

เอกสารอ้างอิง

- 1. ยศ ลักษณ์โกเศศ "โครงการสำรวจข้อมูลระคับและวิเคราะห์ข้อมูลบริเวณกทม.ค้านตะวัน ออก", เอกสารประกอบการส้มมนา(เลม.1) เรื่อง "น้ำทวม 27 ประสบการณ์ ความกาวหนาและการวางแผน",คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2527
- 2. Japan International Cooperation Agency (JICA) "Master plan on Flood Projection/Deainage Project In Eastern Suburban-Bangkok", Vol.1-2, Bangkok Metropolitan Admistration, 1985.
- 3. ชัยพันธุ์ รักวิจัย <u>ชลศาสตร์ของทางน้ำเปิด</u> โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพ มหานคร, 2526
- 4. Viessman, W; Knapp, J.W.; Lewis GL; and Harbaugh, T.E. <u>Introduction</u>

 to Hydrology Horper & Row, Publishers, Second edition,

 1979.
- 5. Winyawonk, S. "Routing of Flows from Peak Load Generation

 Through River Channel", Master Thesis, Asian Institute of

 Technology, Bangkok Thailand, 1970.
- 6. Chow, V.T. Open Channel Hydraulics Mc Grow Hill company, Inc,
 New-York, 1959.
- 7. Camp Dresser & Mckee (CDM) Consulting Engineers "Sewerage, Drainage

 Flood Protection Systems. Bangkok and Thonburi" Master

 Plane, Vol.1-2, Bangkok Metropolitan Admistration, 1968.
- 8. BFCD Joint Venture (NEDECO; NECCO; LM/SPAN) "Bangkok Flood Control and Drainage Project(CITY CORE)" General Study Report Vol. 1-2, Bangkok Metropolitan Admistration, 1984.
- 9. Study Team of Chulalongkorn University Bangkok and Delft
 University of Technology "Bongkok Flood Control Project"

 Project Report, Chulalongkorn University, Bangkok, 1984.

- 10. อนุชิต โสคสถิตย์ "โครงการป้องกันน้ำทวมกรุงเทพมหานครและปริมณฑล" สำนักการ ระบายน้ำ กรุงเทพมหานคร, 2529
- 11. สมศักดิ์ เกียรติสุรนนท์ "การจาลองอางเก็บนำอุบลรัตนสำหรับกรณีอุทกภัย" วิทยานิพนธ วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมแหล่งนำ,ภาควิชาวิศวกรรมโยธา กณะวิศวกรรมศาสตร จุฬาลงกรณ์มหาวิทยาลัย, 2526
- 12. เกษมสันติ สุวรรณรัต, "การจักระบบในพื้นที่ลุมเพื่อแก้ไขปัญหานำทวมในชุมชน" รายงาน การสัมนาทางวิชาการ โกรงการนำทวมและระบายนำกรุงเทพมหานกร และ ปริมณฑล ณ.เมืองพัทยา, สานักการระบายนำ กรุงเทพมหานกร, 2529
- 13. กณะกรรมการป้องกันและแก้ไขปัญหาน้ำทวมเขฅกรุงเทพมหานครและปริมณฑล, เอกสารประ กอบการพิจารณาเรื่อง "โครงการเพิ่มเติมสำหรับการป้องกันน้ำทวมกรุงเทพมหา นครและปริมณฑล" ต่อคณะรัฐมนตรี วันอังการที่ 6 ธันวาคม 2526
- 14. ไพซูรย์ กิติสุนทร และ ธำรง เปรมปรีดิ์ "ความสัมพันธระหวางความเขมฝน-ชวงเวลา-ความถี่ของฝน", เอกสารประกอบการส้มมนา (เลม 2) เรื่อง "นำทวม 27 ประสบการณ์ ความกาวหนาและการวางแผน" คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย, 2527
- 15. ทวีวงศ์ ศรีบุรี "ความจำเป็นของโครงการเพื่อปองกันน้ำทวม", วิศวกรรมสาร, 2, 101-109, 2527
- 16. Ahmad, E "Mathematical Modelling of Unsteady Flow In a Tidal Reach of The Bang Pakong River" Master Thesis, Asian Institute of Technology, Bangkok, Thailand, 1980.
- 17. Mahmood, V. and Yevjevich, V. Unsteady Flow in open Channel Vol.

 1. Water Resources Publications, Fort Collins, Colorado,
- 18. Mclaughlin,R.T., Kim,C., and Dailey,J.E., "Unsteady Flow in Reservoirs Operated for peak Power." Technical Report No.101, Hydrodynamics Laboratory, Department of Civil Engineering, M.I.T., 1966

- 19. Tingsanchali, T. and Arbhabhirama, A. "Hydrodynamic Models of the
 Chao Phraya River System" Project Report, Asian Institute
 of Technology, Bangkok, Thailand, 1978.
- 20. Pacardo, A.T. "Unsteady Flow Computation In a River Net Work",

 Special Studies, Asian Institute of Technology, Bangkok,

 Thailand, 1975.
- 21. Stoker, J.J., Water Waves, Interscience, 1957.
- 22. Henderson, F.M. Open Channel Flow Mc Millan Series in Civil Engineering, New York, 1970.

ภาคผนวก ก การพัฒนาสมการอธิบายการไหล จาก Camp Dresser & Mckee (CDM)

- n. Developed Forms of Continuity and Momentum Equation for the Hydraulic Routing Model.
- Finite approximation in distance. As already mentioned above in the discussion of flow representation, it is assumed that the flow in the canal system will be gradually varied, unsteady, free-surface flow in the subcritical range. Differential equations expressing the governing relationships for this type of flow have been written and are readily available in engineering literature (6)1. To obtain numerical solutions for particular flow problems, these equations are written in finite difference form, and computations are carried out using small increments of time and distance. Such numerical procedures are presented in considerable detail in the literature (18, 21), but generally the application is limited to flow in a single channel or a simple junction of two channels flowing into a third. One or more of these applications might be applicable for flow in a small number of channels and junctions, but would hardly be suitable for subsystems of the magnitude required.

Equations for a system somewhat similar to Bangkok's have been developed for a study of flow in the network of the Sacramento-San Jaoaqin Delta (4), but the mathematical model for that application used a representation of flow considerably different from the one described In that representation, all of the channel storage above. was concentrated at the nodes, and the flow in the channels accounted only for energy losses and accelerations. storage at the node was equal to half the storage in the canals flowing to or from that node. While such a representation may be suitable for flow in a set of existing channels, it was felt to be inadequate for a study where design was a primary objective and many properties of the channel were yet to be selected. For example, if the design of a channel were changed, the storage function at the nodes at either end of the channel would have to be recomputed. Furthermore, the examinations of the equations in that study indicated that they were essentially the same as other finite-difference equations where the increment of distance was assumed to be small. No special allowances were made for the possibility of considerable variation in the length of links between nodes.

Numbers in parentheses in the body of the text refer to citations in the list of references.

For the mathematical model used in this study, it is apparent that the length L between nodes is the equivalent of the finite increment of x used in past applications. Since the distance between nodes may be expected to have any value, the finite increment cannot be made constant. Furthermore, it cannot be assumed beforehand that this length will be small as is done in normal finite difference calculations. Therefore, it was decided to write the equations of motion in a form specifically suited to the representation of flow used in this mathematical model.

The essential aspect of this finite approximation can be most easily presented by considering an example with the aid of Figure 7. In the figure, the amount of water stored in the channel during the increment T of time is represented by the volume enclosed between the water surface shown by the solid line for time 0 and that shown by the broken line for time T. In the normal finite difference approximation this volume might be estimated as the product of the length of the channel, the average width of the water surface at time 0 and the average change in depth. The expression for this volume might be

$$\frac{L}{2}(B_{00} + B_{L0}) \frac{(Y_{0T} + Y_{LT} - Y_{00} + Y_{L0})}{2}$$

In the finite approximations for this mathematical model, however, the volume of storage is obtained by treating x as a variable between the values 0 and L. An infinitesimal increment of volume at any value of x is written as the product of the rate of change of water surface elevation and the width of the water surface at x. This product is integrated with respect to x and t from 0 to L and 0 to T, respectively. The resulting expression for the storage during the time increment becomes

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial f}{\partial t} B(x, t) dx dt$$

In this expression, assumptions are made about the variations in y and B, and the integration is actually carried out to obtain an expression for the storage.

First-order approximation in time. In the mathematical model, the values of V and h are the unknowns to be found at the end of a time increment, given the values at the beginning. In the equations, the coefficients will involve such variables as width B and cross section area A, which vary with x and t as the water surface elevation varies. From the expression for the finite approximation given in the preceding paragraph, it can be anticipated that the final form of the equations will involve values of variables such as B and A at time T, and these will depend on the values of h at that time. Thus, in the equations, the coefficients of the unknowns will contain the unknowns themselves or variables that depend upon the values of the unknowns. Therefore, the equations for the finite approximation are non-linear.

The general approach for solving these equations is by iteration. In the first step of the iteration, the values of the unknowns at the beginning of the time increment are used to compute the values of the coefficients. The equations become linear and can be solved for the values of the unknowns which are only first estimates of the actual values. recomputing the coefficients for the second step of the iteration, the value of any variable is taken as the average of the value at the beginning of the time increment and the first estimate of the value at the end. Again, the equations become linear and are solved for the second estimate of the unknowns. For the third step, the coefficients are computed using the average of values at the beginning of time increment and the second estimate of the values at the end. The iteration continues until successive estimates of the unknowns are within some prescribed limit of error. The resulting estimate is taken as the value of the unknowns at the end of that time increment. When this complete iteration is carried out for each time increment, the resulting values of the unknowns are second order approximations in time because the values at the end of the time increment were considered in the coefficients. When the process is stopped after the first step of the iteration, the resulting values are first order approximations in time because only the values at the beginning of the time increment are used in the coefficients.

While the x increment is determined by the length between nodes and must vary throughout the system, the time increment can be chosen arbitrarily and made constant throughout the system. In choosing the time increment, it is necessary to balance the factors that contribute to efficiency of computation. Quite clearly, the second order of approximation will require several steps of iteration for each time increment, thus increasing the amount of computation for a given number of increments. On the other hand, the second order approximation generally allows longer time increments to be used for the same degree of accuracy. for a given amount of time, fewer time increments are required. It was anticipated that for the Bangkok drainage system, the use of a first-order approximation with smaller time increments would be more efficient than the second-order approximation with longer increments. Therefore, as the equations were developed, it was assumed that only first-order approximations in time would be necessary. This has an important bearing upon which terms in the finite approximations are retained and which are dropped.

n-3 Continuity equation for a link. The equation of continuity for flow in a link is obtained by using a control volume that can be seen in Figure 7. The control surface enclosing the volume consists of the bottom and sides of the channel, the cross section areas at the upstream and downstream end and the water surface at time t = 0. With this fixed control volume, the change in channel storage shown in Figure 7 between times 0 and T is treated as flux of fluid upward through the top of the control surface during the time increment T. Fixing the control surface to the water surface at the beginning of the time increment is well-suited to the assumption of first-order approximation in time, because the areas, widths, and volumes associated with the control surface are those at the beginning of the time increment.

Continuity requires that the sum of the inflows and outflows through the control surface is zero, and the outflows are treated as positive in order to establish a sign convention. From Figure 7, the expression for outflows at the ends of the channel can be written down by inspection as

$$\left[\frac{1}{2} (V_{L0} + V_{LT}) A_{L0} - \frac{1}{2} (V_{00} + V_{0T}) A_{00}\right] T$$

The possibility of intlow distributed along the length L is accounted for by the term -qL where q is the volume of inflow per unit of length of channel per unit of time, and the negative sign indicates that the numerical value of q will be positive when the flow is into the channel. The remaining term in the outflows is the flux through the top of the control surface.

The double integral expressing this flux was given in Paragraph a above. To evaluate the integral, it is necessary to assume some relationship for the term in the integrand. To obtain such an expression for y the value y_{00} is used as the reference value and the value at x and t is obtained by expansion to give

$$y(x,t) = y_{00} + (\frac{\partial x}{\partial y})_{00} \times + \left\{ (\frac{\partial t}{\partial y})_{00} + \frac{\Gamma}{x} \left[(\frac{\partial t}{\partial y})_{0} - (\frac{\partial t}{\partial y})_{00} \right] \right\} t \quad (1)$$

The subscripts on the partial derivatives indicate that they are evaluated at time 0. Because y is assumed to vary linearly with x and t, the partial derivatives are treated as constants. To simplify the type script, a new set of constants is defined as follows:

$$\eta_1 = y_{00} \tag{2a}$$

$$\eta_2 = \left(\frac{\partial y}{\partial x}\right)_{00} \tag{2b}$$

$$\eta_3 = \left(\frac{\partial Y}{\partial t}\right)_{00} \tag{2c}$$

$$\eta_{4} = \left(\frac{\partial Y}{\partial t}\right)_{L,0} - \left(\frac{\partial Y}{\partial t}\right)_{00} \tag{2d}$$

and Equation 1 becomes

$$y(x,t) = y_{00} + \eta_2 x + \eta_3 t + \eta_4 \frac{x}{L} t$$
 (3)

Similarly, the width of water surface can be expanded as

$$B(x,t) = B_{00} + \left[\left(\frac{\partial B}{\partial x} \right)_{00} + \left(\frac{\partial B}{\partial y} \right)_{00} + \left(\frac{\partial B}{\partial y} \right)_{00} \left(\frac{\partial X}{\partial y} \right)_{00} \right] \times$$

$$+ \left[\left(\frac{\partial B}{\partial y} \right)_{00} + \left(\frac{\partial B}{\partial y}$$

Defining a new set of constants to replace the partial derivatives by

$$\beta_1 = B_{00} \tag{5a}$$

$$\beta_2 = (\frac{\partial B}{\partial x})_{00} + (\frac{\partial B}{\partial y})_{00} (\frac{\partial y}{\partial x})_{00}$$
 (5b)

$$\beta_3 = (\frac{\partial y}{\partial B}) \qquad (\frac{\partial t}{\partial y}) \tag{5c}$$

$$\beta_{4} = \left(\frac{\partial B}{\partial Y}\right)_{LO} \left(\frac{\partial Y}{\partial t}\right)_{LO} - \left(\frac{\partial B}{\partial Y}\right)_{OO} \left(\frac{\partial Y}{\partial t}\right)_{OO}$$
 (5d)

and Equation 4 becomes

$$B(x,t) = \beta_1 + \beta_2 x + \beta_3 t + \beta_4 \frac{x}{L} t$$
 (6)

The double integral expressing the channel storage or flux through the top of the control surface can be evaluated by substituting Equations 3 and 6 into the integrand and remembering that in the first-order approximation B is evaluated at the beginning of the time increment. The result is

$$\int_{0}^{T} \int_{\partial t}^{\Delta Y} B dx dt = \int_{0}^{T} \int_{0}^{T} (\eta_{3} + \eta_{4} \frac{x}{L}) (\beta_{1} + \beta_{2}x) dx dt$$

$$= LT \left[(\beta_1 + 1/2 \beta_2 L) \eta_3 + (1/2 \beta_1 + 1/3 \beta_2 L) \eta_4 \right]$$
 (7)

The product of an appropriate partial derivative with L or T will give the difference between values of y or B at the two ends of the link or the two ends of the time increment. Thus, Equation 7 can be written as

$$\int_{0}^{T} \int_{0}^{L} \frac{\partial Y}{\partial t} B dx dt = \frac{L}{6} (y_{0T} - y_{00}) (2B_{00} + B_{L0}) + \frac{L}{6} (y_{LT} - y_{L0}) (B_{00} + 2B_{L0})$$
(8)

The resulting first-order continuity equation becomes

$$-(v_{00} + v_{0T})A_{00} + (v_{L0} + v_{LT})A_{L0} - 2qL$$

$$+ \frac{L}{3T} \left[(y_{0T} - y_{00}) (2B_{00} + B_{L0}) + (y_{LT} - y_{L0}) (B_{00} + 2B_{L0}) \right] = 0 \quad (9)$$

Since the water-surface elevations, rather than the depths, are matched at the nodes, it is convenient to write Equation 9 in terms of elevation by substituting h - z for y. All terms containing z cancel, and the resulting equation is identical to Equation 9 with y replaced by h. Furthermore, in order to keep the values of h from being too large, it is possible to subtract a constant value from all h. This constant can be treated as a datum elevation from which h is measured. Representing it by Z, y could be replaced by h - z in Equation 9.

Momentum equation for a link. The equation of momentum is obtained using the same control volume as was used for the continuity equations. The momentum equation is a vector equation, but since the flow is assumed to be one dimensional and in one direction, only forces and momentum changes in the x-direction need to be considered. Since the momentum equation for the finite approximation is developed directly from the definitions rather than from the differential equation, it seems more appropriate here to state the momentum relationship in words rather than in a differential equation. This relationship can be expressed as

(Pressure forces + weight forces - friction forces) $_{x}$

- = (efflux of x-momentum at downstream end)
 - (influx of x-momentum at upstream end)
 - + (efflux of x-momentum through top surface)
 - + (x-acceleration of fluid inside control volume)

The subscript x on the forces indicates that the components in the direction of flow are used. For the mathematical model, a finite approximation was found for each of these items.

The pressure force in the x-direction is equal to the total pressure of the cross section on the upstream end minus that at the downstream end. In order to evaluate this force, an expression was written for the difference in pressure forces on two cross sections a small distance, dx, apart. This force can be written as

$$- \gamma A \frac{\partial x}{\partial y} dx$$

The necessary expression for A is given by

$$A = a_1 + a_2 x + a_3 t + a_4 \frac{x}{L} t$$
 (10)

where

$$a_1 = A_{00}$$
 (11a)

$$a_2 = (\frac{\partial x}{\partial x})_{00} + (\frac{\partial x}{\partial y})_{00} (\frac{\partial x}{\partial y})_{00}$$
 (11b)

$$a_3 = (\frac{\partial A}{\partial Y})_{00} (\frac{\partial E}{\partial Y})_{00}$$
 (11c)

$$a_{4} = (\frac{\partial A}{\partial y})_{L0} (\frac{\partial E}{\partial y})_{L0} - (\frac{\partial A}{\partial y})_{00} (\frac{\partial E}{\partial y})_{00}$$
 (11d)

In the above expression for the pressure forces on the infinitesimal length, the first-order approximation for A is obtained from the first two terms on the right-hand side of Equation 10. The approximation for y is obtained by differentiating Equation 3 with respect to x. With these substitutions, the expression is integrated with respect to x from 0 to L to obtain a finite approximation for the difference between the pressure forces at the two ends of the channel. In order to find the average value over the length of the time increment, the expression is also integrated with respect to t from 0 to T, and the result is divided by T. The integration is carried out and substitutions are made in the same manner as in deriving Equation 8 for the channel storage. The result is

$$\frac{-\gamma}{T} \int_{0}^{T} \int_{0}^{L} A(x,0) \frac{\partial y}{\partial x} dx$$

$$= \frac{\gamma}{4} (A_{00} + A_{L0}) (y_{00} + y_{0T} - y_{L0} - y_{LT}) \tag{12}$$

For the weight forces, the volume enclosed by the control surface was estimated as the product of the length and the average of the two end areas. Letting \mathbf{S}_0 represent the slope of the bottom of the channel in the direction of flow, the expression for the weight force is

$$\frac{\gamma L}{2} s_0 (\lambda_{00} + \lambda_{L0})$$

In deriving an expression for the friction forces, it was assumed that the energy gradient due to friction varied linearly with distance along the channel and time. This assumption leads to

$$s_f(x,t) = s_1 + s_2 x + s_3 t + s_4 \frac{xt}{L}$$
 (13)

where the constants s_1 , s_2 , s_3 and s_4 have definitions analogous to the constants in Equations 5 and Il. This definition is not exactly equivalent to the assumptions that the roughness factor varies linearly with x. However, as will be seen from the actual expression derived, only the values of the roughness factor and energy slope at the ends of the channel are used in the first-order approximation. In between the ends, whether the slope varies linearly or the roughness factor varies linearly, is immaterial.

As with the pressure forces, the friction force is first written for an infinitesimal length of channel. Following the normal procedure for deriving the momentum equation for

unsteady flow, the forces due to friction are assumed to be proportional to the friction loss over the length multiplied by the cross-sectional area of the channel, giving an expression of

$$-\gamma s_f \lambda(x,0) dx$$

where the minus sign indicates that the friction forces always oppose the flow. Substituting the appropriate values for $S_{\rm f}$ and A for a first-order approximation, integrating with respect to x, collecting terms and substituting as indicated for preceding expressions leads to the following result.

$$-\int_{0}^{L} \gamma (s_{1} + s_{2}x) (a_{1} + a_{2}x)dx$$

$$= \frac{-\gamma_{L}}{6} \left[s_{00}(2A_{00} + A_{L0}) + s_{L0}(A_{00} + 2A_{L0}) \right]$$
(14)

In a first-order finite approximation for the momentum flux through the ends of the control volume, the cross section areas at the beginning of the time increment are used. However, the velocity of flow is assumed to vary with distance and time according to

$$V(x,t) = v_1 + v_2 x + v_3 t + v_4 \frac{x}{L} t$$
 (15)

where v_1 , v_2 , v_3 and v_4 are defined in a manner analogous to Equations 5 and 11. The average flux over the time increment is obtained by integrating with respect to t and dividing by T. With the sign convention that flux out of the control volume is positive, the expression for the net momentum flux through the ends is derived as follows:

$$\frac{\rho}{T} \int_{0}^{T} [A_{L0} v^{2}(L,t) - A_{00} v^{2}(0,t)] dt$$

$$= \frac{\rho}{T} \int_{0}^{T} [A_{L0} (v_{1} + v_{2}L + v_{3}t + v_{4}t) - A_{00} (v_{1} + v_{3}t)] dt$$

$$= \rho A_{L0} [V^{2}_{L0} + V_{L0} (V_{LT} - V_{L0}) + 1/3 (V_{LT} - V_{L0})^{2}]$$

$$- \rho A_{00} [V^{2}_{00} + V_{00} (V_{0T} - V_{00}) + 1/3 (V_{0T} - V_{00})^{2}] (16)$$

The last term in each of the brackets on the right hand side of Equation 16 represents the square of the difference between the velocities at the beginning and end of the time increment. Therefore, they are second-order terms and should be neglected in the first-order approximation. The final form of the expression becomes

$$\rho \left[A_{LO} V_{LO} V_{LT} - A_{OO} V_{OO} V_{OT} \right] = \rho \left[Q_{LO} V_{LT} - Q_{OO} V_{OT} \right]$$
 (17)

The flux of x-momentum through the top of the control surface is similar to the flux of fluid for channel storage, except that the x-velocity of the fluid as it passes upward through the surface must be taken into account. Therefore, the integrand for the flux in Equation 7 must be multiplied by velocity, as expressed in Equation 15. The substitution, integration, and replacement of appropriate terms can be summarized as follows:

$$\frac{\rho}{T} \int_{0}^{T} \int_{0}^{L} V(x,t) \frac{\partial y}{\partial t} B(x,0) dxdt$$

$$= \frac{\rho}{T} \int_{0}^{T} \int_{0}^{L} (v_{1} + v_{2}x + v_{3}t + v_{4} \frac{x}{L} t) (\eta_{3} + \eta_{4} \frac{x}{L}) (\beta_{1} + \beta_{2}x) dxdt$$

$$= \frac{\rho L}{24T} (y_{0T} - y_{00}) \left[B_{00} (3v_{00} + 3v_{0T} + v_{L0} + v_{LT}) + B_{L0} (v_{00} + v_{0T} + v_{L0} + v_{LT}) \right]$$

$$+ \frac{\rho L}{24T} (y_{LT} - y_{L0}) \left[B_{00} (v_{00} + v_{0T} + v_{L0} + v_{LT}) + B_{L0} (v_{00} + v_{0T} + v_{L0} + v_{LT}) \right]$$

$$+ B_{L0} (v_{00} + v_{0T} + 3v_{L0} + 3v_{LT}) \right] (18)$$

Equation 18 is still non-linear because it contains products of the unknown depth and the unknown velocity at the end of the time increments. It must be assumed that either the change in depth or the change in velocity over the increment is negligible. Selecting the change in depth as negligible is inappropriate because the very reason for this flux of momentum is the change in water depth. Thus, as would be expected, with no change in depth, the right hand side of Equation 18 becomes zero. Therefore, it was decided to treat the brackets containing terms with widths and velocity as coefficients of the depths in the parentheses. In this case, the appropriate assumption for the first-order approximation is that the velocity of the fluid passing upward through the control surface is essentially constant, or that the change in velocity during the time increment is negligible. With this assumption, the final first order expression for this part of the momentum flux becomes

$$\frac{\rho}{T} \int_{0}^{T} \int_{0}^{L} v \frac{\partial v}{\partial t} \, B dx dt = \frac{\rho_{L}}{12T} (y_{0T} - y_{00}) \left[B_{00} (3v_{00} + v_{L0}) + B_{L0} (v_{00} + v_{L0}) \right]$$

$$+ \frac{\rho_{L}}{12T} (y_{LT} - y_{L0}) \left[B_{00} (v_{00} + v_{L0}) + B_{L0} (v_{00} + 3v_{L0}) \right]$$
(19)

The final term in the momentum equation is the x-acceleration of the fluid inside the control surface. The average rate of this momentum change during the time intervals can be written as

$$\frac{\rho}{T} \int_{0}^{T} \int_{0}^{L} \frac{\partial v}{\partial t} A(x,0) dxdt = \frac{\rho}{T} \int_{0}^{T} \int_{0}^{L} (v_{3} + v_{4} \frac{x}{L}) (a_{1} + a_{2}x) dxdt$$

$$= \frac{\rho L}{6T} (v_{0T} - v_{00}) (2A_{00} + A_{L0})$$

$$+ \frac{\rho L}{6T} (v_{LT} - v_{L0}) (A_{00} + 2A_{L0}) (20)$$

The expressions for forces and momentum changes are collected together for the equation of momentum. The effect of inflow along the sides of the channel are not considered explicitly because this inflow is considered to have no x-momentum since it enters perpendicular to the direction of flow. The fact that this side-channel inflow is accelerated inside the control volume is taken into account when the continuity equation and the momentum, equation are solved together. As with the continuity equation, water surface elevation is a more convenient variable than water depth because the elevations are matched at nodes. By substituting h-z for y, the momentum equation has the following form

$$\left[-\frac{A_{00}V_{00}}{g} + \frac{L}{6Tg}(2A_{00} + A_{L0}) \right] V_{0T}
+ \left[\frac{A_{L0}V_{L0}}{g} + \frac{L}{6Tg}(A_{00} + 2A_{L0}) \right] V_{LT}
+ \left[-\frac{(A_{00} + A_{L0})}{4} + \frac{L}{12Tg} \left[B_{00}(3V_{00} + V_{L0}) + B_{L0}(V_{00} + V_{L0}) \right] \right] h_{0T}
+ \left[\frac{A_{00} + A_{L0}}{4} + \frac{L}{12Tg} \left[B_{00}(V_{00} + V_{L0}) + B_{L0}(V_{00} + 3V_{L0}) \right] \right] h_{LT}
= -\frac{(A_{00} + A_{L0})}{4} (h_{L0} - h_{00})
+ \frac{L}{12Tg} \left\{ h_{00} \left[B_{00}(3V_{00} + V_{L0}) + B_{L0}(V_{00} + V_{L0}) \right] \right]
+ h_{L0} \left[B_{00}(V_{00} + V_{L0}) + B_{L0}(V_{00} + 3V_{L0}) \right] \right\}
+ \frac{L}{6Tg} \left[V_{00}(2A_{00} + A_{L0}) + V_{L0}(A_{00} + 2A_{L0}) \right]
- \frac{L}{6} \left[S_{f00}(2A_{00} + A_{L0}) + S_{fL0}(A_{00} + 2A_{L0}) \right]$$
(21)

Just as in Equation 9, h in Equation 21 could be replaced by h - Z, the elevation of the water surface above some datum Z.

Continuity at nodes. Since the representation of the canals in the mathematical model assume no storage of water at the nodes, continuity at a node requires that the sum of all rates of flow into the node is equal to the sum of all rates out. During the increment of time, the velocity of flow from the node to a channel, and the cross-section area of the channel at the node, both change. With this variation, there are two possible statements for continuity. One is that the total volume of outflow or the average rate of outflow is equal to the total volume or average rate of inflow. The other is that the outflows must equal inflows at some instant of time.

In the mathematical model the second alternative is used, and the instant of time is the end of the time increment. The flow from a node to a channel at the end of the time increment can be written in terms of values at the beginning in the following manner:

$$Q_{T} = V_{T} A_{T}$$

$$= (V_{0} + \Delta V) (A_{0} + \Delta A)$$

$$= [V_{0} + (V_{T} - V_{0})] [A_{0} + (A_{T} - A_{0})]$$

$$= V_{0} A_{0} + A_{0} (V_{T} - V_{0}) + V_{0} (A_{T} - A_{0}) + (A_{T} - A_{0}) (V_{T} - V_{0}) (22)$$

Only a single subscript, 0 or T, is needed at the node to designate values at the beginning and end of the time increment, respectively.

Equation 22 is non-linear because it contains a term in which the unknown velocity at the end of the time increment is multiplied by the unknown area. However, this term is the product of the change in velocity and the change in area over the time increment, which makes it second order in time. Therefore, the term can be dropped from the equation. Since water-surface elevation is to be one of the unknowns, the difference A_T - A_O can be replaced by the product of the channel width and the rise in elevation. Although the channel width is not constant throughout the rise, if the expression is to be first order, the width at the beginning of the time increment is used. Thus, Equation 22 becomes

$$Q_{T} = A_{0}V_{T} + V_{0}B_{0}(h_{T} - h_{0})$$
 (23)

With this type of expression for each section of channel at the node, the continuity for the node becomes

$$\sum \left[A_0 V_T + V_0 B_0 (h_T - h_0) \right] + Q_{\text{out}} = 0$$
 (24)

The summation sign includes both inflows and outflows with the sign convention that outflow is positive. The term Q refers to any flow to or from the node that is not via the channels, again with the sign convention that outflow is positive.

ภาคผนวก ข

โปรแกรมคอมพิวเตอร์

LISTING OF HYDROLOGIC SURFACE RUNOFF PROGRAM

```
/SYS REG=300
    /SYS TIME=MAXIMUM --
    /FILE 12 NAME (HYDRO5Y.2) KSIZ(133) NEW (KEPL)
    FILE-6-NAME(PHYDRO5Y.2) RSIZ(133)-NEW(FEPL)
 5
    /LOAD FORTG1
    C-
 6
 7
    C
. . 8 .-- C---
 9 C
10 .....
       -----COMMUN AREA(100),TC(100),CCEF(1C0),NCCE,N,NCOMB(10),L,K,DWFLOW(90)
11
         +, IFRE, FAC, FREEFL (100), REDUCE
          READIS, 5) IFRE, FAC, NCDE + REDUCE
12
13
        5 FORMAT (1X,17,F8.4,18,F8.4)
 14
       ----WRITE(6,7)IFRE, FAC, REDUCE
        7 FORMATILX, "RETURN PERIOD = ",18,/,1X, "AREA REDUCTION FACTOR =",
15
16-
       ---+F 3.5, /,1X, ! REDUCE FLOW FACTOR = 1, F8.5)
                                                ._...
 17
          WRITE(6,6) NODE
1.8
        5 FORMAT (5X+ TOTAL NUMBER OF NODES = 1,13)
          00 200 K = 1, NODE
19
        READ ( 5, 10 ) MANE , N
20 -
21
       10 FORMAT (1X, 17, 18)
22 -
          WRITE (6,15)
 23
       24
         25
          WRITE(6,16) MANE
26 ---
       -16 -FORMAT(10 X, NODE - NUMBER 1, 13)
27
          DO 100 L = 1.N
28.
          SEAD(5,20)TC(L), AREA(L), CCEF(L), DhFLOh(L), NCOMB(L)
29
       20 FORMAT (1X, F7.3, 3F8.3, 18)
--30---C
   C PRINT
31
32 - C--
33
          WRITE (6, 30) L
       _ 34_
35
          WRITE (6,40) TC(L)
       40 FORMAT (5x, "TIME OF CONCENTRATION = 1, F10.2-)-
-36-
          WRITE(6,50) AREA(L)
37
38 ...
       50-FORMAT (5X, AREA....
                                            = ', F10.2, 3x, 'KM2')
          WRITE(6,60) CCEF(L)
39
40 -
       .60_FORMAT-(5X,-!ROUGHINESS CCEFICIENT = ',F10.2)
41
          WRITE (6,70) DWFL CW(L)
42-
       43
      100 CONTINUE
44...
          -CAL-L-LFLOW-
45
      200 CONTINUE
46 ...
      ---- STOP ---
47
          CNB
48
    G SUBROUTINE-TO-CALCULATE LOCALINELOW-
49 C
-50-
          -S-UBRG UTIENE---LFLOW -----
51
          COMMON AREA(100), TC(106), COEF(1(0), NCDE, N, NCOMB(10), L, K, DWFLOW(90)
 52---
         +, 1FRE, FAC, FREEFL (100), REDUCE
          DIMENSION INTEN(100), HYDRC(100); C(20,100), ATEMP(1000)
53
-54
          DIMENSION T CC(56), STEP (96), I TC(-164)-
 55
         IC = 0
- 56 -
          -DO-500-I=1,20 -
57
          00.500 J=1,100
```

```
58
            Q [ [ , ] ] = O
 59
       500 CONTINUE
 50
            DD 2000 L = 1.N
 61
            1 = 90
 62
            HYDRD(1) = DWFLOW(L)/86400.*AFEA(L)
 -63---
           ATEY= 0-
            ITC(1)=0
 64
 65
            DG 1100 I = 2.M
 66
            ATEM = ATEM + TC(L)
            IF(IFRE.EQ.2) GD TO 980
 67
         5 YEAR RETURN PEROID FROM JICA
 68 C
--69----
           -1 TC(-1-) = 7600/(A TEM+40)
 70
            30 TO 990
 71
     C = 2-YEAR KETURN PEROID FROM JICA
        98) ITC(1) = 5690/(ATEM+37)
 72
 73
       990 K1=I-1
 74
            K2= <1-1
           INTE V(1)=K1 *ITC(I)-K2*ITC(I-1)
 75 --
            IF(INTEN(I).LT.O.) INTEN(I)=0.
 76
 77
            IF(AT EM.GT.360) INTEN(1)=0
 78
            HYDRO(1) = COEF(L)*INTEN(I)*AREA(L)*FAC/3.6+DWFLOW(L)/864CO.*AREA(
 79
           +1)
 80
           IF(I.E0.2) GO TO 1100
--- 81 ---
           -I.F(HYDRO(I-1).LI.HYDRO(I)}-HYDRC(I)=HYDRC(I-1).....
 82
     1100 CONTINUE
     I C= I C+1
 83
 84
            Q(IC,1) = HYDRO(1)
          __IIME=_0
 85
 86
            STEP (1)=0
           DI =_10_
--87
           90 \ 1200 \ I = 2,90
 88
           TIME = TIME+DT _
 90
            STEP(I)=TIME
 91
            IF(T1ME.GT.TC(L)) GC TC 1110
 92
            Q(1S, I) = HYDRO(1) + (HYDRO(2) - HYDRO(1)) * 11ME/TC(L)
-93-
          __GO_TO_12(-0---
 94
      1110 DO 1115 NI = 2,50
 95
            TCC(NI)=N1*TC(L)
 96
      1115 CONTINUE
 97 ---
            DO 1117 NX=1,50
 98
            IF(TCC(NX).GT.TIME) GU TO 1118
99--1117-CUNTINUE-
100
      1118 HX=NX+1
10.1
      Q(IC,I) = HYDRO(NX) - (HYDRO(NX) - FYERC(NX+1))
102
                       *(TIME=(NX-1)*IC(L))/TC(L)
          1
      1200 CONTINUE
103
104
            X1=3
-105-
            X-2-- U-
106
            V \supset L1 = 0
107
            C= 1Y
10.8
            Y 2= U
109
           - V DL 2= J
110
          C=BMIT
111-
           -FF-EE-FL(L-)=R-EDUCE ⇒HYDRO(2)------------
112
           DO 3500 I = 2.100
113
          TIME=TIME+DT
114
          IF(Q(IC,1).LT.FREEFL(L)) GC TC 30CO
```

```
115
           X1=Q(IC,I)-FREEFL(L)
116
           VOL1= VOL1+(X1+X2)/2*DT
117
           X2=X1
           GO TO 3100
118
119
      3300 IF(Q(IC,I).LT.FREEFL(L).AND.T1ME.LT.TC(L))GO TO 3500
-12U --
          __Y1=FKECFL(L)-O(IC,I)
121
           VOL2 = VOL2 + (Y1 + Y2) / 2 * DT
          Y 2= Y 1
122
123
      3100 IF(Q(IC, 1).GT.FKEEFL(L))Q(IC. I)=FREEFL(L)
           IF(Q(IC,I).LT.FREEFL(L).AND.TIME.GT.TE(L))Q(IC,I)=FREEFL(L)
124
125
           IF(VOL2.GT.VOL1) GO TO 1210
126 --
      3500 CONTINUE
127
      1210 IF (NC)MB(L).E0.1) GD TC 2000
           00\ 1230\ I = 1,90
128
           ATEMP(I) = 0
129
130
      1230 CONTINUE
131
           NB = NCOMB(L)
132.
           DD 1250 J = 1.N8
133
           00 1250 I = 1,90
134
           A TEMP(I) = A TEMP(I) + O(J, I)
135
      SUNITION COST
136
           IC = 1
           00\ 1260\ I = 1,90
137
138....
           2(IC+I) = ATEMF(I)
139
     1260 CONTINUE
140
     2000 CONTINUE
141
           WEITE (6, 2200)
      142
143
         -144 -
         --- JO-2-35U--IN=1,90-----
145
           IF(Q(1C, NN)) 2310,2310,2350
146
      2310 Q(IC, NN)=0.
147
      2350 CONTINUE
148
           WRITE(6,2400) K.DT
149
      2400 FORMAT(5X, INFLOW TO NODE 1, 13, 10X, ITIME STEP 1, F5.1, 5X, IMIN!)
1.50_
          WRITE-(-12+-2410) (STEP(1)+I=1+90) _____
151
           WEITE(12,2410)(0(IC,I),1=1,90)
152
           JRITE (6, 241 C) (STEP(1), I=1,90)
153
           WRITE(6, 2410)(Q(IC, I), I=1, 50)
154 - 2410 FORMAT(/,5X,10F10.2)
155
          F. ETUF. N
-156----
        ----END-
```


LISTING OF HYDRAULIC ROUTING PROGRAM

```
1
    /SYS REG=500
 2
    /SYS TIME=MAXIAUM
 3
    /FILE 12 NAME(HY5Y-21.COM) RSIZ(133) CLO
    /LCAD WATFIV
 4
 5
   CFILE 6 NAME(P6.3.2Y5W.5B12) RSIZ(133) NEW(REPL)
         胃萎 浓度杂剧 格萨希格 茶茶 萨萨斯斯基 基尔斯斯特尔 海绵水 医环中毒 医多克拉氏疗 网络克拉斯 经分类 大大 电光光 计无效 化苯基 化二甲基二甲基二甲基
5
7
   C
 3
   C
                A MATHEMATIC MODEL FOR EVALUATION AND REPARTITATION
9
    C
                    OF THE CAIAL DRAINAGE SYSTEM IN HUA MAK AREA
    C
10
    C
         11
12
    C
        *
    C
        2
11
                           DEVELOPED BY 17. SURAPONS
                                                                            ¥:
    C
        *
14
                                                                            ÷
15
   C
         李老 字本字号 不考虑的 医水类 医水类 医水素 医乳素 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医皮肤 医血液 医血液 医血液 医血液
1.5
   C
17
    C
18
         DIMENSION R(59), C(50, 59), ATEMI(59), GP(59, 59).
1 )
         *B(100),WID(100),Z(100),H(1000),BUT(100),Y(100),A(100),P(100),
20
         *RN(100),SF(100),RR(100),V(100),DL(100),NCDE(100),RA(100),
21
         *NLDED(100),NGDEU(100),HN(100),4TS(1)00),ELFU(100),FLFD(1)0)
2.2
          O IMENSION COEU(100),CDED(100), /30TU(10)),W3(TD(100),SCDESU(100),
23
         *$1DE$D(100),VELU(100),VELD(10J),XL(10)),H1(1000),C1(53,50),
         *R1(59),INDEX(56),QDUT(60),Y1(571,31(50),A1(50),VLTNK(59)
24
25
         *,QU(59),QD(59),TWTUM(57),AWTUM(59),AVELUM(59).WCLN(59)
          DIMENSION TVEUM(59), VATUA(59), /VELUA(50), VOUM(50), TQUA(5))
26
27
         #,QWTUM(59),QVELUM(59),JQU1(59),TWT)1(59),WWTDM(59),WVELD4(59)
2 3
         *,WQDM(59),TVEDM(59),V#TD4(59),/VEL)4(59),VQDM(59),TCD4(5))
11
         *,QWTDM(59),QVELDM(59),QQOM(59)
3.0
         CUMMEN
                    INN(90),NHY(90),TINE(3),70),QINE(90,90),TGP(90,90)
11
         #,QSP(90,90),NBC(90),TYPY(90,90),IN177E(90,30),TTYPE(97,77)
32
         *,CRUN(90),AREAW(90),JUUT1(22),DSUT2(22),QIN(23),N9(59),INCDE
         *, NGP(10), TT, FAC, SQINT, T, SQINC, IFR1, IOJTP
13
14
           NOTE: ARRAY DIMENSION SHOLD BE RELATED TO NUMBER OF NODE
    C
35
    C
    C... COMMENT CARD
36
37
33
          WRITE (6,10)
       10 FCRMAT(1H1,///,20X,《南南 南部市中海中央市中海市中部市中海中海市等市市市 中国的国际市场的国际的国际的国际市场市场市场市
37
         1年 林林本本 本本本本 本本本本本本本本本本本本本本本本
40
+1
         WRITE(6,12)
.2
       12 FERMAT(30X, FEBED CONTROL SIMULATION MODEL (FOSMODEL), 7, 40X,
43
         1 'PREGRAM VERSIEN "1785" ')
++
          WRITE (6, 14)
+5
       16
         [* 字字引 * 本字亦引 * 本亦亦字亦 * 。//)
¥7
   C
43
   C... GROUP 1--COMMENT CARDS
4)
   C
5.)
         DO 150 I=1,10
          READ(5,110)(ATEMT(J), J=1,15)
51
32
      110 FURMAT(1X, 15A4)
53
          WRITE (6, 110) (ATEMT(J), J=1, 15)
54
      150 CLNTINUE
55
   C
53
   C... GREUP 2--CHANNEL GEGMETRY
57
    C
```

```
33
            READ(5,160)NL
 11
       160 FCRMAT(1X,17)
 (ز
            DL 200 I=1,NL
            READ(5,170)NODEU(I), NODED(I), XL(I)
 51
 32
       170 FLRMATIIX, 17, 18, F8.21
 53
            READ(5,180)NGDEU(1), ELEU(1), CCEU(1), 130TU(1) . SIDESU(1)
 34
       180 FURMAT(1X,17,F8.2,F8.3,2F3.2)
 55
            READ(5,180)NODED(I), ELED(I), COED(I), HOUTD(I), SIDESC(I)
       JUNITADO COS
 55
 57
     C
     C... GREUP 3-- CONSTANT
 .i .3
 67
     C
 1)
            READ (5,210) G, DATUM, F43
 71
       210 FCRMAT(1X,F7.2,2F8.2)
 12
     C
 73
     C... GROUP 4--HYDROGRAPH OF STORM INFLOW
 74
 15
            READ (5,195) N1
 75
       195 FURMAT(1X,17)
 17
            READ(5,240) INN(I), NHY(I), CRUN(I), AREAM(I)
 13
            DL 305 I=1,N1
 19
            AREAW(I)=1
 30
            CRUN(I)=1
 31
     C 240 FCRMAT(1X,17,18,2F8.4)
 32
            NHY(I) = 90
 33
            READ(12, 250)(TINF(I, J), J=1, 70)
 34
            READ(12,250)(QINF(I,J),J=1,90)
 35
       250 FCRMAT(/,5X,10F10.2)
 35
       305 CONTINUE
 37
     С
 38
     C... GREUP 5--BOUNDARY CONDITIONS FOR PUPING STATION AND GATE
 3)
     C
 1)
            READ(5,310)NBCO
 16
       310 FLRMAT(1X,17)
 32
            1 G = 0
 13
            DC 350 I=1, NBCC
 34
            I G= I G + 1
 15
            READ (5,320) INC., NGP(I)
 13
       320 FCRMAT(1X, 17, 18)
 37
            N=NSP(I)
 73
            READ (5,330) (TGP(IG, J), J=1,11)
 39
            READ(5,330)(QGP(IG,J),J=1,ii)
100
       330 FCRMAT(1X, F7.2, 9F8.2)
101
       350 CCNTINUE
1)2
1)3
     C... GROJP 6-BOUNDARY CONDITIONS FOR NODES
114
     C
1)5
            DC 803 I=1, V1
            READ(5,750)NBC(1)
115
       750 FLRMAT(1X,17)
1)7
1)3
            1:2=NBC(I)
1)9
            DG 780 J=1,N2
            READ (5,760) ITYPE (1, J)
110
111
            IF(ITYPE(I, J).EQ.2) 30 TO 765
            READ(5,760) INNEDE(1,1)
112
113
       760 FLRMAT(1X,17)
114
            SC T5 780
```

```
115.
       765 READ (5,665) GP(1,J)
116
       665 FORMAT (4X, A4)
       780 CENTINUE
117
118
       800 CUNTINUE
119
     C
130
     C...
           GREJP 7-- INITIAL CODITION
121
     C
122
           READ (5,510) NLINK, NNODE
123
       510 FCRMAT(1X, 17, 18)
124
           DL 500 I=1, NLINK
125
           READ(5,520)NCDEU(I), NUDED(I), VELU(I), VELD(I)
126
       520 FURMAT(1X, 17, 18, 2F8.2)
127
       600 CONTINUE
123
           DG 540 I=1, NNODE
           READ(5,610)NODE(1), HTS(NODE(1))
129
130
       610 FCRMAT(1X,17,F8,2)
131
       640 CUNTINUE
132
133
     C... GRUP--8 CONTROL CARD AND TIME INCREMENT
     C
134
135
           READ (5,650) IINP, ICUTP
136
       650 FCRMAT(1X, 17, 18)
137
           READ (5,655) IT1, TINCRI, IT2, TINCR2, IT3, TINCR3, IT4, TINCR4
       655 FCRMAT(1X,17,F8.2,3(13,F8.2))
113
133
     C
140
     C... PRINT SUMMARY OF INPUT
141
     C
1+2
            IF(IINP.EQ.O) GO TO 30
1+3
           WRITE (6,801)
1 +4
       801 FURMAT(//,30x,'SUMMARY OF INPUT')
1.5
           DU 820 I=1, NL
1+6
           WRITE(6,305)NGDEU(1),NODEJ(1),XL(1)
1+7
       305 FCRMAT(/,15x,'LINK',1x,I3,',',[3,4x,'L=',F3.2.' METERS')
1 +8
           WRITE(6,806)NODEU(1), ELEU(1), W3CTU(1), STDESU(1)
147
       805 FCRMAT(5X, U/S NCDE ', I3, ', Z=', F5.3.', B=', F6.2,', SIDE SL)PE=',
15)
151
           WRITE(6,807)NODED(1), ELED(1), W3CTD(1), SIDESD(1)
152
       807 FORMAT(5x, D/S NCDE ', 13, ', Z=', F6.3, ', B=', F6.2, ', SIDE SLOPE=',
153
          1F6.31
154
           (1)Clay, (1)Ulay(808,6)aTIRW
155
       808 FCRMAT(5x, AT TIME T= 0.000 , V(J/S)='.FG.3.', V(D/S)='.FG.3)
156
       820 CONTINUE
157
           DU 840 I=1, NNCDE
138
            WRITE(6,825)NGDE(1)
159
       825 FCRMAT[15X, 'NODE', [4)
1,0
            WRITE (6,828) NBC(1)
161
       828 FCRMAT(5X, 13, BCUNDARY CONDITION(S))
152
           M2=NBC(I)
           DL 835 J=1, N2
153
154
           IF(ITYPE(I, J).EQ.1) 30 TO 830
155
           IF(ITYPE(I,J).EQ.2) 50 TO 832
156
       830 WRITE (6, 831) INNUDE(1, J)
157
       B31 FURMAT(5x, 'STORM INFLOWS FROM 71. 1.14)
153
           GO TC 335
15)
       832 WRITE(6, 833)GP(1,J)
170
       833 FURMAT(5X, 'B.C. TYPE(2), ', 44)
171
       835 CONTINUE
```

```
.
            WRITE(6,838)WTS(NCDE(1))
172
        838 FLRMAT(5X, 'AT TIME T=0.000 , H= '.F6.3)
173
174
       840 CONTINUE
175
     C
     C... CONSTANT
176
177
     C
178
            WRITE (6.850) G. DATUM, FAC
        850 FORMAT(//,5x, GRAVITY FORCE=', F5.3,/,5x, MAXIMUM KLCNG I IVERT=',
119
           1F6.3,/,5X, AREA REDUCTION FACTOR= 1,F6.3)
130
      C
131
132
     C
      C... BEGINNING OF CALCULATION
133
134
      C
135
136
            NZ=NNODE+1
137
         30 DG 35 I=1,NZ
133
            QIN(I)=0
139
            QGUT1(I)=0
130
            20112111=0
191
         35 CONTINUE
112
            IPR=0
133
            IPR1 = 0
134
            M=NL INK
175
            N=NNC DE
195
            ML=2*M
197
            MN=2* H+N
113
            M1=ML+1
            DC 25 I=1,M1
117
21)
            WWTUM(I)=0
2)1
            MVELUM(I)=0
2)2
            WQUY(1)=0
213
            TWJUM(I)=0
214
            FWTDM(I)=0
2)5
            WVELUM(I) =0
215
            WQDY(I)=0
2)7
            TWIDM(I)=0
2)3
            VWTUM(I) = 0
2)7
            VVELUM(I) = 0
210
            0=(I)PUQV
211
            TVEUM(I)=0
212
            O=(1)MGTHV
213
            VVELDM(I)=0
214
            VQDY(1)=0
215
            TVEDM(I)=0
215
            QWTUM(I)=0
217
            Q VE L UM(I)=0
213
            O=(I)PUCQ
219
            O=(I)PLGT
220
            QWIDM(I)=0
221
            Q VELDM(I) =0
255
            0=(1) MCQQ
223
            TQD4 ( I )= 0
224
         25 CONTINUE
225
            T = 0
226
            TP=0
227
            SQIVL=0
223
            SVC = 0
```

L

```
2:2'
           QIN(23)=0
21)
           WRITE (6,36)
231
        232
           DO 9900 IT =1.3
233
           IF(IT.LE.ITI) T=TINCRI
234
           IF(IT.GT.IT1.AND.IT.LE.IT2) T=TINCR2
215
           IF(IT.GT.IT2.AND.IT.LE.IT3) T=TINCR3
236
           IF(IT-GT-IT3-AND-IT-LE-IT4) T=T[NCR4
237
           IFI IT . GT . 200) T = 180
213
           TP=TP+T
23)
           TI=TP/60
240
           AT=TT-T/(2*60)
241
           IPR=IPR+1
242
           C=RqI (qTUDI.TO.RqI) IPR=D
243
           IPR1 = IPR1 + 1
           IF(IPRI.GT.IGUTP)IPRI=0
2 +4
2+5
           IF(IPRI.NE. IGUTP) GO TG 37
246
           WRITE (6, 38) AT
247
        38 FERMATI/, 5X, "AT TIME ", F6.2, " 41NUTES")
243
           WRITE (6,40)TT
        40 FCRMATI/,5X, 'SOLUTION FOR TIME I='.FlD.2,' MINUTES')
247
250
        37 CALL BCGND
251
           DG 50 I=1, NNODE
           MUTAC+((I))=GON)2TW=((I))+DATUM
252
253
           INDEX(I)=0
234
        50 CONTINUE
235
           MN1 = NN+1
256
           DC 100 I=1, MN1
257
           R(I) = 0
258
           DC 100 J=1, MN1
259
           C(1,J)=0
                                                            AND WELL
220
       100 CUNTINUE
2.1
           DC 105 I=1,MN
           DC 105 J=1, MN1
252
2,3
           R1(J)=0
2:4
           C1(I,J)=0
265
       105 CENTINUE
235
           C = (IVM . MNI) = 0
2.7
     C
268
     C
259
     C... SUBROUTINE COEFF
270
     C
271
     C
212
           TEST=0
213
           N X= 0
214
           DC 5000 I=1,M
           NX = VX + 1
215
276
           NGDEU ( M+1 ) = 0
217
           IC=2*I-1
278
           IM=2 * I
219
           JU=2 * I-1
230
           JD=2*I
           XM+N*S=UNL
231
212
           J1:0=JNU+1
233
           DL(I) = XL(I)
214
           BUT (JU) = EL EU(I)
235
           BUT(Ju)=ELED(I)
```

```
235
                       RR(JU)=CGEU(I)
237
                       RR(JD)=CDED(I)
238
                       wID(JU)=WBGTU(I)
239
                       WID(JD)=WBCTD(I)
210
                       Z(JU) = SIDESU(I)
211
                       Z(JD) = SIDESD(I)
212
                       H(JJ) = HA(NDDEU(I))
213
                       I(I) I(I) I(I) I(I)
2 34
                       V(JU)=VELU(I)
275
                       V(JD) = VELD(I)
216
                       Y(JU) = WTS(NODEU(I)) - BUT(JU)
                       Y(JD) = WTS(NODED(I)) - BUT(JD)
217
218
                       B(JJ)=WID(JU)+2*Z(JU)*Y(JJ)
217
                       B(JD)=WID(JD)+2*Z(JD)*Y(JD)
300
                       S(UU) = Y(UU) # (WID(UU) + B(UU)) / 2
3)1
                       A(JD)=Y(JD)*(WID(JD)+B(JD))/2
3)2
                       P(JJ)=WID(JU)+SQRT(Y(JU)**2+(Z(JJ)*Y(JU))**2)*2
3)3
                       P(JD) = WID(JD) + SQRT(Y(JD) **2 * (Z(JD) **(JD)) **2) *?
3)4
                       RA(JU)=A(JU)/P(JU)
315
                       RA[JD]=A(JD)/P(JD)
                       SF(JU)=RR(JU)**2*ABS(V(JU))*V(JU)/(RA(JU)**1.33223)
3.16
3)7
                       SF(JD)=RR(JD)**2*ABS(V(JD))*V(JD)/(74(JD)**1.33333)
3)8
                       C(IC,JU) = -A(JU)
3)7
                       C(IC,JD) = A(JD)
                       C(IC,JNU) = DL(I)/(3*T)*(2*3(JU)+2(JD))
310
                       C(IC_JND) = DL(I)/(3*T)*(3(JU)+2*3(JO))
311
                       R(IC) = IA(JU)*V(JU) = IA(JU)
312
313
                            (GL))/(3L)8#5+(UL)8+5+(UL)8+(LL)H+(LGL)8+(UL)8#8(JM))+(L*E)/(1)/(1)/(1)
314
                       C(IM, JU) = - (A(JU) * V(JJ) ) / G+DL(I) / (5×T*G) * (2*A(JU) + A(JD))
115
                       (\mathsf{L}) \land \mathsf{A} = (\mathsf{L}(\mathsf{L}) \land \mathsf{L}(\mathsf{L}) \land \mathsf{L}(\mathsf{L}(\mathsf{L}) \land \mathsf{L}(\mathsf{L}(\mathsf{L}))) \land \mathsf{L}(\mathsf{L}(\mathsf{L}(\mathsf{L}) \land \mathsf{L}(\mathsf{L}(\mathsf{L}))))
316
                       C(IM,JKU)=-{A(JU)+A(JD))/4+DL(I)/(L2*T*G)
317
                     *
                                              *{B(JU)*(3*V(JU)+V(J)))**((J)) *(V(JU)+V(JC)))
31.3
                       C(IM, JND) = (A(JU)+A(J)))/4+DL(I)/(12*T*G)*
31.3
                                              {B(JU)*(V(JJ)+V(JD))+E(JD)*(V(JJ)+3*V(JD)))
320
                       321
                     1+DL(I)/(IZ*T*G)*(H(UJ))*(B(UJ))*(3(UL))+/(IJ))+/(ID))+/(DD))*(P(U))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(UL))+/(U
322
                     323
                            (((CL))&*S+(UL)A)*(7E)V+((CL)A+((CL)A*S)*(LL)V)*(3*T*6)\((1)JC+
324
                           -DL(I)/6*(SF(JU)*(2*A(JL))+4(JL))+2*A(JL))+2*A(JL)))
325
                       JL=JU-1
                       IF(TEST.EQ.O) GC TO 1500
326
327
                       C(JNU.JL) =-A(JL)
                       (UL)A=(UL,UYL)3
3.28
323
                       ((しし)B ★(いし)V−(JL)B 弁(JL)− V(JU) ≠ E(JJ))
330
                       ?(JNU)==(V(JL)*B(JL)-V(JU)*3(JJ))*[1(JU)+CIN(NX)
331
                       IF(NCDED(I).NE.NCDEU(I+1)) GO TO 2)))
332
                       SC TC 1000
333
             1500 C(JNU_{\bullet}JU) = A(JU)
334
                       C(JVU,JVU) = V(JU) *B(JJ)
335
                       R\{JVU\}=V(JU\}+B\{JU\}+H\{JU\}+QIN\{J\}
316
                       TEST=1
317
                       IF(NODEJ(1).EQ.14.4ND.NODED(1).EQ.7)GO TO 2000
          C
338
                       GC TC 1000
333
             2000 INDEX(I) = 1
340
                       C(JND,JD) = -A(JD)
                       C(JND,JND)=-V(JD)\pm B(JD)
341
3+2
                       (J+XN) = (CU) + (CU) + (CU) = (CVU) = (CVU)
```

```
NX=VX+1
3+3
            TEST = 0
3+4
3+5
      1000 IS=0
346
            IK=I-2
3+7
            IF(IK.LE.0) GO TO 5000
3+3
            DC 300 K=1.1K
3+3
            I S= I S+1
350
            IFINCDED(I).NE.NGDED(IS)) GO TO 300
351
            IA=2*H+IS+1
352
            IF(NCDEU(I).EQ.17.AND.NODED(I).EQ.3) IA = 2 \pm M + IS + 2
353
            GL TC 2100
354
       300 CONTINUE
355
            GU TC 5000
356
      2100 C(IA,IA) = C(JND,JND) + C(IA,IA)
357
            C(JNU,JND)=0
            C(IA, JD) = C(JND, JD)
353
35)
            C(JND,JD)=0
            R(IA) = R(JND) + R(IA) - QIN(NX)
360
351
            R(JND)=0
352
            C(IC,IA) = C(IC,JND)
353
            C(IC,JND)=0
            C(IM,IA)=C(IM,JND)
334
355
            O = (GNL, MI) O
            NX = VX - 1
356
357
            GL TO 5000
338
      5000 CUNTINUE
357
            DO 9300 II=1,MN
370
            DC 9200 I2=1,MN
371
            C1(I1, I2) = C(I1, I2)
372
      9200 CONTINUE
373
            R1(I1)=R(I1)
314
            WRITE(6,16)(C1(I1,I2),I2=1, IN), R1(I1)
        16 FURMAT(8F10.2)
375
376
      9300 CONTINUE
            DO 9301 13=1,MN
377
373
            C1(13,MN1)=R1(13)
      9301 CLNTINUE
379
33)
      5090 NS=MN
331
            NP=MN1
332
            NDIM=MN
333
            CALL ELIM(C1,NS,NP,NDIM)
334
     C
335
     C
336
     C... SUBROUTINE GUTPUT
337
3 18
339
            M. I=VI 0008 3C
330
            IZ=2#IV
331
            [Y=2 * [V-1]
312
            VELU(IV) = C1(IY.MN1)
            VELD(IV)=C1(IZ,MN1)
3)3
314
      BUNITALD COCE
335
            MH=ML+1
316
            I = 0
3)7
            IF(IPR.NE.IOUTP) GG TO 8018
333
            WRITE(6,8015)
319
      8015 FCRMAT(5X, 'NODE', 4X, 'ELEVATION')
```

```
4))
      8018 DC 8100 IH=MH,MN
4)1
            I = I + 1
4)2
            NTS(NODE(I))=CI(IH, 491)-DATUM
4)3
            HA(NCDE(I))=CI(IH_1M_1I)
414
            CCIF CT DD ( TUDI - 3100
1)5
            WRITE (6,8020) NODE(I), 4TS (NODE(I))
4)6
      8020 FLRMAT(5X, 13, 4X, F9.5)
      8100 CONTINUE
437
4)3
            SVT=D
417
            IF(IPR.NE.ICUTP) GO TO 7007
410
            WRITE (6, 7006)
411
      7005 FURMAT(5X, * LINK*, 13X, * VOLUME*, 11X, * NODE*, 6X, * VFLCCITY*, 5X, * ) I SCHAR
412
           INGE ! )
413
      7007 DE 7100 JA=1,NL
414
            IU=2*JA-1
            I D=2 + JA
415
116
            Y1(IU)=HTS(NGDEU(JA))-BUT(IU)
            Y1(ID)=WTS(NCDED(JA))-BUT(ID)
417
413
            B1(IU)=WID(IU)+2+2(IJ)*YI(IU)
419
            61(ID) = WID(ID) + 2 \pm Z(ID) \pm YI(ID)
42)
            A1(IU)=Y1(IU)*(WID(IJ) +91(IU))/2
421
            A1(ID)=Y1(ID)*(WID(I))+31(ID))/2
422
            VLINK(JA) = (AI(IU)+AI(ID))/2*DL(JA)
423
            IF(Y1(IU).GT.O.CR.Y1(ID).GT.O.)GD TO 7005
124
            ARITE (6, 7004)
125
      7004 FURMAT(/,5X, ERROR "Y" LESS THAN D')
126
            GG TC 7500
427
      7005 SVT=SVT+VLINK(JA)
428
            QU(JA)=A1(IU)*VELU(JA)
429
            QD(JA)=A1(ID)*VELD(JA)
43)
            IF(IPR.NE.ICUTP) GO TO 7100
            WRITE(6,7010)NCDEU(JA),NGDED(JA),VLINK(JA),NCDFU(JA),VELJ[JA),
431
432
           1QU(JA)
      7010 FCRMAT(2X,13, 1, 13,10X,F10.4,1)X,13.6X,F8.5.6X,F9.5)
433
            WRITE(6,7012)NGDED(JA), VELD(JA), DO(JA)
434
      7012 FCRMAT(39X, I3, 6X, F8.5, 6X, F9.5)
415
416
      7100 CUNTINUE
437
            IF(IPR1. NE. IGUTP) GO TO 7111
418
            TV2(C117,6) BTIRH
439
      7110 FCRMAT(5X, 'TOTAL VOLJME IN NETFORK = ', F15, 5, ' CUPIC METERS')
440
      7111 IF (IT.EQ.1) SVG=SVT
            DSVT = SVT - SVC
4 . 1
4+2
            SVC=SVI
           IF(IPRI.NE. IOUTP) GD TO 7112
443
144
            WRITE (6, 7115) DSVT
445
      7115 FORMAT(5X, *CHANGE IN TOTAL VOLUME = *.F15.5.* CURTO METERS*)
446
     C
     C...
           SUBROUTINE
447
                         BULAV PUMIXAM
148
      7112 DC 7300 I1=1,NL
1+9
13)
            IF(#WTUM(I1).GT.WTS(NUDEU(I1)))30 TO 7200
451
           WKTJM(II) = WTS(NGDEU(II))
452
            WVELUM(II) = VELU(II)
413
            MQUM(II) = QU(II)
454
           TWIUM(II)=TT
435
      7200 IF (WWTDM(11).GT.WTS(NDDEU([1]))30 TO 7210
            ((11) GBODN) STW = ((1) MCTWN
436
```

```
WVELDM(II) = VELD(II)
453
                        (11) CQ = (11) PCO W
                       TWIDM(II) = TT
457
             7210 IF(ABS(VVELUM(II)).GT.ABS(VELU(II))) 30 TO 7220
460
                        VWTJM(II)=WTS(NODEU(II))
451
                        VVELUM(II) = VELU(II)
462
453
                        VQUM(I1) = QU(I1)
454
                        TVEUM(II)=TT
405
             7220 IF(ABS(VVELDM(II)).6T.A3S(VELD(II)))30 TO 7230
456
                        VWTDM(II)=WTS(NODED(II))
                        VVELDA(II) = VELD(II)
467
                        VQD4(II)=QD(II)
458
457
                        TVEDM(II)=TT
470
             7230 IF(485(QQUM(II)).GT.435(QJ(II)))GC TO 7240
                        QWTUM(II)=WTS(NODEU(II))
471
 472
                        Q VEL UM (II) = VELU(II)
413
                        414
                        TT=(II)PLQT
415
             7240 IF(ABS(QQDM(II)).GT.ABS(QD(II))) GO TO 7300
476
                        QUIDMIII) = (II) MOTH F
477
                        (II) DJJAV=(II) NG JAVÇ
473
                        QQDM(II) = QD(II)
479
                        TQDM(II) = TT
43)
             7300 CUNTINUE
             9900 CCNTINUE
431
432
           C
433
434
           C... SUMMARY OF GUTPUT
435
436
437
             7500 WRITE(6,7510)
             438
                      11X, FOR LINK / MAX. VALUE OF / 4T NOOS / TIME
439
                                                                                                                                       HGL
417
                                       DISCHARGE!)
                      21 Y
411
                        DG 7650 I=1,NL
412
                       WRITE(6,7610)NODEU(I), WO GEO(I), NODEJ(I), WO THTO HOLD TO HOLD TO HOLD THE WORLD THE
413
                      *), kQUM(I)
             7610 FERMAT(5x,13,',',13,7x,'H3L',74,[3,3x,F5,1,5x,FA,4,5x,F3,4,5x,
414
4 15
                      *F8.41
416
                        WRITE(6,7615)NODEU(I), TVEUM(I), VXTU 1(I), VVELUM(I), VQUM([)
417
             7615 FORMAT(14X, *VELCCITY*, 7X, 13, 3X, F5, 1, 5X, F8, 4, 5X, F8, 4, 5X, F3, 4)
438
                        WRITE(6,7620)NODEU(I),TQJW(I),JWTUM(I),QVELUM(I),GCUM(I)
             7520 FCRMAT(13X, "DISCHARGE", 7X, 13, 3X, F5.1, 3(5X, F8.4))
419
5 10
                        WRITE(6,7610)NODEU(I),NCDED(I),NODED(I),TNTDM(I),KKTDM(I),
501
                      1wvelDM(I).wqDM(I)
512
                        WRITE(6,7615)MCDED(1),TVEDM(1),VTM(1),VVFLDM(1),V00M(1)
 5)3
                        ARITE(6,7620)NCDED(1),TQD1(1),QTD1(1),QVELD4(1),QQD4(1)
514
                        WRITE (6,7630)
             7630 FLRMAT(5X, '-----)
515
516
             7650 CONTINUE
5.17
                        STOP
518
                        END
5)7
          C
510
           C
                       SUBREUTINE BEEND
511
          C . . .
 512
           С
513
           C
```

```
SUBRUTINE BOOND
514 '
515
            CEMMEN
                      NNI[90],N4Y(90),TINE(3),3)),JINE(90,90),TGP(30,90)
51 3
           #,QSP(Y0,90),NBC(90),TYPY(J0,90),IN\O)E(90,40),TTYPF(90,9))
517
           *, CRUN (90), AREAW (90), QOUTI(22), DOUTZ(22), OIN(23), NR(59), 410DE
513
           *, NGP(10), TT, FAC, SQINT, T, SQINC, IPRI, IQ JTP
519
            C=GI
520
            IL=D
521
            SQINT=0
522
            DC 6000 I = 1, NNODE
            VI=VBC(I)
523
524
            DC 6500 L=1.NT
525
            IF(ITYPE(I,L).EQ.1) 30 TO 620)
526
            IF(ITYPE(I,L).EQ.2) GO TO 6100
527
      6100 ID=ID+1
523
            N=VSP(ID)
529
            DC 6150 K=1,N
530
            IF(IT.GT.TGP(ID,K)) GO TO 6150
            DY=TGP(ID,K)-TGP(ID,K-1)
511
            DX=TT-TGP(ID,K-1)
512
            DQ=QGP(ID,K)-QGP(ID,K-1)
513
534
            QCUT1(I) = QGP(ID, K-1)+DX/DY*DQ
535
            GU TC 6500
516
      6150 CONTINUE
517
            GC TL 6500
533
      6200 IL=IL+1
                                                                antioner:
537
            NINF=NHY(I)
540
            DE 6400 K=1,NINF
5 + 1
            IF(TT.GT.TINF(I,K)) 30 TO 6400
542
            DY=TINF(I,K)-TINF(I,K-1)
543
            DX=TT-TINF(I,K-1)
544
            DQ=QINF(I,K)-QINF(I,K-I)
5+5
                                                                  Pannanin
            QC \neq YG \setminus XG + (I) = QINF(I, K-1) + DX/DY \neq QC
510
            GG TG 6500
517
      6400 CONTINUE
543
      6500 \text{ QIV(I)} = -\text{QCUTI(I)} + \text{QOUT2(I)}
549
            SQINT=SQINT+QIN(I)
530
      6000 CENTINUE
551
            VCLQIN=(SQINC+SQINT)/2*T
552
            SQINC = SQINT
553
            IF(IPRI.NE. ICUTP) GO TO 47
554
            WRITE(6,34) OCUT1(12)
5 3 5
        34 FURMATIOX, CAPACITY OF PUIT
                                             AT NODE 12
                                                           =1.F8.2,1
                                                                       CMS!
556
            WRITE (6,35) QCUT1(15)
537
        35 FCRMATISX, CAPACITY OF PUILP
                                             AT NODE 15
                                                           =1.F8.2,1
                                                                       CMS! )
553
            WRITE(6,36) QCUT1(18)
        36 FERMATISX, CAPACITY OF PUMP
557
                                             AT NODE 19
                                                           = 1 . F. R . 2 , 1
                                                                       0.4154.)
55)
            WRITE(6,45)SQINT
551
        45 FLRMAT(5x, SUM OF KNOWN INFLOW AT NODES= 1, F15.5, 1 CMS.1)
5 12
            WRITE(6,46) VOLQIN
        46 FERMAT(5X, "VOLUME OF KNOWN INFLEYS AT NODES=", F15.5," C J3IC METER
533
          15"1
554
        47 RETURN
555
5.6
            END
557
5 > 3
537
     C... SUBROUTINE ELIM
570
     C
```

```
571
     C
           SUBREUTINE ELIM (AB.M. NP. NDIM)
572
573
           OIMENSION AB(NDIM,NP)
514
     C
        THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS.
515
        THE GAUSS ELIMINATION METHOD IS USED, WITH PARTIAL PIVOTING.
     C
        MULTIPLE RIGHT HAND SIDES ARE PERTITTED. THEY SHOULD BE SUPPLIED
575
     С
577
        AS COLUMNS THAT AUGMENT THE COEFFICIENT MATRIX.
578
        PARAMETERS ARF -
513
     C
           AB
                    COEFFICIENT MATRIX AUGMENTED WITH R.H.S. VECTORS
     C
530
           N
                    NUMBER OF EQUATIONS
531
     C
           NP.
                    TOTAL NUMBER OF COLUMNS IN THE AUGMENTED MATRIX.
512
     C
           MIDN
                    FIRST DIMENSION OF MATRIX AS IN THE CALLING PROGRAM.
513
     C
        THE SCLUTION VECTOR(S) ARE RETURNED IN THE AUGMENTATION
5 34
     C
        COLUMNS OF AB.
535
     C
        BEGIN THE REDUCTION
536
     C
587
           NM1 = N-1
5.38
           DC 35 I = 1,NM1
        FIND THE ROW NUMBER OF THE PIVOT ROY. HE HILL THEN
519
     C
510
        INTERCHANGE ROWS TO PUT THE PIVOT ELEMENT ON THE DIAGONAL.
5 7 1
             IPVT = I
5)2
             IP1 = I + 1
513
             DO 10 J = IP1, N
594
                IF (ABS(AB(IPVT,I)),LT, ABS(A3(J,I))) IPVT = J
515
      10
            CONTINUE
516
       CHECK TO BE SURE THE PIVOT ELEMENT IS 407 TCO SMALL, IF SO
517
        PRINT A MESSAGE AND RETURN.
538
            1F ((ABS(AB(IPVT,I)) .LT. L.E-5)) 30 TC 99
519
        NOW INTERCHANGE, EXCEPT IF THE PIVOT ELEMENT IS ALREADY ON
        THE DIAGONAL, DEN'T NEED TO.
600
             IF (IPVT .EQ. I) GD TO 25
6)1
6)2
             DO 20 JCOL = I,NP
                 SAVE = AB(I, JCOL)
5 ) 3
                 AB(I,JCCL) = AB(IPVT,JCCL)
6)4
5)5
                 AB(IPVT, JCCL) = SAVE
            CONTINUE
5)6
      20
6)7
       NOW REDUCE ALL ELEMENTS BELOW THE DIAGONAL IN THE 1-TH ROM. CHECK
518
       FIRST TO SEE IF A XERO ALREADY PRESENT. IF SC.
6)9
       CAN SKIP REDUCTION FOR THAT ROW.
510
      25
            DO 32 JROW = IP1,N
611
              IF (AB(JROW, I).EQ. 0) 60 TO 32
512
              RATID = AB(JRCW, I)/AB(I, I)
613
              DC 30 KCCL = 1P1, 12
614
                 ABIJROW, KCCL) = ABIJRUW, KICL) - RATIO*ABII, KCCL)
515
      30
              CCNTINUE
616
      32
            CONT INJE
617
      35
             CONTINUE
513
     C WE STILL: NEED TO CHECK A(Y,N) FOR SIZE.
617
             IF (A3S(AB(N,N)) .LT. 1.E-5) 30 TO 37
     C NOW WE BACK SUBSTITUTE
623
            NP1 = V + 1
621
522
            DC 50 KCCL = NP1,NP
623
             AB(N,KCOL) = AB(N,KCOL)/AB(N,N)
524
             D3 + 45 J = 2.N
               NVBL = NP1-J
625
623
               L = MVBL + 1
527
               VALUE = AB(NVBL,KCUL)
```

```
5:3
                DD 40 K = L, N
                  VALUE = VALUE - ABINVAL, < 1 + 13 [K.KCCL]
529
63.)
            CONT INUE
     40
631
            AB(NVBL, KCCL) = VALJE/AB(NVBL, NV3L)
512
     45
            CCNTINUE
613
     50
            CLYTINUE
614
            RETURN
615
     C MESSAGE FOR A NEAR SINGILAR MATRIX
            WRITE (6,100) IPVT, I, AB (IPVT, I) . 43 (N.N), K
636
     99
637
            FORMATTIX, "SOLUTION NOT FEASIBLE. A NEAR ZERO PIVOT NAS ENDOUNTER
     100
618
          + ED. ', 'IPVT/I ',215, ' A3(IPVT,I) ',F10.5.' AR(N,N) ',F3.6, ' N '
          + ,15)
639
640
            RETURN
            END
6+1
```

ประวัติผู้ศึกษา

ชื่อ : นายสุรพงษ์ ธรรมพิทักษ์

เกิด : 16 พ.ย. 2499, เชียงราย

การศึกษา : วิศวกรรมศาสตรบัณฑิต (วศบ.โยธา) คณะวิศวกรรมศาสตร มหาวิทยาลัย

เชียงใหม่, ปีการศึกษา 2523

เข้าศึกษาหลักสูตรวิศวกรรมศาสตร์มหาบัณฑิต สาขาวิศวกรรมแหลงนำ

ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย,

ปีการศึกษา 2525

การทำงาน : วิศวกรโยธา 4 กองสำรวจออกแบบ สำนักงานเร่งรัคพัฒนาชนบท

