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CHAPTER I

INTRODUCTION

1.1 Research motivation

“An outlier is an observation which deviates so much from the other observations as

to arouse suspicions that it was generated by a different mechanism” is a definition for an

outlier which is stated by Hawkins ([1], [2]) in 1980. Outliers are also called as abnormal-

ities, discordants, deviants, anomalies, exceptions, aberrations, surprises, peculiarities, or

contaminants. The recognition of outliers provides useful information for data analysts

because the outliers often disturb the accuracy of a predictive model, or causes inaccurate

parameter estimation. An outlier detection (also known as an anomaly detection [3], [4],

[5], [6]) is an important topic in data mining that identifies the outliers in a dataset. It

appears in many real-world problems such as

• Intrusion detection systems: In computer systems, different kinds of data are

collected such as network traffic which may contain small number of unusual behavior

forming malicious activities. The detection of this activity is referred to as an intrusion

detection.

• Medical diagnosis: In medical, the data is collected from many equipments

such as MRI scans, PET scans, and ECG from patients. Unusual patterns of data may

reflect a specific disease condition which defines as an outlier.

• Earth science: Spatial data is collected by satellites to track weather patterns,

climate changes, or land cover patterns. The data may provide significant insights about

unnatural environmental trends which are considered as outliers.
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There are two types of outputs for an anomaly detection. The first type generates

a score for an instance that represents the outlierness while the second type characterizes

each instance as an outlier or a normal instance.

Anomalous score: This thesis will concentrate on the algorithm of the first type

for an anomaly detection which is called a scoring algorithm. A score represents a level

of “outlierness” of an instance which can be used as an outlierness ranking. This output

does not define whether an instance is an outlier or a normal instance where a user must

suggest a threshold to make a decision.

Numerous scoring algorithms were proposed where effective algorithms will provide

an anomalous score of each instance according to outlierness of an instance. Well-known

scoring algorithms are reviewed next.

Let D ⊆ Rn be a dataset having m instances where p(i) is the ith instance in D for

i ∈ {1, 2, ...m}.

1. Local-outlier-factor (LOF) [7] is proposed by Markus M. Breunig et al. in

2000 which is a popularly cited algorithm. The concept of LOF is based on the comparison

of k-neighborhood density between an instance and its neighborhood. The author defined

the local reachability density to represent a neighborhood density of each instance under

the k-nearest neighbors. An outlier will have a lower density while a normal instance will

have a higher density. An anomalous score of each instance is computed by the average

summation of each k-nearest neighbor density divided by its density. The experimental

results in their paper showed that a score of any outlier deviates so much from 1 whereas

a score of any normal is close to 1. The disadvantage of LOF is specifying the suitable

parameter k which represents the number of appropriate nearest neighbors. The crucial

definitions for computing the LOF anomalous score of each instance in a dataset are

shown next.

Note. Time complexity of LOF algorithm to compute all scores is O(n2).
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The local reachability density of each instance is defined by

lrdk(p(i)) = 1 /


∑

p(j)∈Nk(p(i))

reach-distk(p(i), p(j))∣∣Nk(p(i))
∣∣


where reach-distk(p(i), p(j)) = max{k-distance(p(j)), d(p(i), p(j))} such that

k-distance(p(i)) is distance between p(i) and its kth-nearest neighbor,

and Nk(p
(i)) = {p(j) ∈ D\p(i) | d(p(i), p(j)) ≤ k-distance(p(i))}.

The local outlier factor (LOF anomalous score) of each instance is defined by

LOFk(p
(i)) =

∑
p(j)∈Nk(p(i))

lrdk(p(j))
lrdk(p(i))∣∣Nk(p(i))

∣∣ .

Figure 1.1: Basic idea of LOF is the comparison between the local density of an instance
and its neighborhoods. Instance A has a low density than its neighborhood based on
k = 3, it will be considered as an outlier.
source: www.en.wikipedia.org/wiki/Local-outlier-factor
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2. Histogram-based outlier score (HBOS) [8] is proposed by Markus

Goldstein and Andreas Dengel in 2012. It is a linear-time algorithm to compute the

anomalous scores. The concept of HBOS based on the conversion of instances to the

histogram on each axis. An anomalous score of each instance is computed from the

height of the histogram which it is located. The disadvantage of HBOS is the setting of

parameter k representing the number of histogram bins.

Note. Time complexity of HBOS algorithm to compute the scores is O(n).

HBOS anomalous score of each instance p(i) is defined by

HBOS(p(i)) =
d∑

t=1

log
(

1

histt(p(i))

)

where d is the number of attributes and histt(p(i)) is the height of histogram which the

instance p(i) is located along the tth attribute. Note that the logarithm is used for

reducing the errors from floating point precision causing when the score is very high.

Figure 1.2: The histogram along each attribute on a dataset in R2.
source: www.shahramabyari.com/detecting-outliers-in-high-dimensional-data-sets
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3. Ordered distance difference outlier factor (OOF) [9] is proposed by

Nattorn Buthong et al. in 2013. The concept of OOF based on the ordered distance of

an instance along the other instances. The author defined the ordered distance matrix

which is the k-nearest neighbor distance matrix of each instance and constructed the

difference of the ordered distance matrix to compute OOF anomalous score. An

anomalous score is computed from the average of difference of ordered distance with

respect to every instance in a dataset. OOF does not require a parameter. The

important definitions to generate OOF anomalous score of each instance in a dataset are

shown next.

Note. Time complexity of OOF algorithm to compute the scores is O(n2 logn).

The ordered distance matrix of a dataset D is defined as

OrderedMtx(D) =



0 d1,j(1)2
d1,j(1)3

· · · d1,j(1)m

0 d2,j(2)2
d2,j(2)3

· · · d2,j(2)m

0 d3,j(3)2
d3,j(3)3

· · · d3,j(3)m

...
...

... . . . ...

0 dm,j
(m)
2

dm,j
(m)
3

· · · dm,j
(m)
m



where di,j = d(p(i), p(j)) such that 0 = di,j(i)1
≤ di,j(i)2

≤ di,j(i)3
≤ · · · ≤ di,j(i)m

for

i ∈ {1, 2, ...,m}.

Figure 1.3: The difference of ordered distance [9].
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The difference of the ordered distance matrix is defined as

DiffOrderedMtx(D) =



0 ∆d1,j(1)2
∆d1,j(1)3

· · · ∆d1,j(1)m

0 ∆d2,j(2)2
∆d2,j(2)3

· · · ∆d2,j(2)m

0 ∆d3,j(3)2
∆d3,j(3)3

· · · ∆d3,j(3)m

...
...

... . . . ...

0 ∆dm,j
(n)
2

∆dm,j
(m)
3

· · · ∆dm,j
(m)
m


where ∆di,j(i)k

= di,j(i)k
− di,j(i)k−1

for k ∈ {2, 3, ...,m}.

OOF anomalous score of each instance p is computed by

m∑
i=1

∆di,index(p)(i)

m− 1

It is the average of the difference of ordered distance.

4. Weighted minimum consecutive pair of the extreme pole outlier factor

(WOF) [10] is proposed by Warunya Kiangia et al. in 2016. The concept of WOF based

on the projection of all instances to the vector core. The author defined the vector core

which is a vector of two farthest instances (extreme poles). An anomalous score of each

instance is computed from the minimum weighted of its along each side of the projection

on the vector core. WOF also does not require a parameter. The important definitions

for computing WOF anomalous score of each instance in a dataset are shown next.

Note. Time complexity of WOF to compute the scores is equal to O(n2).

The extreme pole: Let e1 ∈ {1, 2, 3, ...,m} and e2 ∈ {1, 2, 3, ...,m}. If

d(p(e1), p(e2)) = max{d(p(i), p(j))}, then p(e1) and p(e2) are extreme poles. In addition,

the vector core is a vector that starts from one extreme pole to another extreme pole.
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The projection of instances to the vector core is defined as

OrdList(D, e) = [d(p(e), p(i1)), d(p(e), p(i2)), ..., d(p(e), p(im))].

where e ∈ {e1, e2} is an index of the extreme pole and i1, i2, ..., im ∈ {1, 2, ...,m}.

WLOG, i1 = 1, i2 = 2, ..., im = m such that

0 = d(p(e), p(e)) ≤ d(p(e), p(i1)) ≤ d(p(e), p(i2)) ≤ ... ≤ d(p(e), p(im−1)) ≤ d(p(e), p(im)). See

the example in Figure 1.4 - 1.5.

Figure 1.4: The projection with respect to p(e1) [10].

Figure 1.5: The projection with respect to p(e2) [10].

The projected order score on the vector core from the extreme pole is defined as

OFe(p
(k)) =

d(p(e), p(i2))− d(p(e), p(i1)) if k = i1

(d(p(e),p(ik))−d(p(e),p(ik−1)))(ik−1)
m−1 + (d(p(e),p(ik+1))−d(p(e),p(ik)))(m−ik)

m−1 if k ∈ {i2, ..., im−1}

d(p(e), p(im))− d(p(e), p(im−1)) if k = im.
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WOF anomalous score of each instance is computed from

WOF(p(k)) = OFe1(p
(k)) +OFe2(p

(k))

2
.

Binary labels: The second type of output is a binary label identifying whether an

instance is an outlier or a normal instance. Typically, the first type of anomalous

algorithm could transform into the second type using a simple criterion for labeling an

instance which is computed from the cutoff or the threshold of the anomalous scores.

After the anomalous scores of instances are computed from a scoring algorithm, the

criteria for labeling the class of each instance can be applied as follows.

5. A box plot or boxplot is a popular tool (which proposed by Tukey, J.W. [11]

in 1977) to virtualize the distribution of a continuous variable based on the interquartile

range. It displays the distribution of data using the five descriptive statistics which are

the minimum, the first quartile (Q1), the median or second quartile (Q2), the third

quartile (Q3), and the maximum. The boxplot is constructed by drawing the center

rectangle as the box covering the first quartile to the third quartile where the length of

this box is equal to the interquartile range (IQR) (Q3 −Q1), a segment inside the

interquartile range shows the median (Q2), the below of box shows the location of the

minimum, and the above of box shows the location of the maximum. See Figure 1.6.

The criteria for identifying normal instances based on the boxplot is presented by

the interval

[Q1 − 1.5IQR,Q3 + 1.5IQR].

The scores outside this interval will be considered as the outliers. This threshold

works well with the normal distribution. See Figure 1.7.
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Figure 1.6: Components of a boxplot.
source: www.physics.csbsju.edu/stats/box2.html

Figure 1.7: The boxplot for the normal distribution.
source: www.en.wikipedia.org/wiki/Box_plot
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6. An adjustment of the boxplot (also called the adjusted boxplot [12]) is

presented by Hubert et al. in 2008 which is the generalized criteria for detecting the

outliers for various distributions. It uses the medcouple (MC) to measure the skewness

of the distribution. The experimental results shown that the model from the exponential

formulation is the best model.

[Q1 − 1.5e−4MCIQR;Q3 + 1.5e3MCIQR] for MC ≥ 0, and

[Q1 − 1.5e−3MCIQR;Q3 + 1.5e4MCIQR] for MC < 0.

An instance having the score outside the interval will be labeled as the outlier.

Our work

The outlier may be classified as a single outlier or associated as a group of outliers.

In this thesis, a group of associated outliers is defined as an anomalous assemblage. The

number of outliers in an anomalous assemblage is very small and far away comparing

with other clusters in a dataset. Moreover, C-anomalous assemblage is defined as the

anomalous assemblage having the number of instances less than or equal to C percent of

the number of instances in a dataset. Note that a dataset may have multiple anomalous

assemblages.

Most of the above scoring algorithms are not designed to effectively detect the

anomalous assemblages. Only LOF with the appropriate parameter k may determine

the proper scores of these outliers. Consequently, this thesis proposes a new anomaly

detection algorithm called CND which is designed to effectively detect a single outlier

and a group of outliers. The basic idea is based on the k-nearest neighbor distance which

is used to represent an anomalous score of each instance in a dataset where k is set to be

equal to the floor function of the C percent of the total number of instances. For

labeling the class of each instance as an outlier or a normal instance, the upper threshold

from the adjusted boxplot [12] based on the medcouple for skew distribution is used.
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1.2 Research objective

The goal of this thesis is to propose a new anomaly detection algorithm for

detecting the point outliers on a finite continuous-valued attribute dataset in Rn using

the distance-based approach. The C-anomalous assemblage detection algorithm called

CND is proposed where it is designed for effectively detecting the anomalous

assemblages. Moreover, the performance of the proposed algorithm based on time

complexity and the capability for detecting the outliers are evaluated and compared

with other algorithms.

1.3 Thesis overview

This thesis is divided into five chapters. Chapter I presents the introduction.

Chapter II shows the background knowledge. Chapter III describes the definitions, basic

idea, and the proposed algorithm. Chapter IV shows the experimental results. The last

chapter provides the conclusion and future work.



CHAPTER II

BACKGROUND KNOWLEDGE

This chapter covers background knowledge which includes the Minkowski distance,

k-nearest neighbor, outlier, detection threshold, and performance measurements.

2.1 Minkowski distance

Let D ⊆ Rn be a finite dataset with m instances and p(i) = (p
(i)
1 , p

(i)
2 , ..., p

(i)
n ) be ith

instance in D where i ∈ {1, 2, ...,m}.

Definition 2.1. (Minkowski distance ([13], [14] ))

The Minkowski distance of order q between two instances p(i) and p(j) is defined as

dq(p
(i), p(j)) = q

√√√√ n∑
t=1

∣∣∣p(i)t − p
(j)
t

∣∣∣q

It is often used with order q equals 1 or 2. The Minkowski distance of order q = 1 is

called the Manhattan distance and the Minkowski distance of order q = 2 is called the

Euclidean distance.

d1(p
(i), p(j)) =

n∑
t=1

∣∣∣p(i)t − p
(j)
t

∣∣∣ and d2(p
(i), p(j)) =

√√√√ n∑
t=1

(p
(i)
t − p

(j)
t )2.
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Example 2.1. Let p(1) = (1, 1) and p(2) = (2, 2) are the instances in R2. Manhattan

and Euclidean distance between p(1) and p(2) can be computed as following.

Manhattan distance: d1(p
(1), p(2)) =

2∑
t=1

∣∣∣p(1)t − p
(2)
t

∣∣∣
=

∣∣∣p(1)1 − p
(2)
1

∣∣∣+ ∣∣∣p(1)2 − p
(2)
2

∣∣∣
= |1− 2|+ |1− 2|

= 2

Euclidean distance: d2(p
(1), p(2)) =

√√√√ 2∑
t=1

(p
(1)
t − p

(2)
t )2

=

√
(p

(1)
1 − p

(2)
1 )2 + (p

(1)
2 − p

(2)
2 )2

=
√

(1− 2)2 + (1− 2)2

=
√
1 + 1

=
√
2

≈ 1.414

Figure 2.1: Demonstration of Manhattan distance and Euclidean distance in R2.
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2.2 Nearest neighbor

The nearest neighbor ([15], [16]) is a popular idea used in many applications of data

mining. The basic idea is based on the proximity between an instance and its

neighborhood. Generally, the k-nearest neighbors of an instance are the k closest

instances to that instance in a feature space. See examples in Figure 2.2.

Example 2.2.

• The 1-nearest neighbor of p(1) is p(2).

• The 2-nearest neighbors of p(1) are p(2) and p(3).

• The 3-nearest neighbors of p(1) are p(2), p(3), and p(4).

Figure 2.2: The k-nearest neighbors of p(1) for k = 1, 2, 3 based on Euclidean distance
in R2.
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2.3 Outlier

An outlier can be classified into three types as follows.

2.3.1 Point outlier

A point outlier is an individual instance which can be considered oddity with

respect to the rest of instances. See examples in Figure 2.3.

Figure 2.3: O1 and O2 are considered as the point outliers.
source: www.ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/
I/m/Two-dimensional-Outliers-Example.png

2.3.2 Contextual outlier

A contextual outlier is an instance which can be considered as an outlier in a

specific context where the sequence of instances in a dataset is important. See Figure

2.4.
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Figure 2.4: On time-series dataset of the temperatures, t1 and t2 are the same value
but only t2 will be considered as an outlier.
source: www.upload.wikimedia.org/wikipedia/commons/6/63/Contextual-Outlier.png

2.3.3 Collective outlier

A collective outlier is a collection of instances which can be considered as an outlier

with respect to the entire dataset but each instance inside a collective outlier may not

be an outlier by itself alone. An example of the collective outlier from the human

electrocardiogram is shown in Figure 2.5.

Figure 2.5: The values in the interval [5000, 7000] represent the collective outlier.
source: www.wikimedia.org/wikipedia/commons/thumb/4/4f/Collective-Outlier.png/
1024px-Collective-Outlier.png
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2.4 Anomaly detection

Anomaly detection (also called outlier detection) is the process of identifying

outliers in a dataset. It can be categorized as supervised anomaly detection,

semi-supervised anomaly detection and unsupervised anomaly detection.

2.4.1 Supervised anomaly detection

Supervised anomaly detection (is also called the classification technique) requires a

training dataset model where each instance is labeled as a normal instance or an outlier.

Each instance in a test dataset will be identified as a normal or an outlier based on the

labeled in a training dataset.

2.4.2 Semi-supervised anomaly detection

Semi-supervised anomaly detection requires a training dataset model which

contains only the normal instances. If an instance in a test dataset is similar to the

instances in a training dataset, it will be considered as a normal instance. If an instance

in a test dataset is different from instances in a training dataset, it will be considered as

an outlier.

2.4.3 Unsupervised anomaly detection

Unsupervised anomaly detection detects the outliers in a test dataset under the

assumption that the majority of instances in a dataset are the normal instances. It does

not require the labeled instances from a training dataset. An instance which is not

similar to the majority of instances will be considered as an outlier.

NOTE. A training dataset is a dataset used for training a model, while a test dataset

contains instances from the same population however it normally contains no instances

from a training dataset.
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Figure 2.6: ⊘ is an unknown instance, the white points are the normal instances, and
the black points are the outliers.

2.5 Anomalous score algorithm

Many techniques are introduced for computing anomalous scores of instances in a

dataset in the research literatures. The popular algorithm is LOF and the latest

algorithm is WOF in 2017 which are described next.

2.5.1 Local outlier factor (LOF)

The local outlier factor (LOF) [7] is a popular anomalous scoring algorithm which

was proposed by Markus M. Breunig, et al. in 2000. The idea is based on the

comparison between the local density of an instance and its neighborhood. An

anomalous score of each instance is represented by the local-outlier-factor score (also

called LOF score) which is computed from the ratio between the local density of this

instance and its neighborhood. An outlier is an instance which has a lower local density.

LOF needs a parameter k representing the number of nearest neighbors of an instance

to run the algorithm. The definitions to generate the anomalous scores are shown next.
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Definition 2.2. (k-distance)

For any positive integer k, the k-distance of an instance p(i) denoted as

k-distance(p(i)) is defined as the distance between p(i) and p(j) such that

(i) for at least k instances p(j′) ∈ D\p(i), it holds that d(p(i), p(j′)) ≤ d(p(i), p(j)) and

(ii) for at most k − 1 instances p(j′) ∈ D\p(i), it holds that d(p(i), p(j′)) < d(p(i), p(j)).

Definition 2.3. (k-distance neighborhood)

Given the k-distance of p(i), the k-distance neighborhood of p(i), denoted by Nk(p
(i)),

contains every instance whose distance from p(i) is not greater than the k-distance of

p(i).

Nk(p
(i)) = {p(j) ∈ D\p(i) | d(p(i), p(j)) ≤ k-distance(p(i))}.

An instance p(j) ∈ Nk(p
(i)) is called a k-nearest neighbor of p(i).

Definition 2.4. (Reachability distance)

Let k be a positive integer. The reachability distance of p(i) with respect to p(j) (see the

example in Figure 2.7) is defined as

reach-distk(p(i), p(j)) = max{k-distance(p(j)), d(p(i), p(j))}.

Definition 2.5. (Local reachability density)

The local reachability density of p(i) is defined as

lrdk(p(i)) = 1 /


∑

p(j)∈Nk(p(i))

reach-distk(p(i), p(j))∣∣Nk(p(i))
∣∣


which is the inverse of the average reachability distance of p(i). It is the local density of

an instance based on its k-nearest neighbors.

Definition 2.6. (Local outlier factor)
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Figure 2.7: The reachability distance of p(1) with respect to p(2) for k = 2 with the
Euclidean distance in R2.

The local outlier factor of p(i) is defined as

LOFk(p
(i)) =

∑
p(j)∈Nk(p(i))

lrdk(p(j))
lrdk(p(i))∣∣Nk(p(i))

∣∣ .

It is the average of ratio of the local reachability density of p(i) to its k-nearest

neighbors. The local outlier factor is used to represent LOF anomalous score of each

instance in a dataset.

Example 2.3. Let D ⊆ R2 be a dataset having five instances which are

p(1) = (−0.366, 0.046), p(2) = (3.598, 3.103), p(3) = (3.242, 4.26), p(4) = (4.7, 2.164) and

p(5) = (4.414, 4.562). LOF anomalous scores of all instances in D using the parameter

k = 2 based on the Euclidean distance can be computed as follows.

Step 1: Compute all distances between any two instances.

d2(p
(1), p(2)) = 5.006, d2(p

(1), p(3)) = 5.548, d2(p
(1), p(4)) = 5.491, d2(p

(1), p(5)) = 6.576

d2(p
(2), p(3)) = 1.211, d2(p

(2), p(4)) = 1.448, d2(p
(2), p(5)) = 1.672
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d2(p
(3), p(4)) = 2.553, d2(p

(3), p(5)) = 1.211

d2(p
(4), p(5)) = 2.415

Step 2: Compute the 2-distance of each instance.

2-distance(p(1)) = 5.491,

2-distance(p(2)) = 1.448,

2-distance(p(3)) = 1.211,

2-distance(p(4)) = 2.415,

2-distance(p(5)) = 1.672

Step 3: Construct the 2-distance neighborhood of each instance.

N2(p
(1)) = {p(2), p(4)},

N2(p
(2)) = {p(3), p(4)},

N2(p
(3)) = {p(2), p(5)},

N2(p
(4)) = {p(2), p(5)},

N2(p
(5)) = {p(3), p(2)}

Step 4: Compute the reachability distance of each instance w.r.t. other instances.

reach-dist2(p(1), p(1)) = max{2-distance(p(1)), d2(p(1), p(1))}

= max{5.491, 0} = 5.491

reach-dist2(p(1), p(2)) = max{2-distance(p(2)), d2(p(1), p(2))}

= max{1.448, 5.006} = 5.006

reach-dist2(p(1), p(3)) = max{2-distance(p(3)), d2(p(1), p(3))}

= max{1.211, 5.548} = 5.548

reach-dist2(p(1), p(4)) = max{2-distance(p(4)), d2(p(1), p(4))}

= max{2.415, 5.491} = 5.491

reach-dist2(p(1), p(5)) = max{2-distance(p(5)), d2(p(1), p(5))}

= max{1.672, 6.576} = 6.576.
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Similarly perform for reach-dist2(p(2), p(j)), reach-dist2(p(3), p(j)), reach-dist2(p(4), p(j)),

and reach-dist2(p(5), p(j)). Then, we will get

reach-dist2(p(2), p(j)) = 5.491, 1.448, 1.211, 2.415, 1.672 for j = 1, 2, 3, 4, 5 respectively.

reach-dist2(p(3), p(j)) = 5.548, 1.448, 1.211, 2.553, 1.672 for j = 1, 2, 3, 4, 5 respectively.

reach-dist2(p(4), p(j)) = 5.491, 1.448, 2.553, 2.415, 2.415 for j = 1, 2, 3, 4, 5 respectively.

reach-dist2(p(5), p(j)) = 6.576, 1.672, 1.211, 2.415, 1.672 for j = 1, 2, 3, 4, 5 respectively.

Step 5: Compute the local reachability density of each instance.

lrd2(p(1)) = 1 /


∑

p(j)∈N2(p(i))

reach-dist2(p(1), p(j))∣∣N2(p(1))
∣∣


= 1 /

reach-dist2(p(1), p(2)) + reach-dist2(p(1), p(4))
2

= 1 /
5.006 + 5.491

2

= 0.191.

Similarly compute for lrd2(p(2)), lrd2(p(3)), lrd2(p(4)), and lrd2(p(5)). Then

lrd2(p(2)) = 0.552, lrd2(p(3)) = 0.641, lrd2(p(4)) = 0.518, and lrd2(p(5)) = 0.694.

Step 6: Compute the local outlier factor of each instance.

LOF2(p
(1)) =

∑
p(j)∈N2(p(1))

lrd2(p(j))
lrd2(p(1))∣∣N2(p(1))

∣∣ .

=

lrd2(p(2))
lrd2(p(1)) +

lrd2(p(4))
lrd2(p(1))

2

=
0.552
0.191 + 0.518

0.191

2

= 2.801

Similarly compute for LOF2(p
(2)), LOF2(p

(3)), LOF2(p
(4)), and LOF2(p

(5)).

Then LOF2(p
(2)) = 1.05, LOF2(p

(3)) = 0.971, LOF2(p
(4)) = 1.203, and

LOF2(p
(5)) = 0.859.
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2.5.2 Weighted minimum consecutive pair of the extreme poles outlier

factor (WOF)

The weighted minimum consecutive pair of the extreme pole outlier factor (WOF)

is proposed by Kiangia et al. [10] in 2016 which is a parameter-free algorithm. The

basic idea is based on the projection of all instances to the vector core. It computes an

anomalous score from the weighted minimum consecutive pair on each side along the

projection of instances on the vector core.

Definition 2.7. (The matrix of distance)

The matrix of distance of a dataset D with m instances is defined by

M = [dij ]m×m

where dij = d(p(i), p(j)) for p(i), p(j) ∈ D and i, j ∈ {1, 2, 3, ...,m}.

The matrix of distance can be rewritten as

M =



0 d12 d13 · · · d1m

d21 0 d23 · · · d2m

d31 d32 0 · · · d3m
...

...
... . . . ...

dm1 dm2 dm3 · · · 0


.

Definition 2.8. (The extreme pole)

Given e1 ∈ {1, 2, 3, ...,m} and e2 ∈ {1, 2, 3, ...,m} such that

d(p(e1), p(e2)) = max{d(p(i), p(j))}, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m} , then p(e1) and p(e2)

are extreme poles.

Definition 2.9. (The vector core)

The vector core is a vector that starts from one extreme pole to another extreme pole.
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Figure 2.8: p(e1) and p(e2) are extreme poles and v is the vector core [10].

Definition 2.10. (The projected order list on the vector core from the extreme pole)

Let e ∈ {e1, e2} be an index of the extreme pole and i1, i2, ..., im ∈ {1, 2, ...,m} such

that 0 = d(p(e), p(i1)) ≤ d(p(e), p(i2)) ≤ ... ≤ d(p(e), p(im)). The projected order list on the

vector core from the extreme pole e of a dataset D is defined by

OrdList(D, e) = {d(p(e), p(i1)), d(p(e), p(i2)), ..., d(p(e), p(im))}.

Definition 2.11. (The projected order score on the vector core from the extreme pole)

The projected order score on the vector core from the extreme pole e is defined by

OFe(p
(k)) =

d(p(e), p(i2))− d(p(e), p(i1)) if k = i1

(d(p(e),p(ik))−d(p(e),p(ik−1)))(ik−1)
m−1 + (d(p(e),p(ik+1))−d(p(e),p(ik)))(m−ik)

m−1 if k ∈ {i2, ..., im−1}

d(p(e), p(im))− d(p(e), p(im−1)) if k = im.
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Definition 2.12. (Weighted minimum consecutive pair of the extreme poles outlier

factor)

The weighted minimum consecutive pair of the extreme poles outlier factor is defined by

WOF(p(k)) = OFe1(p
(k)) +OFe2(p

(k))

2
.

It is used to represented WOF anomalous score of each instance in a dataset.

Example 2.4. Consider a dataset D in Example 2.3. WOF anomalous score of each

instance in D based on the Euclidean distance can be computed as follows.

Step 1: Construct the matrix of distance.

M =



0.0 5.006 5.548 5.491 6.576

5.006 0.0 1.211 1.448 1.672

5.548 1.211 0.0 2.553 1.21

5.491 1.448 2.553 0.0 2.415

6.576 1.672 1.21 2.415 0.0


.

Step 2: Find the extreme poles.

We will get p(1) and p(5) are the extreme poles.

Step 3: Generate the projected order list on the vector core based on the extreme poles.

OrdList(D, p(1)) = {d2(p(1), p(1)), d2(p(1), p(2)), d2(p(1), p(4)), d2(p(1), p(3)), d2(p(1), p(5))}

= {0, 5.006, 5.491, 5.548, 6.576}

OrdList(D, p(5)) = {d2(p(5), p(5)), d2(p(5), p(3)), d2(p(5), p(2)), d2(p(5), p(4)), d2(p(5), p(1))}

= {0, 1.21, 1.672, 2.415, 6.576}
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Step 4: Compute the projected order score of each instance on each side of the vector

core.

OFp(1)(p(1)) =
(d2(p

(1), p(2))− d2(p
(1), p(1)))(5− 1)

5− 1

=
(5.006− 0)(4)

4

= 5.006

OFp(1)(p(2)) =
((d2(p

(1), p(2))− d2(p
(1), p(1)))(2− 1) + d(p(1), p(4))− d(p(1), p(2)))(5− 2)

5− 1

=
(5.006− 0)(1) + (5.491− 5.006)(3)

4

= 1.615

OFp(1)(p(3)) = 0.3

OFp(1)(p(4)) = 0.271

OFp(1)(p(5)) = 1.028

Similarly apply this computation to the rest of instances.

OFp(5)(p(1)) = 4.161

OFp(5)(p(2)) = 0.602

OFp(5)(p(3)) = 0.649

OFp(5)(p(4)) = 1.598

OFp(5)(p(5)) = 1.21

Step 5: Compute the weighted minimum consecutive pair of the extreme poles outlier

factor for each instance.

WOF(p(1)) =
OFp(1)(p(1)) +OFp(5)(p(1))

2

=
5.006 + 4.161

2

= 4.583
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Similarly compute for WOF(p(2)),WOF(p(3)),WOF(p(4)) and WOF(p(5)) which are

WOF(p(2)) = 1.109,WOF(p(3)) = 0.474,WOF(p(4)) = 0.934 and WOF(p(5)) = 1.119.

2.6 Detection threshold

2.6.1 Adjusted boxplot

When the criterion based on the boxplot is used to detect outlier on a dataset which

has a skew distribution, many values are often incorrectly detected as outliers. The

adjustment of the boxplot for a skew distribution is presented by Hubert, et al. [12] in

2008 to generalize the threshold for detecting the outliers. It uses the medcouple (MC)

to measure the skewness of univariate data distribution which is defined as follows.

Definition 2.13. (Medcouple [17])

Let F = {x1, x2, ..., xm} be an ordered of univariate distribution and MF be the median

of F . Define the subsets of F , X− = {xi ∈ F |xi < MF } and X+ = {xj ∈ F |xj > MF }.

The medcouple of F is defined as

MC(F ) = Median of H(X−, X+)

where H(X−, X+) is given by

{
(xj −MF )− (MF − xi)

xj − xi
| ∀xi ∈ X−,∀xj ∈ X+

}
.

The value of medcouple always lies between −1 and 1. A distribution which is skew

to the right has a positive medcouple (positive skew), whereas the medcouple has a

negative value for a left skewed distribution (negative skew). Moreover, a symmetric

distribution has a zero medcouple. See Figure 2.9.

The threshold for detecting the outliers from the adjusted boxplot based on the

medcouple is proposed as
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Figure 2.9: MC of positive skew, symmetric distribution, and negative skew.
source: www.quora.com/What-does-SKEWED-DISTRIBUTION-mean

• for MC ≥ 0, [Q1 − 1.5e−4MCIQR;Q3 + 1.5e3MCIQR]

• for MC < 0, [Q1 − 1.5e−3MCIQR;Q3 + 1.5e4MCIQR].

Example 2.5. From Example 2.3 and 2.4, LOF and WOF anomalous score of

p(1), p(2), p(3), p(4) and p(5) are 2.801, 1.05, 0.971, 1.203, 0.859 and

4.583, 1.109, 0.474, 0.934, 1.119, respectively. The threshold from the adjusted boxplot

for detecting the outliers of these anomalous scores can be generated as follows.

For S1 = {2.801, 1.05, 0.971, 1.203, 0.859}.

Step 1: Sort S1 as S′

1 = {0.859, 0.971, 1.05, 1.203, 2.801}. Let MS
′
1
as the median of S′

1

which is 1.05, Q1 as the first-quartile of S′

1 which is 0.971, Q3 as the third-quartile of S′

1

which is 1.203, and IQR = Q3 −Q1 = 0.232.

Step 2: Let X− = {xi ∈ S
′

1|xi < MS
′
1
} and X+ = {xj ∈ S

′

1|xj > MS
′
1
}. Then,

X− = {0.859, 0.971} and X+ = {1.203, 2.801}.
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Step 3: Construct H(X−, X+) =

{
(xj −MF )− (MF − xi)

xj − xi
| ∀xi ∈ X−, ∀xj ∈ X+

}

= {(1.203− 1.05)− (1.05− 0.859)

1.203− 0.859
,
(1.203− 1.05)− (1.05− 0.971)

1.203− 0.971
,

(2.801− 1.05)− (1.05− 0.859)

2.801− 0.859
,
(2.801− 1.05)− (1.05− 0.971)

2.801− 0.971
}

= {−0.11, 0.319, 0.803, 0.914.}

Step 4: Compute MC(S
′

1) is the median of H(X−, X+).

MC(S
′

1) = Median({−0.11, 0.319, 0.803, 0.914}) = 0.561

Step 5: Since MC(S
′

1) ≥ 0, then the threshold is computed by

Q3 + 1.5e3MCIQR = 1.203 + (1.5)(e30.561)(0.232) = 3.077

Note. In this thesis, the upper threshold is applied only because any outlier must have

a large score.

The threshold for detecting the outliers of S1 is equal to 3.007 i.e., an element in S1

is greater than 3.007 will be detected as an outlier while an element is not greater than

3.007 will be detected as a normal. Therefore, p(1), p(2), p(3), p(4), and p(5) are the

normal instances with respect to LOF anomalous scores.

Similarly perform for WOF scores as S2 = {4.583, 1.109, 0.474, 0.934, 1.119}. The

final result will show that p(1) is detected as an outlier while p(2), p(3), p(4) and p(5) as

the normal instances where the value of threshold is equal to 1.324.



30

2.7 Performance measurements

The number of correct and incorrect predictions of the algorithm can be

summarized with count values and divide by each class in the confusion matrix ([18],

[19], [20]), see Figure 2.10. The entries in the confusion matrix have the following

meaning.

• True positive (TP) is the number of correct positive predictions (actual is

positive, predicted as positive).

• False positive (FP) is the number of incorrect positive prediction (actual is

negative, predicted as positive).

• True negative (TN) is the number of correct negative prediction (actual is

negative, predicted as negative).

• False negative (FN) is the number of incorrect negative prediction (actual is

positive, predicted as negative).

Figure 2.10: The confusion matrix.

This thesis focus on the performance of the algorithm for detecting the outliers in a

dataset. In a confusion matrix, the positive class represents as the class of outliers and
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the negative class represents as the class of normal instances where the size of outlier

class will be very much smaller than the size of normal class. Since precision is a

measure for computing the percentage of the number of detected instances (prediction)

which are outliers (actual), recall is a measure for computing the percentage of the

number of outliers (actual) which are detected (prediction), and F1-measure is the

harmonic mean of precision and recall. Consequently, these three measurements are

used to evaluate the performance of the algorithm for detecting the outliers.

2.7.1 Precision

The precision (also called positive predictive value) is calculated as the number of

correct positive predictions (TP) divided by the total number of positive predictions

(TP + FP). The largest precision is 1, while the smallest is 0.

Precision =
TP

TP + FP .

This measure can answer the question that how many predicted positives are actual

positives. For example, let D = {p(1), p(2), p(3), p(4), p(5)} be a dataset such that p(1), p(2)

are positives and p(3), p(4), p(5) are negatives. If the algorithm predicts

p(1), p(2), p(3), p(4), p(5) are positives, then Precision = 2
2+3 = 2

5 which is 40%.

2.7.2 Recall

The recall (also called sensitivity or true positive rate) is calculated as the number

of correct positive predictions (TP) divided by the total number of positives. The best

recall is 1, while the worst is 0.

Recall = TP
TP + FN .

This measure can answer the question that how many actual positives are predicted

as positives. From the previous example, Recall = 2
2+0 = 1 which is 100%.
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2.7.3 F1-measure

The F1-measure is the harmonic mean of precision and recall. So its value lies

between 0 and 1. It is calculated as

F1-measure = 2 · Precision× Recall
Precision+ Recall .

Example 2.6. Let D be a dataset having 100 instances which are p(1), p(2), ..., and

p(100) where p(1), p(2), p(3), p(4), and p(5) are the outliers and the rest are normal.

Assume two anomaly detection algorithms are used which are Alg1 and Alg2 to detect

the outliers in a dataset D. The result from Alg1 detects p(1), p(2), ..., p(10) as outliers

and the result from Alg2 detects p(1), p(3), p(5), p(7), p(9) as outliers. Note that, the

positive class instances are labeled as the outliers and the negative class instances are

labeled as normals.

Therefore, values of precision, recall, and F1-measure of Alg1 and Alg2 are

PrecisionAlg1 =
5

5 + 5
= 0.5

PrecisionAlg2 =
3

3 + 2
= 0.6

RecallAlg1 =
5

5 + 0
= 1.0

RecallAlg2 =
3

3 + 2
= 0.6

F1-measureAlg1 = 2 · (0.5× 1.0)

(0.5 + 1.0)
= 0.667

F1-measureAlg2 = 2 · (0.6× 0.6)

(0.6 + 0.6)
= 0.600

From these computations, Alg2 shows better precision than Alg1 while Alg1 shows

better recall and F1-measure than Alg2. So Alg1 shows better overall performances

with respect to Alg2.



CHAPTER III

C-ANOMALOUS ASSEMBLAGE DETECTION

USING NEAREST NEIGHBOR DISTANCE

This chapter covers the definition of distance-based outlier, C-anomalous

assemblage, kth-nearest neighbor index and kth-nearest neighbor distance. In addition, a

new anomaly detection algorithm for detecting C-anomalous assemblages called CND is

presented.

3.1 Preliminaries

This thesis focuses on a dataset with continuous-valued attributes where the

outlierness of an instance is considered based on the distance between two instances.

The definition of outlier corresponding with the distance-based approach are defined as

follows.

Definition 3.1. (Distance-based outlier)

An outlier is an instance that lies farthest away from majority instances of a dataset.

To complete this definition, a majority must be defined. However, this thesis

defines the negate of majority instead. It uses a user’s defined parameter C which

represents the percentage of non-majority clusters. A group of outliers having the

number of neighbour instances less than or equal to C percent of the total number of

instances in a dataset is defined as the anomalous assemblage. An anomalous

assemblage should be small and lie far away from other clusters in a dataset.

Definition 3.2. (C-anomalous assemblage)

The C-anomalous assemblage is an anomalous assemblage having the number of

instances less than or equal to C percent of the total number of instances in a dataset.
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Example 3.1. Let D be a dataset in R2 having 100 instances. See Figure 3.1.

The 5-anomalous assemblage is an anomalous assemblages having the number of

instances less than or equal to 5 percent of the total instances (≤ 5
100 × 100 = 5). Then,

O1, O2, O3, O4 and O5 are the 5-anomalous assemblages.

Figure 3.1: The 5-anomalous assemblages on a dataset D ⊆ R2 having 100 instances.

Next, the concept of k-nearest neighbors is used to represent the proximity between

an instance and its neighbors. The distance of each instance into its neighbors provides

the important information to decide whether an instance should be an outlier or a

normal instance. See the following definition.

Definition 3.3. (kth-nearest neighbor index)

For i ∈ {1, 2, ...,m}, Ni(k) is defined as the index of the kth-nearest neighbor of p(i)

which is recursively defined for each k ∈ {0, 1, 2, ...,m− 1} as

Ni(k) = argmin
j∈{1,...,m}\{Ni(0),Ni(1),...,Ni(k−1)}

{d(p(i), p(j))}

where Ni(0) = i.
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Definition 3.4. (kth-nearest neighbor distance)

For i ∈ {1, 2, ...,m} and k ∈ {0, 1, ..,m− 1}, the kth-nearest neighbor distance of p(i) is

defined as ND(i, k) which is the distance between p(i) and p(Ni(k)).

Example 3.2. Let p(1), p(2) and p(3) are instances in R2. See Figure 3.2.

• The 1st-nearest neighbor index of p(1) is represented by N1(1) = 2 and the

1th-nearest neighbor distance of p(1) is represented ND(1, 1) = d2(p
(1), p(2)) = 1.

• The 2nd-nearest neighbor index of p(1) is represented by N1(2) = 3 and the

2nd-nearest neighbor distance of p(1) is represented ND(1, 2) = d2(p
(1), p(3)) = 2.

Figure 3.2: The kth-nearest neighbor index and distance of p(1) for k = 1, 2 based on
the Euclidean distance in R2.
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Basic idea of CND

Let D ⊆ Rn be a dataset having m instances with O as an anomalous assemblage

having t instances and N is a normal cluster having m− t instances. Observe that

• For any k < t, the kth-nearest neighbor distance of the instances in O and N are

not significantly difference.

• For any k ∈ {t, t+ 1, ..., (m− t− 1)}, the kth-nearest neighbor distance of the

instances in O and N are significantly difference where the distances for instances in O

are high and the distances for instances in N are small.

From Figure 3.3, if the value of index k covers the size of an anomalous assemblage,

the kth-nearest neighbor distance of these outliers are large which are significantly larger

than the kth-nearest neighbor distance of any normal instance. Consequently, the

kth-nearest neighbor distance of each instance can be used to represent an anomalous

score where the index k should be selected to cover the size of any C-anomalous

assemblage in a dataset.

Figure 3.3: Basic idea of CND
.
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3.2 CND algorithm

A new anomaly detection algorithm is called CND which is presented for effectively

detecting the C-anomalous assemblages. The input of the algorithm composes of a finite

dataset D ⊆ Rn and an associated parameter C. Then, the kth index is computed from

the floor function of C percent of the total number of instances and the kth-nearest

neighbor distance of each instance is computed as an anomalous score. Next, the scores

are split by the threshold based on the adjusted boxplot using only the upper threshold

because any outlier will only have a large score. Finally, the output reports the set of

outliers. The algorithm is shown next.

INPUT: A dataset D ⊆ Rn with m instances and a parameter C.

Step 1. Compute k =
⌊

C

100
×m

⌋
.

Step 2. Construct S = {ND(i, k) | i = 1, 2, ...,m}

Step 3. Compute Q1 = first-quartile(S), Q3 = third-quartile(S), MC(S),

and IQR = Q3 −Q1.

Step 4. If MC(S) ≥ 0

Let threshold = Q3 + 1.5e3MC(S)IQR

Else

Let threshold = Q3 + 1.5e4MC(S)IQR

End

Step 5. O = [ ]

For i = 1, 2, ...,m

If ND(i, k) > threshold

O ← O ∪ {i}

End

End

Return O

OUTPUT: O is the set of detected outliers.
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Example 3.3. Let D ⊆ R2 be a dataset having 100 instances. In Figure 3.4, let

parameter C = 5 for CND (based on the Euclidean distance), then

k =

⌊
5

100
× 100

⌋
= 5 is used to compute a CND anomalous score of each instance.

For p(1) = (−2.025,−2.0219), the 5th-nearest neighbor index of p(1) is p(6) i.e.,

N1(5) = 6. Then the 5th-nearest neighbor distance of p(1) is the distance between p(1)

and p(6) which is equal to 12.798 i.e., ND(1, 5) = 12.798. So, CND anomalous score of

p(1) is 12.798. Similarly perform for p(2), p(3), p(4), p(5), p(6), the CND anomalous scores

are 11.728, 11.79, 11.659, 10.097, 1.203, respectively.

Figure 3.4: CND anomalous scores of p(1), p(2), p(3), p(4), p(5), and p(6).
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Figure 3.5: A dataset on two dimensional space with one cluster having 1000 instances
is performed by CND using C = 5. An outlier is labeled by a plus symbol, while a
normal instance is labeled by a circle symbol.

Figure 3.6: A dataset on two dimensional space with two clusters having 1000 instances
is performed by CND using C = 5. An outlier is labeled by a plus symbol, while a normal
instance is labeled by a circle symbol.
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3.3 Time complexity

Time complexity of CND is analyzed and split into two parts. The first part is the

computation of the anomalous scores using the kth-nearest neighbor distance and the

second part is the computation of the medcouple for generating the threshold.

Given a dataset D having n instances.

• The first part: the kth-nearest neighbor distance of each instance is computed

where it has the time complexity O(n2).

• The second part: the n anomalous scores are used to compute the medcouple

where it has the time complexity O(n2).

Therefore, the overall time complexity of CND is O(n2) +O(n2) = O(n2).



CHAPTER IV

EXPERIMENTAL RESULTS

This chapter covers the experimental result for the performance of CND detecting

the outliers based on precision, recall, and F1-measure on two types of datasets which

are synthetic and real-world datasets comparing with WOF and LOF. Moreover, the

suitable parameter C of CND algorithm will be investigated. Note that

• All experiments are implemented via the Julia programming language version 0.5.

• The distance between any two instances is represented by the Euclidean distance.

• WOF and LOF are scoring algorithm and their papers did not suggest any

threshold for detecting the outliers. It is left to the reader to decide the threshold

themselves. All experiments in this thesis use the adjusted boxplot to generate the

threshold for detecting the outliers so that they could be compared using precision,

recall and F1-measure.

• The positive class instances are labeled as the outliers and the negative class

instances are labeled as the normal instances.

• Each dataset is deliberately designed to have the anomalous assemblages where

the number of outliers is set to 5 % of total number of instances in a dataset.

4.1 Synthetic dataset

Five collections of synthetic datasets which are the collection having one normal

cluster, two normal clusters, three normal clusters, four normal clusters, and five normal

clusters on the two-dimensional space are randomly generated. Each dataset is

constructed to contain 1000 instances with 950 normals and 50 outliers (5 % outliers).

The detail of each collection is shown as follows.
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Collection 1: One cluster

The first collection contains 5 subcollections which are the subcollection of one

normal cluster with 1-5 anomalous assemblages generated by the following descriptions.

• Collection 1.1 contains 10 datasets where each dataset is randomly generated a

normal cluster (N1) having 950 instances by the multivariate normal distribution with

µ =

 0

0

 and Σ =

 1 0

0 1

. Then, an anomalous assemblage having 50 instances are

randomly generated with the same covariance matrix along 8 different centroid

locations, see in Figure 4.1, around a normal cluster about 100 units apart.

• Collection 1.2 contains 10 datasets where each dataset is randomly generated a

normal cluster (N1) having 950 instances by the multivariate normal distribution with

µ =

 0

0

 and Σ =

 1 0

0 1

. Then, two anomalous assemblages having 25 instances

for each assemblage are randomly generated with the same covariance matrix along 8

different centroid locations, see in Figure 4.1, around a normal cluster about 100 units

apart.

• Collection 1.3 contains 10 datasets where each dataset is randomly generated a

normal cluster (N1) having 950 instances by the multivariate normal distribution with

µ =

 0

0

 and Σ =

 1 0

0 1

. Then, three anomalous assemblages having 16, 17, 17

instances are randomly generated with the same covariance matrix along 8 different

centroid locations, see in Figure 4.1, around a normal cluster about 100 units apart.

• Collection 1.4 contains 10 datasets where each dataset is randomly generated a

normal cluster (N1) having 950 instances by the multivariate normal distribution with

µ =

 0

0

 and Σ =

 1 0

0 1

. Then, four anomalous assemblages having 12, 12, 13, 13

instances are randomly generated with the same covariance matrix along 8 different

centroid locations, see in Figure 4.1, around a normal cluster about 100 units apart.
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• Collection 1.5 contains 10 datasets where each dataset is randomly generated a

normal cluster (N1) having 950 instances by the multivariate normal distribution with

µ =

 0

0

 and Σ =

 1 0

0 1

. Then, five anomalous assemblages having 10 instances

for each assemblage are randomly generated with the same covariance matrix along 8

different centroid locations, see in Figure 4.1, around a normal cluster about 100 units

apart.

The conceptual diagram to generate the collection 1 of synthetic datasets is

displayed in Figure 4.1.

Figure 4.1: The model to generate the collection 1 of synthetic datasets. The normal
cluster is labeled by the circle N1, while the anomalous assemblages are labeled by the
circle number 1-8.

Collection 2: Two clusters

The second collection contains 5 subcollections which are the subcollection of two

normal clusters with 1-5 anomalous assemblages generated by the following descriptions.

• Collection 2.1 contains 10 datasets where each dataset is randomly generated two

normal clusters (N1 and N2) having 475 instances for each cluster by the multivariate

normal distribution with µ =

 0

0

 ,

 200

0

, respectively and Σ =

 1 0

0 1

 for each

cluster. Then, an anomalous assemblage having 50 instances are randomly generated

with the same covariance matrix along 13 different centroid locations, see in Figure 4.2,

around the normal clusters about 100 units apart.

• Collection 2.2 contains 10 datasets where each dataset is randomly generated two



44

normal clusters (N1 and N2) having 475 instances for each cluster by the multivariate

normal distribution with µ =

 0

0

 ,

 200

0

, respectively and Σ =

 1 0

0 1

 for each

cluster. Then, two anomalous assemblages having 25 instances for each assemblage are

randomly generated with the same covariance matrix along 13 different centroid

locations, see in Figure 4.2, around the normal clusters abouts 100 units apart.

• Collection 2.3 contains 10 datasets where each dataset is randomly generated two

normal clusters (N1 and N2) having 475 instances for each cluster by the multivariate

normal distribution with µ =

 0

0

 ,

 200

0

, respectively and Σ =

 1 0

0 1

 for each

cluster. Then, three anomalous assemblages having 16, 17, 17 instances are randomly

generated with the same covariance matrix along 13 different centroid locations, see in

Figure 4.2, around the normal clusters about 100 units apart.

• Collection 2.4 contains 10 datasets where each dataset is randomly generated two

normal clusters (N1 and N2) having 475 instances for each cluster by the multivariate

normal distribution with µ =

 0

0

 ,

 200

0

, respectively and Σ =

 1 0

0 1

 for each

cluster. Then, four anomalous assemblages having 12, 12, 13, 13 instances are randomly

generated with the same covariance matrix along 13 different centroid locations, see in

Figure 4.2, around the normal clusters about 100 units apart.

• Collection 2.5 contains 10 datasets where each dataset is randomly generated two

normal clusters (N1 and N2) having 475 instances for each cluster by the multivariate

normal distribution with µ =

 0

0

 ,

 200

0

, respectively and Σ =

 1 0

0 1

 for each

cluster. Then, five anomalous assemblages having 10 instances for each assemblage are

randomly generated with the same covariance matrix along 13 different centroid

locations, see in Figure 4.2, around the normal clusters about 100 units apart.

The conceptual diagram to generate the collection 2 of synthetic datasets is

displayed in Figure 4.2.
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Figure 4.2: The model to generate the collection 2 of synthetic datasets. The normal
clusters are labeled by the circle N1 and N2, while the anomalous assemblages are labeled
by the circle number 1-13.

Collection 3: Three clusters

The third collection contains 5 subcollections which are the subcollection of three

normal clusters with 1-5 anomalous assemblages generated by the following descriptions.

• Collection 3.1 contains 10 datasets where each dataset is randomly generated

three normal clusters (N1, N2, and N3) having 316, 317, and 317 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

, respectively and

Σ =

 1 0

0 1

 for each cluster. Then, an anomalous assemblage having 50 instances are

randomly generated with the same covariance matrix along 18 different centroid

locations, see in Figure 4.3, around the normal clusters about 100 units apart.

• Collection 3.2 contains 10 datasets where each dataset is randomly generated

three normal clusters (N1, N2, and N3) having 316, 317, and 317 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

, respectively and

Σ =

 1 0

0 1

 for each cluster. Then, two anomalous assemblages having 25 instances

for each assemblage are randomly generated with the same covariance matrix along 18

different centroid locations, see in Figure 4.3, around the normal clusters abouts 100

units apart.
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• Collection 3.3 contains 10 datasets where each dataset is randomly generated

three normal clusters (N1, N2, and N3) having 316, 317, and 317 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

, respectively and

Σ =

 1 0

0 1

 for each cluster. Then, three anomalous assemblages having 16, 17, 17

instances are randomly generated with the same covariance matrix along 18 different

centroid locations, see in Figure 4.3, around the normal clusters about 100 units apart.

• Collection 3.4 contains 10 datasets where each dataset is randomly generated

three normal clusters (N1, N2, and N3) having 316, 317, and 317 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

, respectively and

Σ =

 1 0

0 1

 for each cluster. Then, four anomalous assemblages having 12, 12, 13, 13

instances are randomly generated with the same covariance matrix along 18 different

centroid locations, see in Figure 4.3, around the normal clusters about 100 units apart.

• Collection 3.5 contains 10 datasets where each dataset is randomly generated

three normal clusters (N1, N2, and N3) having 316, 317, and 317 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

, respectively and

Σ =

 1 0

0 1

 for each cluster. Then, five anomalous assemblages having 10 instances

for each assemblage are randomly generated with the same covariance matrix along 18

different centroid locations, see in Figure 4.3, around the normal clusters about 100

units apart.

The conceptual diagram to generate the collection 3 of synthetic datasets is

displayed in Figure 4.3.
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Figure 4.3: The model to generate the collection 3 of synthetic datasets. The normal
clusters are labeled by the circle N1, N2, and N3, while the anomalous assemblages are
labeled by the circle number 1-18.

Collection 4: Four clusters

The fourth collection contains 5 subcollections which are the subcollection of four

normal clusters with 1-5 anomalous assemblages generated by the following descriptions.

• Collection 4.1 contains 10 datasets where each dataset is randomly generated four

normal clusters (N1, N2, N3 and N4) having 237, 237, 238, and 238 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

 ,

 100

−200

,
respectively and Σ =

 1 0

0 1

 for each cluster. Then, an anomalous assemblage having

50 instances are randomly generated with the same covariance matrix along 23 different

centroid locations, see in Figure 4.4, around the normal clusters about 100 units apart.

• Collection 4.2 contains 10 datasets where each dataset is randomly generated four

normal clusters (N1, N2, N3 and N4) having 237, 237, 238, and 238 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

 ,

 100

−200

,
respectively and Σ =

 1 0

0 1

 for each cluster. Then, two anomalous assemblages

having 25 instances for each assemblage are randomly generated with the same

covariance matrix along 23 different centroid locations, see in Figure 4.4, around the
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normal clusters abouts 100 units apart.

• Collection 4.3 contains 10 datasets where each dataset is randomly generated four

normal clusters (N1, N2, N3 and N4) having 237, 237, 238, and 238 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

 ,

 100

−200

,
respectively and Σ =

 1 0

0 1

 for each cluster. Then, three anomalous assemblages

having 16, 17, 17 instances are randomly generated with the same covariance matrix

along 23 different centroid locations, see in Figure 4.4, around the normal clusters about

100 units apart.

• Collection 4.4 contains 10 datasets where each dataset is randomly generated four

normal clusters (N1, N2, N3 and N4) having 237, 237, 238, and 238 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

 ,

 100

−200

,
respectively and Σ =

 1 0

0 1

 for each cluster. Then, four anomalous assemblages

having 12, 12, 13, 13 instances are randomly generated with the same covariance matrix

along 23 different centroid locations, see in Figure 4.4, around the normal clusters about

100 units apart.

• Collection 4.5 contains 10 datasets where each dataset is randomly generated four

normal clusters (N1, N2, N3 and N4) having 237, 237, 238, and 238 instances by the

multivariate normal distribution with µ =

 100

200

 ,

 0

0

 ,

 200

0

 ,

 100

−200

,
respectively and Σ =

 1 0

0 1

 for each cluster. Then, five anomalous assemblages

having 10 instances for each assemblage are randomly generated with the same

covariance matrix along 23 different centroid locations, see in Figure 4.4, around the

normal clusters about 100 units apart.

The conceptual diagram to generate the collection 4 of synthetic datasets is
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displayed in Figure 4.4.

Figure 4.4: The model to generate the collection 4 of synthetic datasets. The normal
clusters are labeled by the circle N1, N2, N3, and N4, while the anomalous assemblages
are labeled by the circle number 1-23.

Collection 5: Five clusters

The fifth collection contains 5 subcollections which are the subcollection of five

normal clusters with 1-5 anomalous assemblages generated by the following descriptions.

• Collection 5.1 contains 10 datasets where each dataset is randomly generated five

normal clusters (N1, N2, N3, N4 and N5) having 190 instances for each cluster by the

multivariate normal distribution with

µ =

 200

200

 ,

 0

0

 ,

 200

0

 ,

 400

0

 ,

 200

−200

, respectively and Σ =

 1 0

0 1


for each cluster. Then, an anomalous assemblage having 50 instances are randomly

generated with the same covariance matrix along 28 different centroid locations, see in

Figure 4.5, around the normal clusters about 100 units apart.

• Collection 5.2 contains 10 datasets where each dataset is randomly generated five

normal clusters (N1, N2, N3, N4 and N5) having 190 instances for each cluster by the

multivariate normal distribution with
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µ =

 200

200

 ,

 0

0

 ,

 200

0

 ,

 400

0

 ,

 200

−200

, respectively and Σ =

 1 0

0 1


for each cluster. Then, two anomalous assemblages having 25 instances for each

assemblage are randomly generated with the same covariance matrix along 28 different

centroid locations, see in Figure 4.5, around the normal clusters abouts 100 units apart.

• Collection 5.3 contains 10 datasets where each dataset is randomly generated five

normal clusters (N1, N2, N3, N4 and N5) having 190 instances for each cluster by the

multivariate normal distribution with

µ =

 200

200

 ,

 0

0

 ,

 200

0

 ,

 400

0

 ,

 200

−200

, respectively and Σ =

 1 0

0 1


for each cluster. Then, three anomalous assemblages having 16, 17, 17 instances are

randomly generated with the same covariance matrix along 28 different centroid

locations, see in Figure 4.5, around the normal clusters about 100 units apart.

• Collection 5.4 contains 10 datasets where each dataset is randomly generated five

normal clusters (N1, N2, N3, N4 and N5) having 190 instances for each cluster by the

multivariate normal distribution with

µ =

 200

200

 ,

 0

0

 ,

 200

0

 ,

 400

0

 ,

 200

−200

, respectively and Σ =

 1 0

0 1


for each cluster. Then, four anomalous assemblages having 12, 12, 13, 13 instances are

randomly generated with the same covariance matrix along 28 different centroid

locations, see in Figure 4.5, around the normal clusters about 100 units apart.

• Collection 5.5 contains 10 datasets where each dataset is randomly generated five

normal clusters (N1, N2, N3, N4 and N5) having 190 instances for each cluster by the

multivariate normal distribution with

µ =

 200

200

 ,

 0

0

 ,

 200

0

 ,

 400

0

 ,

 200

−200

, respectively and Σ =

 1 0

0 1


for each cluster. Then, five anomalous assemblages having 10 instances for each

assemblage are randomly generated with the same covariance matrix along 28 different

centroid locations, see in Figure 4.5, around the normal clusters about 100 units apart.

The conceptual diagram to generate the collection 5 of synthetic datasets is
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displayed in Figure 4.5.

Figure 4.5: The model to generate the collection 5 of synthetic datasets. The normal
clusters are labeled by the circle N1, N2, N3, N4, and N5, while the anomalous assem-
blages are labeled by the circle number 1-28.

Synthetic Normal clusters Anomalous assemblages

datasets (950 instances) (50 instances)

Collection 1 One cluster
*** One through five assemblages where

Collection 2
Two clusters • 50 for one assemblage.

(475, 475) • 25, 25 for two assemblages.

Collection 3
Three clusters • 16, 17, 17 for three assemblages.

(316, 317, 317) • 12, 12, 13, 13 for four assemblages.

Collection 4
Four clusters • 10, 10, 10, 10, 10 for five assemblages.

(237, 237, 238, 238)

Collection 5
Five clusters

(190,190,190,190,190)

Table 4.1: The summary of the randomly generated synthetic datasets.



52

To determine the suitable value of the parameter C for synthetic datasets. CND is

performed by vary the parameter C = 1 to 10 on each dataset in each collection where

F1-measure on each dataset is computed. Next, the average F1-measure (AF) of ten

generated datasets in each subcollection is computed and the standard deviation of this

average F1-measure (SDAF) is also computed. Finally, the error bar is plotted by AF ±

SDAF of ten generated datasets in each subcollection along C = 1 to 10.

Error bars of collection 1

Figure 4.6 displays the error bars of the average F1-measure along C = 1 to 10 on

ten generated datasets of each subcollection in collection 1. The important behavior of

error bars in each subcollection is shown as follows.

• For collection 1.1: C = 5 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 6 to 10.

• For collection 1.2: C = 3 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 4 to 10.

• For collection 1.3: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 1.4: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 1.5: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.
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Figure 4.6: The error bars of collection 1 where C along x-axis and the average F1-
measure along y-axis.

Error bars of collection 2

Figure 4.7 displays the error bars of the average F1-measure along C = 1 to 10 on

ten generated datasets of each subcollection in collection 2. The important behavior of

error bars in each subcollection is shown as follows.

• For collection 2.1: C = 5 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 6 to 10.

• For collection 2.2: C = 3 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 4 to 10.

• For collection 2.3: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 2.4: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 2.5: C = 2 shows the best average F1-measure is about 1.0 and a
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small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

Figure 4.7: The error bars of collection 2 where C along x-axis and the average F1-
measure along y-axis.

Error bars of collection 3

Figure 4.8 displays the error bars of the average F1-measure along C = 1 to 10 on

ten generated datasets of each subcollection in collection 3. The important behavior of

error bars in each subcollection is shown as follows.

• For collection 3.1: C = 5 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that the average F1-measure is stable about 1.0 from

C = 6 to 10.

• For collection 3.2: C = 3 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measures is stable about 1.0 from

C = 4 to 10.

• For collection 3.3: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measures is stable about 1.0 from

C = 3 to 10.

• For collection 3.4: C = 2 shows the best average F1-measure is about 1.0 and a
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small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 3.5: C = 1 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 2 to 10.

Figure 4.8: The error bars of collection 3 where C along x-axis and the average F1-
measure along y-axis.

Error bars of collection 4

Figure 4.9 displays the error bars of the average F1-measure along C = 1 to 10 on

ten generated datasets of each subcollection in collection 4. The important behavior of

error bars in each subcollection is shown as follows.

• For collection 4.1: C = 5 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 6 to 10.

• For collection 4.2: C = 3 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 4 to 10.

• For collection 4.3: C = 2 shows the best average F1-measure is about 1.0 and a
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small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 4.4: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 4.5: C = 1 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 2 to 10.

Figure 4.9: The error bars of collection 4 where C along x-axis and the average F1-
measure along y-axis.

Error bars of collection 5

Figure 4.10 displays the error bars of the average F1-measure along C = 1 to 10 on

ten generated datasets of each subcollection in collection 5. The important behavior of

error bars in each subcollection is shown as follows.

• For collection 5.1: C = 5 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 6 to 10.

• For collection 5.2: C = 3 shows the best average F1-measure is about 1.0 and a
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small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 4 to 10.

• For collection 5.3: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 5.4: C = 2 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 3 to 10.

• For collection 5.5: C = 1 shows the best average F1-measure is about 1.0 and a

small standard deviation. After that, the average F1-measure is stable about 1.0 from

C = 2 to 10.

Figure 4.10: The error bars of collection 5 where C along x-axis and the average
F1-measure along y-axis.

Discussion of error bars on synthetic datasets

The results from Figure 4.6 - 4.10 show the suitable value of parameter C for each

size of the anomalous assemblage where if the value of C% covers the size of each

anoamlous assemblage then CND will have the good performance for detecting these

outliers as follows.

C = 5 is the suitable value of the parameter for a dataset having one anomalous
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assemblage (50 instances), C = 3 is the suitable value of the parameter for a dataset

having two anomalous assemblages (25 instances for each assemblage), C = 2 is the

suitable value of the parameter for a dataset having three anomalous assemblages

(16,17, and 17 instances) and four anomalous assemblages (12,12,13, and 13 instances),

C = 1 is the suitable value of the parameter for a dataset having five anomalous

assemblages (10 instances for each assemblage).

Remark. Since each dataset is constructed having the number of outliers equal to 5%,

CND with C = 5 will guarantee the best performance for these datasets.

To compare the performance of CND with WOF and LOF on synthetic datasets,

the parameter C is set to 5 for CND and k =
⌊

5

100
×m

⌋
for LOF. The performance

results are shown in Figure 4.11 - 4.25.

Discussion of the performance on synthetic datasets

For overall performance on synthetic datasets, the results show that CND is better

than WOF and LOF based on precision, recall, and F1-measure for all collections of

synthetic datasets (WOF is worst). Moreover, there are important observations that can

conclude from the performance graphs of synthetic datasets as follows.

1.) CND is better than WOF and never worse than LOF based on precision and

F1-measure for all datasets (CND and LOF have the same precision and F1-measure for

some datasets).

2.) CND is similar to LOF which never worse than WOF based on recall (CND,

WOF, and LOF have the same recall for some datasets).

3.) LOF is better than WOF based on precision and F1-measure for all datasets.

4.) CND and LOF can correctly identify actual outliers for all datasets since recall

is 100%. However, there are some normal instances are detected as the outliers for some

datasets since precision is less than 100%.

5.) If the value of threshold is raised, then LOF may have better performance for

precision and F1-measure.
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Figure 4.11: The precision on collection 1 of synthetic datasets.

Figure 4.12: The recall on collection 1 of synthetic datasets.

Figure 4.13: The F1-measure on collection 1 of synthetic datasets.
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Figure 4.14: The precision on collection 2 of synthetic datasets.

Figure 4.15: The recall on collection 2 of synthetic datasets.

Figure 4.16: The F1-measure on collection 2 of synthetic datasets.
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Figure 4.17: The precision on collection 3 of synthetic datasets.

Figure 4.18: The recall on collection 3 of synthetic datasets.

Figure 4.19: The F1-measure on collection 3 of synthetic datasets.
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Figure 4.20: The precision on collection 4 of synthetic datasets.

Figure 4.21: The recall on collection 4 of synthetic datasets.

Figure 4.22: The F1-measure on collection 4 of synthetic datasets.
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Figure 4.23: The precision on collection 5 of synthetic datasets.

Figure 4.24: The recall on collection 5 of synthetic datasets.

Figure 4.25: The F1-measure on collection 5 of synthetic datasets.
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4.2 Real-world dataset

Three real-world datasets from UCI-Machine Learning website [21] are used to test

the performance of the algorithms (Iris Plants Database, Wine recognition data, and

Wisconsin Diagnostic Breast Cancer). Each dataset will be divided into two class which

are the outlier class (5% outliers) and the normal class to evaluate the performance of

the algorithm for detecting the outliers. The detail of each dataset is shown as follows.

Iris Plants Database (IRIS)

Iris Plants Database [22] contains the sepal and petal measurements of three iris

plants having four continuous-valued attributes with 150 instances (Iris Setosa (50), Iris

Versicolor (50), and Iris Virginica (50)). This experiment generates ten datasets where

each dataset keeps all Iris Versicolor and Iris Virginica as the normal instances and

randomly picking 5 neighbor instances from Iris Setosa as an anomalous assemblage

(about 5% outliers). See Figure 4.26.

Figure 4.26: The model to generate IRIS datasets.
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Wine recognition data (WINE)

Wine recognition data [23] is a dataset of the chemical analysis of wines in Italy

from three different cultivars which contains thirteen continuous-valued attributes (three

classes having 178 instances: class 1 (59), class 2 (71), and class 3 (48)). This

experiment generates ten datasets where each dataset keeps all class 2 and class 3 as the

normal instances and randomly picking 6 neighbor instances from class 1 as an

anomalous assemblage (about 5% outliers), see Figure 4.27.

Figure 4.27: The model to generate WINE datasets.

Wisconsin Diagnostic Breast Cancer (WDBC)

Wisconsin Diagnostic Breast Cancer [24] is a dataset of the characteristics of cell

nucleus in the diagnosis breast cancer image which contains thirty one attributes (ID,

and 30 continuous-valued attributes) with two classes having 569 instances (malignant

(212), and benign (357)). This experiment drops ID attribute and generates ten

datasets where each dataset keeps all benigns as the normal instances and randomly
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picking 18 neighbor instances from malignant as an anomalous assemblage (about 5%

outliers), see Figure 4.28.

Figure 4.28: The model to generate WDBC datasets.

Real-world A normal cluster An anomalous assemblagedatasets

IRIS 100 instances 5 neighbor instances
(versicolor (50), virginica (50)) (randomly from setosa (50))

WINE 119 instances 6 neighbor instances
(class 2 (71), class 3 (48)) (randomly from class 1 (59))

WDBC 357 instances 18 neighbor instances
(benign (357)) (randomly from malignant (212))

Table 4.2: The summary of the randomly generated data from real-world datasets.

To determine the suitable value of the parameter C for real-world datasets. CND is

performed by vary the parameter C = 1 to 10 on each dataset in IRIS, WINE, and

WDBC where F1-measure of each dataset is computed. Next, the average F1-measure

(AF) of ten generated datasets in IRIS, WINE, and WDBC is computed and the

standard deviation of this average F1-measure (SDAF) is also computed. Finally, the
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error bar is plotted by AF ± SDAF of ten generated datasets in IRIS, WINE, and

WDBC along the value of C = 1 to 10, see in Figure 4.29.

Discussion of error bars on real-world datasets

For IRIS: C = 6 shows the best average F1-measure about 1.0 and a small standard

deviation. After that, the average F1-measure is stable about 1.0 from C = 7 to 9.

Moreover, the average F1-measure drops to 0.1 at C = 10 because the scores of

instances may not be significantly different or there are some normal instances are

detected as outliers. For WINE: C = 7 shows the best average F1-measure about 0.8.

After that, the average F1-measure is stable about 0.7 from C = 8 to 10. For WDBC;

C = 7 shows the best average F1-measure about 0.6. After that, the average F1-measure

is stable about 0.6 from C = 8 to 10.

Remark. C = 7 guarantees the best performance for these three real-world datasets.

Figure 4.29: The error bars of IRIS, WINE, and WDBC where C along x-axis and the
average F1-measure along y-axis.
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To compare the performance of CND with WOF and LOF on real-world datasets,

the parameter C is set to 7 for CND and k =
⌊

7

100
×m

⌋
for LOF. The results are

shown in Figure 4.30 - 4.38.

Discussion of the performance on real-world datasets

On IRIS datasets: CND shows the best performance with 100% for all

measurements which is better than WOF and LOF.

On WINE datasets: CND is better than WOF and LOF on the dataset number

1,2,3,4,7,8,9 for all measurements, CND has similar performance to LOF which is better

than WOF on the dataset number 5 and 6 for all measurements, and CND has similar

performance to LOF which is worse than WOF on the dataset number 10 for all

measurements.

On WDBC datasets: CND is better than WOF and LOF on the dataset number 1 -

7 for all measurements, CND has similar performance to WOF which is worse than LOF

on the dataset number 8 for all measurements, and these three algorithms have the same

performance on the dataset number 9 and 10.

For overall performance on these three real-world datasets, the results show that

CND is better than WOF and LOF based on precision, recall, and F1-measure. Since

the outlier class may be close to the normal class, then these algorithms can not

effectively detect the outliers on these three real-world datasets. Moreover, the threshold

based on the adjusted boxplot may be unsuitable for WOF and LOF as shown in three

real-world datasets.
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Figure 4.30: The precision on IRIS datasets.

Figure 4.31: The recall on IRIS datasets.

Figure 4.32: The F1-measure on IRIS datasets.
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Figure 4.33: The precision on WINE datasets.

Figure 4.34: The recall on WINE datasets.

Figure 4.35: The F1-measure on WINE datasets.
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Figure 4.36: The precision on WDBC datasets.

Figure 4.37: The recall on WDBC datasets.

Figure 4.38: The F1-measure on WDBC datasets.
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4.3 Running time

Generated datasets vary by the number of instances from 100 to 1000 instances to

test the running time of CND, WOF, and LOF. This experiment is performed by Julia

programming language version 0.5 on a personal computer notebook (Intel Core i7, 8GB

memory). The result is shown in Figure 4.39 where CND has the running time is similar

to WOF which is better than LOF.

Figure 4.39: The running time of CND, WOF, and LOF.



CHAPTER V

CONCLUSION

In this thesis, the C-anomalous assemblage detection algorithm called CND is

proposed. The algorithm needs the parameter C to compute the kth index to use the

kth-nearest neighbor distance for representing the anomalous score of each instance in a

dataset. The index k is set to equal the floor function of C percent of the total number

of instances in a dataset. Moreover, the adjusted boxplot based on the medcouple for

skew distribution is used to generate the threshold for detecting outliers where CND

algorithm uses only the upper threshold because any outlier has a large score.

The effect of varying parameter C is investigated by the error bars of average

F1-measure along the value of C from 1 to 10 on synthetic and real-world datasets

having about 5% outliers. For synthetic datasets where the anomalous assemblages are

deliberately designed, the lesson that has been learned is the suitable value of parameter

C depends on the size of the anomalous assemblages. Moreover, the various locations of

anomalous assemblages around the normal clusters have no effect because CND shows

the good performance for all different locations of assemblages in the experiment. For

real-world datasets, the results are not clear to identify the suitable value of parameter

C because there are no obvious anomalous assemblages appearing in them.

On the experimental results, CND shows the best prediction and effective score

instances based on precision, recall, and F1-measure on five collections of synthetic and

three real-world datasets (IRIS, WINE, and WDBC). Moreover, the time complexity of

CND is O(n2) which is the same as WOF and LOF. However, the running time of CND

is similar to WOF which is better than LOF.
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Future work

The performance of CND should be evaluated via more well-designed on the

non-normal distributed datasets. See the example in Figure 5.1.

Figure 5.1: Non-normal distribution datasets ([25], [26], [27] ).

On a dataset in Figure 5.1-(a),(b), and (d), CND may identify all instances as the

normal instances because each instance has the distance to its neighbors that do not

significantly different comparing with the most instances.

On a dataset in 5.1-(c), CND may identify some instances are the outliers because

there are the instances having the distance to the neighbors that farther away from

comparing with the most instances.
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