THE ORIGIN OF HOST-GUEST INTERACTION IN METAL/BENZOXAZINE SYSTEMS

Mr. Pittaya Takolpuckdee

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2000 ISBN 974-334-188-9

3 1 S.A. 2546

119358271

.

Thesis Title : The Origin of Host-Guest Interaction	
	in Metal/Benzoxazine Systems
Ву	: Mr. Pittaya Takolpuckdee
Program	: Polymer Science
Thesis Advisors	: Asst. Prof. Suwabun Chirachanchai
	Prof. Hatsuo Ishida

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Director (Prof. Somchai Osuwan)

Thesis Committee:

walking Chirallow OS

(Asst. Prof. Suwabun Chirachanchai)

(Prof. Hatsuo Ishida)

Ane Kaseny 2

(Assoc. Prof. Sujitra Wongkasemjit)

บทคัดย่อ

นายพิทยา ถกลภักคี: การศึกษาปฏิกิริยาที่มีต่อกันของสารหลัก-รองในระบบโลหะและ เบนซอกซาซีน (The Origin of Host-Guest Interaction in Metal/Benzoxazine Systems) อาจารย์ที่ ปรึกษา: ผศ. คร. สุวบุญ จิรชาญชัย ศ. คร. ฮัทสุโอะ อิชิคะ(Prof. Hatsuo Ishida), 69 หน้า ISBN 974-334-188-9

อนุพันธ์เบนซอกซาซีนมอนอเมอร์ประเภท (3,4-dihydro-2H-1,3-benzoxazines) และอนุพันธ์ของการเปิดวงของเบนซอกซาซีนมอนอเมอร์ (ไดเมอร์) ประเภท (N,N-Bis (2hydroxybenzyl) amine) โดยมีหมู่ที่คำแหน่ง ortho หรือ para ของวงฟีนอลและหมู่แอมีนที่ แตกต่างกัน สมบัติของการตอบรับไอออนโลหะหม่ 1 ของเบนซอกซาซีนมอนอเมอร์ถกศึกษา โดยใช้วิธีพีเดอร์เซน (Pedersen's Technique) และวิเคราะห์ข้อมลโดยใช้เครื่อง UV/Vis. การจับโลหะขึ้นอยู่กับปัจจัยคือ ความเข้มข้นของเบนซอกซาซีน ชนิดของแอมีน และชนิดของฟี นอล สารประกอบ 3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazine (1) และ 3,4dihydro-6-t-butyl-3-methyl-2H-1,3-benzoxazine (4) ให้ผลในการจับโลหะสูงสุดเมื่อ อนุพันธ์เบนซอกซาซีนไดเมอร์เกิดสารประกอบเกิดสารปะกอบ เทียบกับอนพันธ์ประเภทอื่น เชิงซ้อนกับคิวปริกคลอไรค์ (CuCl₂) แคลเซียมคลอไรค์ (CaCl₂) และ แบเรียมคลอไรค์ (BaCl₂) ซึ่งสามารถยืนยันผลโดยใช้ ESIMS, FTIR และ XRD ESIMS ได้พิสูงน์ให้เห็นว่า อนุพันธ์เบนซอกซาซึนมอนอเมอร์ที่เปิดวงนี้เกิดการรวมตัวเป็นคลัสเตอร์ (cluster) กันตั้งแต่ 2 ถึง 7 โมเลกุล ผลการวิเคราะห์ด้วย FTIR แสดงว่าไดเมอร์มีการรวมตัวเป็นกลุ่มโมเลกุลได้โดยการ สร้างพันธะไฮโครเจนทั้งภายในและระหว่างภายนอกโมเลกล ผลการวิเคราะห์ด้วย XRD แสดง ถึงการเปลี่ยนแปลงทางโครงสร้างอย่างเค่นชัดหลังการเป็นสารประกอบเชิงซ้อน

ABSTRACT

4172022063 : POLYMER SCIENCE PROGRAM

KEYWORDS Benzoxazine Monomers/ Benzoxazine Dimer/ Molecular
Assembly/ Metal Picrates/ Ion Interaction.
Mr. Pittaya TAKOLPUCKDEE: The Origin of Host-Guest Interaction in Metal/Benzoxazine Systems. Thesis
Advisors: Asst. Prof. Suwabun Chirachanchai, Prof.
Hatsuo Ishida. 69 pp. ISBN 974-334-188-9

A series of benzoxazine monomer derivatives, 3,4-dihydro-2H-1,3benzoxazines, and ring opening of benzoxazine monomer derivatives (dimer derivatives), N,N-Bis (2-hydroxybenzyl) amine, with different functional groups at ortho and/or para positions on the phenol ring and amine groups were prepared. Ion interaction properties of the monomer derivatives for alkali metal were studied by using Pedersen's technique and characterized by UV/Vis. Ion extraction percentage dependend on main factors; benzoxazine concentration and structure of benzoxazine. 3,4-dihydro-3,6,8-trimethyl-2H-1,3-benzoxazine, 1, and 3,4-dihydro-6-t-butyl-3-methyl-2H-1,3-benzoxazine, 4, gave the highest extraction comparing to the other monomers. Benzoxazine dimers formed the complex with CuCl₂, CaCl₂, and BaCl₂ as confirmed by the ESIMS, FTIR and XRD. ESIMS clarified that benzoxazine dimers assembly as a series of clusters of 2-7 molecules. The peak shifting of OH group in FTIR implied that the molecular assembly of benzoxazine dimer was presented by inter and intramolecular hydrogen bonding. The XRD patterns implied after the change in the packing structure of benzoxazine complexation with metal guests.

ACKNOWLEDGEMENT

The author would like to give the appreciation to his Thai advisor, Asst. Prof. Dr. Suwabun Chirachanchai, who always takes care and gives not only academic knowledge and laboratory skills but also fruitful advices. He also would like to give a special thank to his U.S. advisor, Prof. Hatsuo Ishida for the recommendations on the research.

He greatly appreciates all Professors for the tendered invaluable knowledge to him at the Petroleum and Petrochemical College, Chulalongkorn University. Moreover, he would like to express his appreciation to Dr. Ratana Rujiravanit and Dr. Nantaya Yanumet for their helps.

He would like to extend his gratitude to Prof. Kohji Tashiro, Department of Macromolecular Science, Osaka University, Japan for the analytical works about elemental analysis and ¹H-NMR. He would like to thank Ms. Nan and Ms. Vachira, the Master Degree students of the Department of Chemistry, Faculty of Science, Chulalongkorn University for the ¹H-NMR results.

He would like to thank Mr. Apirat Laobuthee, who gave the useful suggestion throughout this research work. He also would like to thank to all his friends at this Petroleum and Petrochemical College for the friendship.

Last but not least, he would like to express his deepest appreciation to his family and, especially, he would like to devote the present work to his father.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Schemes	ix
List of Figures	х

CHAPTER

Ι	INTRODUCTION]
---	--------------	---

II	LITERATURE SURVEY	3
	2.1 Supramolecular Chemistry; The Defination	3
	2.2 Complexation of Well-know Host Compounds	5
	2.3 Clarification of Inclusion Compound	8
	2.4 Inclusion Compounds and the advanced	
	Applications	9
	2.5 Development of Benzoxazines	9
	2.6 The related Structure of Benzoxazines and	11
	Calixarenes	
	2.7 Benzoxazine and its Guest Responsive Property	11
	2.8 Scope of the Present Work	13
III	EXPERIMENTAL	14
	3.1 Materials	14

CHAPTER		
3.2 Instruments	14	
3.2.1 Fourier Transform Infrared Spectron	meter	
(FTIR)	14	
3.2.2 Vortex Mixer	14	
3.2.3 Ultraviolet-Visible Spectrometer		
(UV-Vis)	15	
3.2.4 Nuclear Magnetic Resonance		
Spectrometer (NMR)	15	
3.2.5 Mass Spectrometer (MS)	15	
3.2.6 X-ray Powder Diffraction (XRD)	15	
3.3 Methodology	16	
3.3.1 Preparation of Benzoxazine Monon	ner	
Derivatives	16	
3.3.2 Preparation of Ring Opening		
Benzoxazine Monomers	16	
3.3.3 Ion Interaction Property	19	
3.3.3.1 Preparation of Metal Pie	crate	
Solution	19	
3.3.3.2 Ion Extraction Studies	19	
3.3.4 Preparation of Dimer-Metal Compl	ex 19	
IV RESULTS AND DISCUSSION	21	
4.1 Characterization of Benzoxazine Monome	ers 21	
4.2 Ion Interactoin of Benzoxazine Monomer		
Derivatives	40	
4.2.1 Effect of Benzoxazine Monomer		
Concentration	40	

PAGE

CHAPTER

	4.2.2 Effect of Structure of Benzoxazine	
	Monomers	42
4.2	Ion Interaction of Benzoxazine Dimer Drivatives	47
	4.3.1 XRD Analysis	47
	4.3.2 FTIR Analysis	52
	4.3.3 MS Analysis	56
v	CONCLUSION	64
	REFERENCE	65
	CURRICULUM VITAE	69

LIST OF SCHEMES

FIG	FIGURE	
2.1	Four principal nucleic acid bases and base pairing	3
2.2	Crown ether	5
2.3	Cyclodextrin	6
2.4	Calixarenes	7
2.5	Isomeric structures of benzoxazines	10
2.6	Preparation of benzoxazine monomer	11
2.7	Structure of Calixarenes (I) and Benzoxazine (II)	12
3.1	Chemical Structure of Benzoxazine Monomer 1-15	17
3.2	Chemical Structure of Ring Opening	
	Benzoxazine Dimer 16-24	18
4.1	Fragment species of 22 under orifice voltage 35 V	57

LIST OF FIGURES

FIGURE

4.1	FTIR spectrum of 3	27
4.2	¹ H-NMR spectrum of 3	27
4.3	FTIR spectrum of 4	28
4.4	¹ H-NMR spectrum of 4	28
4.5	FTIR spectrum of 5	29
4.6	¹ H-NMR spectrum of 5	29
4.7	FTIR spectrum of 6	30
4.8	¹ H-NMR spectrum of 6	30
4.9	FTIR spectrum of 7	31
4.10	¹ H-NMR spectrum of 7	31
4.11	FTIR spectrum of 8	32
4.12	¹ H-NMR spectrum of 8	32
4.13	FTIR spectrum of 9	33
4.14	¹ H-NMR spectrum of 9	33
4.15	FTIR spectrum of 10	34
4.16	¹ H-NMR spectrum of 10	34
4.17	FTIR spectrum of 11	35
4.18	¹ H-NMR spectrum of 11	35
4.19	FTIR spectrum of 12	36
4.20	¹ H-NMR spectrum of 12	36
4.21	FTIR spectrum of 13	37
4.22	¹ H-NMR spectrum of 13	37
4.23	FTIR spectrum of 14	38
4.24	¹ H-NMR spectrum of 14	38
4.25	FTIR spectrum of 15	39
4.26	¹ H-NMR spectrum of 15	39

FIGURE

4.27 Ion extraction of benzoxazine monomers of : (Δ) 1; Δ) 2; •) 3; 0) 4; and \square) 5; at monomer concentration of $7x10^{-5}$, $7x10^{-4}$, 3.5×10^{-3} , and $7x10^{-3}$ M. sodium picrate salt at concentration 7×10^{-5} M 40 4.28 Ion extraction percentage of benzoxazine monomers 5, 10, and 15 by varying host guest ratio using picrate salt of : Na^+ (white bar); and K^+ (solid bar) at the concentration of 7×10^{-5} M. 43 4.29 Ion extraction percentage of benzoxazine monomers 4, 9, and 14 by varying host guest ratio using picrate salt of :Na⁺ (white bar); and K^+ (solid bar) at the concentration of 7×10^{-5} M. 44 4.30 Ion extraction percentage of benzoxazine monomers 3, 8, and 13 by varying host guest ratio using picrate salt of : Na^+ (white bar); and K^+ (solid bar) at the concentration of 7×10^{-5} M. 45 4.31 Ion extraction percentage of benzoxazine monomers 1, 6, and 11 by varying host guest ratio using picrate salt of : Na^+ (white bar); and K^+ (solid bar) at the concentration of 7×10^{-5} M. 46 4.32 XRD patterns of 16-18 49 4.33 XRD patterns of **19-21** 49 4.34 XRD patterns of 21-24 50 4.35 XRD patterns of 16, 16-CuCl₂-extract, 16-CuCl₂-blend 3, 16-CuCl₂-blend 2, 16-CuCl₂-blend 1, and CuCl₂ 50

PAGE

FIGURE

4.36	XRD patterns of 16, 16-BaCl ₂ -extract,	
	16-CaCl ₂ -extract, 16-CuCl ₂ -extract	51
4.37	XRD patterns of 16, 16-BaCl ₂ -extract,	
	16-CaCl ₂ -extract, 16-CuCl ₂ -extract	51
4.38	XRD patterns of 18, 18-BaCl ₂ -extract,	
	18-CaCl ₂ -extract, 18-CuCl ₂ -extract	52
4.39	XRD patterns of 22, 22-BaCl ₂ -extract,	
	22-CaCl ₂ -extract, 22-CuCl ₂ -extract	52
4.40	FTIR spectra of 17, 17-BaCl ₂ -extract,	
	17-CaCl ₂ -extract, and 17-CuCl ₂ -extract	54
4.41	FTIR spectra of 18, 18-BaCl ₂ -extract,	
	18-CaCl ₂ -extract, and 18-CuCl ₂ -extract	55
4.42	FTIR spectra of 22, 22-BaCl ₂ -extract,	
	22-CaCl ₂ -extract, and 22-CuCl ₂ -extract	55
4.43	ESIMS spectrum of 22 when the orifice was 35 V	56
4.44	ESIMS spectrum of 22 when the orifice was 70 V	58
4.45	ESIMS spectrum of 22 when the orifice was 70 V	59
4.46	MS spectrum of $22 + BaCl_2$ when the orifice was 35 V	60
4.47	MS spectrum of $22 + CuCl_2$ when the orifice was 35 V	61
4.48	MS spectrum of $22 + CaCl_2$ when the orifice was 35 V	62
4.49	MS spectrum of $22 + CaCl_2$ when the orifice was 110 V	63

PAGE