

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The following conclusions are drawn from the study:

- 1. Removal of mercury by copper and/or zinc adsorbents only depends on temperature and nature of mercury compounds but does not depend on pressure.
- 2. Adsorption of organomercury depends on temperature while inorganic mercury is independent of temperature.
- 3. Efficiency of adsorbents is shown in following order: copper adsorbent > copper-zinc adsorbent > zinc adsorbent > alumina adsorbent.
- 4. Adsorption of mercuric chloride on alumina adsorbent is an reversible process while adsorption of phenylmercuric chloride and diphenylmercury is not reversible process.
- 5. Efficiency of copper adsorbent increases with percent of copper loading increase.
- 6. Effect of increasing zinc loading depends on type of mercury compound.

- 7. Efficiency of copper-zinc adsorbent increases when temperature increases.
- 8. mercury compounds are removed in the order of:
 mercuric chloride > phenylmercuric acetate >
 diphenylmercury.

Recommendations

- 1. A similar study should be conducted in continuous flow reactor such as fixed bed reactor in order to study capacity and life time of adsorbent.
- 2. Weight ratio of copper to zinc in copper-zinc adsorbent should be varied to find a suitable one in mercury removal.
- 3. The same experiment set should be conducted to removal mercury in natural gas condensate in order to compare efficiency of mercury removal.