	3	3	1	0
	26.8	327	3	2	1	0	0	1
	29.8	359	6	1	1	1	0	0
	32.7	185	1	1	1	0	0	0
	35.6	50	0	1	0	0	0	0
	38.6	20	1	0	0	0	0	0
	41.5	10	2	0	0	0	0	0
	44.5	2	1	0	1	0	0	0
	47.4	2	0	0	0	0	0	0
	จำนวนหย ดทั้งห มด	1785	1056	1107	1008	1052	1043	1074
	D ₃₂ =	28.7	21.9	15.6	15.5	12.4	9.9	8.4

ตารางที่ ข.3 แสดงการกระจายขนาดหยดที่สัดส่วนระหว่างเฟส 0.20

- ปริมาตรสารละลายพอลิไวนิลแอลกอฮอล์ 5.04x10⁻⁴ ลูกบาศก์เมตร

- ปริมาตร o-xylene 1.28x10⁻⁴ ลูกบาศก์เมตร

ขีดจำกัดบนของอันตรภา	าคขั้น	จำนวนหยด					
× 10 ⁶		ความเร็	้วรอบใบก	วน (รอบต่า	อนาที)		
(ไมโครเมตร)	500	700	800	900	1000	1100	
3.4	86	376	395	446	530	390	
6.3	53	184	261	300	310	358	
9.2	45	130	138	171	122	214	
12.2	69	91	70	138	75	100	
15.1	156	69	67	112	24	24	
18.0	200	62	66	35	2	1	
21.0	163	55	25	13	2	1	
23.9	333	31	12	2	1	0	
26.8	280	12	5	2	0	0	
29.8	120	4	2	3	0	0	
32.7	68	0	0	1	0	0	
35.6	46	2	0	1	0	0	
38.6	3	3	1	0	0	0	
41.5	5	1	0	1	0	0	
44.5	1	1	0	0	0	0	
47.4	1	1	0	0	0	0	
จำนวนหยดทั้งหมด	1629	1022	1042	1225	1066	1088	
D ₃₂ =	30.6	23.8	18.8	17.1	11.2	10.7	

a		
ตารางที่ ข.4	แสดงการกระจายขนาดหยุดท่สัดส่วนระหว่างเฟล	0.30
FILLO 1417 , M . 1		

- ปริมาตรสารละลายพอลิไวนิลแอลกอฮอล์ 4.42 x10⁻⁴ ลูกบาศก์เมตร

- ปริมาตร o-xylene 1.90 x10⁻⁴ ลูกบาศก์เมตร

6	ข้ดจำกัดบนของอันตรภาคชั้น	จำนวนหยด					
	x 10 ⁶		ความเ	รู้วรอบใบบว	น (รอบต่อน	เาที)	
	(ไมโครเมตร)	500	700	800	900	1000	1100
	3.0	22	198	368	336	460	312
	5.6	31	89	165	189	321	308
	8.2	29	56	212	145	125	406
	10.8	42	96	102	136	123	135
	13.4	33	113	68	147	110	120
	16.0	55	142	85	122	84	96
	18.6	65	29 5	39	89	56	36
	21.2	73	123	68	76	20	27
	23.8	88	97	44	48	19	1
	26.4	95	112	59	36	8	6
	29.0	210	84	45	22	6	1
	31.6	225	43	22	12	3	0
	34.2	435	35	18	4	2	0
	36.8	326	27	10	2	1	2
	39.4	85	8	5	2	0	1
	42.0	46	3	2	0	0	1
	44.6	32	8	2	0	0	0
	47.2	12	2	1	1	0	1
	49.8	4	5	0	O	0	С
	52.4	8	1	0	С	0	0
	55.0	2	3	0	0	0	0
	57.6	0	1	0	0	0	0
	60.2	1	1	0	0	0	0
	62.8	0	0	0	0	0	0
	จำนวนหยดทั้งหมด	1919	1542	1315	1367	1338	1453
	D ₃₂	31.6	24.9	22.8	18.8	15.4	14.0

หมายเหตุ เกิดฟิล์ม o-xylene ด้านบนขณะกวนที่ความเร็วรอบ 500 รอบต่อนาที

ตารางที่ ข.5 แสดงการกระจายขนาดหยุดที่สัดส่วนระหว่างเฟส 0.50

- ปริมาตรสารละลายพอลิไวนิลแอลกอฮอล์ 3.16 ×10⁻⁴ ลูกบาศก์เมตร

- ปริมาตร o-xylene 3.16 x10⁻⁴ิลูกบาศก์เมตร

- 11	111.1012.0-XAIGUE 3.10 X 10	สูกบาศก	191613.					
ลื่	ดจำกัดบนของอันตรภาคชั้น			จำนวน	เหยด			
	× 10 ⁶	ความเร็วรอบใบกวน (รอบต่อนาที่)						
	(ไมโครเมตร)	500	700	800	900	1000	1100	
	3.0	12	275	343	394	443	565	
	5.6	24	166	182	206	299	388	
	8.2	28	121	135	195	185	147	
	10.8	36	53	64	112	124	122	
	13.4	22	66	88	130	136	68	
	16.0	43	43	47	96	84	83	
	18.6	46	46	66	84	42	39	
	21.2	85	85	91	91	18	21	
	23.8	26	56	45	37	9	3	
	26.4	41	84	62	25	6	5	
	29.0	125	125	84	23	3	2	
	31.6	223	143	99	12	2	3	
	34.2	210	75	46	5	4	0	
	36.8	408	86	23	3	2	2	
	39.4	108	16	12	1	1	1	
	42.0	89	13	3	2	2	2	
	44.6	60	25	1	0	0	0	
	47.2	48	2	2	1	1	1	
	49.8	22	0	0	0	0	0	
	52.4	13	1	1	1	1	1	
	55.0	13	1	1	0	0	0	
	57.6	8	0	0	0	0	0	
	60.2	3	1	1	0	0	0	

หมายเหตุ เกิดฟิล์ม o-xylene ด้านบนขณะกวนที่ความเร็วรอบ 500 รอบต่อนาที

0

1693

34.7

62.8

จำนวนหยดทั้งหมด

D₃₂

0

1396

26.2

0

1418

23.2

0

1483

29.1

0

1362

19.5

0

1453

17.0

ขนาดรู	จำนวนหยด			
(ไมโครเมตร)	φ =0.1	∳ =0.15	\$ =0.2	
3	0	0	0	
6	0	0	0	
9	0	0	2	
12	5	. 0	5	
15	8	5	6	
18	20	20	12	
21	18	20	15	
24	28	30	17	
27	9	10	15	
30	1	1	10	
33	5	5	10	
36	5	8	5	
39	1	1	1	
42	0	0	1	
45	0	0	1	
จำนวนหยดรวม	100	100	100	
d ₃₂	25.6	26.5	28.5	

ตารางที่ ข.6 แสดงการกระจายขนาดรูเฉลี่ยที่เกิดบนผิวฟิล์ม ที่สัดส่วนเฟส 0.1 0.15 และ 0.2

ภาคผนวก ค ข้อมูลการทดลองอัตราการซึมผ่านของน้ำ

ตารางที่ ค.1 แสดงข้อมูลการทดลองหาอัตราการซึมผ่านได้ของน้ำผ่านแผ่นฟิล์มยาง หนา 350 ไมโครเมตร ที่ 25 องศาเซลเซียส **\$=0.2\$\$\$**

ความเร็วรอบ	อัตราการซึมผ่านได้ของน้ำ
(รอบต่อนาที)	x10⁴ กิโลกรัม/(ตารางเมตร-ชั่วโมง)
400	14.7
500	12.8
600	12.5
700	9.8
900	9.8
1000	9.1

ตารางที่ ค.2 แสดงผลการทดลองหาอัตราการขึ้มผ่านได้ของน้ำผ่านแผ่นฟิล์มไม่ผสม o-xylene ที่ อุณหภูมิต่าง ๆ

	อัตราการซึมผ่านได้ของน้ำ x10 ⁻⁴ กิโลกรัม/(ตารางเมตร-ชั่วโมง)							
ความหนา		อุณหภูมิ (อ	งศาเซลเซียล)					
(ไมโครเมตร)	25	25 40 50 6						
259	5.7	23.6	36.6	52.3				
263	5.8	25.4	42.1	47.6				
284	5.4	23.8	41.4	50.9				
310	4.4	20.6	38.0	48.9				
325	4.1	16.9	36.3	46.9				
343	3.9	19.0	34.4	47.8				
358	3.5	16.1	32.9	48.4				
376	3.4	15.1	30.9	46.2				
387	3.0	14.4	31.8	47.0				

	อัตราการซึมผ่านได้ของน้ำ						
		x10 ⁻¹ กิโลกรัม/(ตารางเมตร-ชั่วโมง)					
ความหนา		อุณหภูมิ (อง	เศาเซลเซียล)				
(ไมโครเมตร)	25	25 40 50 60					
263	10.3	32.1	44.3	56.9			
275	10.5	31.0	42.5	54.8			
289	9.3	30.6	43.9	55.9			
308	10.0	27.1	44.0	55.7			
325	9.5	25.3	43.6	54.4			
335	9.0	26.4	42.9	53.5			
365	8.8	24.3	35.4	52.8			
375	8.9	23.1	34.8	52.1			
395	8.2	23.1	33.8	51.2			

٠

ตารางที่ ค.3 แสดงผลการทดลองหาอัตราการซึมผ่านได้ของน้ำผ่านแผ่นฟิล์มผสม o-xylene **ф**=0.1 ที่อุณหภูมิต่าง ๆ

	อัตราการซึมได้ของน้ำ			
	×10 ⁻⁴ กิโลกรัม/(ตารางเมตร-ชั่วโมง)			
ความหนา	อุณหภูมิ (องศาเซลเซียส)			
(ไมโครเมตร)	25	40	50	60
255	11.4	32.8	48.4	64.0
275	10.8	32.0	48.6	62.9
286	10.0	31.0	47.9	62.8
306	10.3	27.4	44.6	57.0
325	10.9	26.7	46.4	57.2
335	10.7	25.7	43.6	55.5
355	10.8	26.4	37.7	54.5
370	8.4	25.6	36.8	52.7
385	9.4	25.9	36.3	53.8

ตารางที่ ค.4 แสดงผลการทดลองหาอัตราการขึมผ่านได้ของน้ำผ่านแผ่นฟิล์มผสม o-xylene \$\overline=0.2 ที่อุณหภูมิต่าง ๆ

	อัตราการซึมได้ของน้ำ				
	x10 ⁻⁴ กิโลกรัม/(ตารางเมตร-ชั่วโมง)				
ความหนา	อุณหภูมิ (องเซลเซียส)				
(ไมโครเมตร)	25	40	50	60	
257	10.6	35.5	49.2	68.0	
283	9.9	34.8	49.0	67.4	
294	9.0	33.6	47.6	66.6	
310	8.9	33.2	45.6	56.4	
333	8.5	32.7	44.8	57.7	
346	9.4	33.6	46.8	58.6	
362	8.2	28.1	45.9	57.3	
375	8.4	28.8	44.7	56.3	
387	7.8	27.6	43.9	55.5	

ตารางที่ ค.5 แสดงผลการทดลองหาอัตราการซึมผ่านได้ของน้ำผ่านแผ่นฟิล์มผสม o-xylene \$\overline=0.3 ที่อุณหภูมิต่าง ๆ

ตารางที่ ค.6 แสดงผลการทดลองหาอัตราการซึมผ่านได้ของน้ำผ่านแผ่นฟิล์มผสม o-xylcne \$\$\overline=0.5 ที่อุณหภูมิต่าง ๆ

	อัตราการซึมได้ของน้ำ			
	x10 ⁻⁴ กิโลกรัม/(ตารางเมตร-ชั่วโมง)			
ความหนา	อุณหภูมิ (องค่าเขลเซียส)			
(ไมโครเมตร)	25	40	50	60
258	10.2	35.9	49.7	73.0
276	9.7	35.2	49.5	71.6
284	8.9	34.9	48.7	69.9
310	9.9	33.5	48.5	60.8
325	9.3	33.0	47.3	59.4
338	9.5	31.2	46.0	58.8
360	9.6	30.8	46.1	59.9
373	9.2	30.6	45.2	59.1
388	8.6	29.6	44.1	57.9

•

82

สมการความสัมพันธ์ระหว่างอัตราการซึมผ่านได้ของน้ำกับความหนาแผ่นฟิล์ม

รูปที่ ง.1 สมการความสัมพันธ์ระหว่างอัตราการขึมผ่านได้ของน้ำกับความหนาฟิล์ม ที่อุณหภูมิ ต่าง ๆ φ= 0

รูปที่ ง.2 สมการความสัมพันธ์ระหว่างอัตราการขึมผ่านได้ของน้ำกับความหนาฟิล์ม ที่อุณหภูมิ ต่าง ๆ φ= 0.1

รูปที่ ง.3 สมการความสัมพันธ์ระหว่างอัตราการขึมผ่านได้ของน้ำกับความหนาฟิล์ม ที่อุณหภูมิ ต่าง ๆ φ= 0.2

รูปที่ ง.4 สมการความสัมพันธ์ระหว่างอัตราการซึมผ่านได้ของน้ำกับความหนาฟิล์ม ที่อุณหภูมิ ต่าง ๆ φ= 0.3

รูปที่ ง.5 สมการความสัมพันธ์ระหว่างอัตราการขึ้มผ่านได้ของน้ำกับความหนาฟิล์ม ที่อุณหภูมิ ต่าง ๆ **φ**= 0.5

ภาคผนวก จ

ตัวอย่างการคำนวณ

จากสมการความสัมพันธ์

$$\frac{D_{32}}{D_{I}} = \beta \cdot f(\phi) \frac{K}{(\theta C)^{0.4}} \cdot \left[\frac{1}{Np}\right]^{0.4} \cdot We_{I}^{-0.6}$$
(2.45)

ค่าความขั้นจากกราฟความสัมพันธ์ระหว่าง D₃₂/D, กับ We⁻⁰⁶ ได้ค่าความขั้นดังต่อไปนี้

สำหรับ $oldsymbol{\phi}$ =0.1 ค่าความขันเท่ากับ	1.89	รูปที่ 4.7
φ=0.15 ค่าความขันเท่ากับ	1.97	รูปที่ 4.8
φ=0.2 ค่าความขันเท่ากับ	2.06	รูปที่ 4.9

ถ้า $f(\phi)$ ถูกแทนด้วย (1+c $_{s}\phi$) ความขันของกราฟแสดงด้วย c $_{7}$ (1+c $_{s}\phi$) แก้สมการหา ค่า c $_{7}$ และ c $_{8}$ ได้ c $_{7}$ เท่ากับ 0.02 c $_{8}$ เท่ากับ 0.89

$$\beta f(\phi) \frac{K}{(\theta C)^{0.4}} \left[\frac{1}{Np} \right]^{0.4} = 0.02(1+0.89\phi)$$

จากกราฟ รูปที่ 4.2 4.3 4.4 ได้ค่าเฉลี่ย $\frac{d_{95}}{D_{32}}$ =1.91

 $\beta = 1/1.91 = 0.52$

จากผลการทดลองของ Clay ได้ค่าคงที่ K = 0.72

ค่า power number ของถังกวนติดครีบ $N_{
m p}pprox$ 4.1

$$C = 4/27\pi = 0.0472$$

ดังนั้น
$$\theta^{0.4} = \frac{(0.52)(0.72)}{(0.0472)^{0.4}(4.1)^{0.4}(0.02)}$$

$$\theta$$
 = 7.83 x 10³

ประวัติผู้เขียน

นางสาว อัศณี ซลมาตร์ เกิดวันที่ 15 เมษายน พ.ศ. 2520 ที่ตำบลหนองไม้แดง อำเภอ เมือง จังหวัดซลบุรี สำเร็จการศึกษาปริญญาตรีวิทยาศาสตรบัณฑิต สาขาเคมีวิศวกรรม จากคณะ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2540 และเข้าศึกษาต่อในหลักสูตรวิทยา-ศาสตรมหาบัณฑิต ที่จุฬาลงกรณ์มหาวิทยาลัย เมื่อ พ.ศ. 2541