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CHAPTER 1
INTRODUCTION

For z € R", let p(z) = (2r) % ¢~%"/2. The classical Segal-Bargman transform,
see e.g. [1], [9], [10], is a unitary isomorphism V: L*(R", dx) — HL*(C", v dx dy)
defined by

ViG) = [ ple-o)f@)de
= (2m)7"/? /n = f(z)dx,

where HL?*(C",vdx dy) is the space of holomorphic square-integrable functions
on C" with respect to measure v(y)drdy = 72 eV dy dy. The map V can be
regarded as the heat operator e f = px f, followed by the analytic continuation

from R" to C", as in the following commutative diagram:

HL*(C", vdz dy)

Here C denotes the analytic continuation from R™ to C" and ./Z(]R") is the image
of L*(R", dz) by the operator e

Moreover, the creation and annihilation operators are intertwined by the Segal-
Bargmann transform with differential and multiplication operators, respectively,
in the holomorphic function space side.

Another variant of the Segal-Bargmann transform is considered by looking at



a different pair of measures U: L* (R", pdx) — HL*(C", udz) defined by

U= [ o) fla)ds
=) [ e ) da,

where p(z) =7 " e % and dz is Lebesgue measure on C". The map U is a unitary

isomorphism from L? (R", pdx) onto HL*(C", udz) and split as follows

HL*(C", pdz)

/ E
L2(R", pdzx) A(R™)

A
e?2

Note that the formula for V' and U are exactly the same; the differences lie in
their domains and ranges.

As the theory of complex analysis is generalized to Clifford analysis, a holo-
morphic function is generalized to a monogenic function. It is natural to consider
a Clifford-valued function in place of a complex-valued function. In 2017, Mourao,
Nunes and Qian [8] generalized the Segal-Bargmann transform to Clifford algebra-

valued functions analogous to V. Denote by C,, the complex Clifford algebra on

C".

Theorem 1.1 ( [§]). The map V: L*(R", dz) ® C,, — ML*R"™, i dxydz) given

by

2

V() = o [ ([ Tt ay) pg)ay

IS

is a unitary isomorphism. Here ML*(R™!, b dx dx) is the Hilbert space of mono-

genic functions on R™ which are square-integrable with respect to measure v dxy dx

1

where i(xq) = —=e .
NS

The idea used here is to substitute the analytic continuation C with the CK



extension, e *2_ as in the following diagram:

MLA(R™ D dg dz)

e

L*(R",dz) ® C, ARY) ® C,

A
e 2

The main result of this work is to generalize the map U to Clifford algebra-valued

functions. We obtain the following theorem:

Theorem 1.2. The map U given by

0(Dte0s) = n [ ([ e Feeenmay) ray

is a unitary isomorphism from L*(R", pdz) ® C, onto ML*(R™", dji), the Hilbert
space of monogenic functions on R™™! that are square-integrable with respect to the

measure
1

r(n+1)/2 e rilel dxo dz.

dji =

The map U can also be factorized as in the following diagram:

ML R, dji)

L*(R*, pdz) ® C, ——— AR") ® C,
e2

Here is an outline of this thesis. In Chapter 11, we review some preliminary defini-
tions and theorems that will be used in this work. In Chapter III, we give a proof of
Theorem @ extending the Segal-Bargmann transform U to Clifford algebra-valued
functions. In Chapter IV, we investigate the intertwining properties of the anni-

hilation and creation operators under the generalized Segal-Bargamnn transform

U.



CHAPTER II
PRELIMINARIES

In this chapter, we introduce some basic knowledge that will be used throughout

this work.

2.1 Clifford analysis

2.1.1 Clifford algebra

We recall the definition of a Clifford algebra. See, e.g. [2], [B], [7], and [§].
Let K=Ror C. Let B:V xV — K be a symmetric bilinear form on a finite-
dimensional vector space V over K. Let () : V' — K be the corresponding quadratic
form defined by

Q(z) = B(x,z) forany z € V.

We call the pair (V, Q) a quadratic vector space. A K-linear map ¢ : V — A
from a quadratic vector space (V, Q) into a unital associative algebra A is called a

Clifford map if for all x € V,

where 14 is the unit of A.

Definition 2.1. A Clifford algebra is a unital associative algebra CY(V,Q),
together with a Clifford map ¢ : V. — Cl(V,Q), such that for every Clifford
map ¢ : V — A into a unital associative algebra A there is a unique algebra

homomorphism ® : CY(V, Q) — A such that ® o ¢ = ¢, i.e., making the following



diagram commute:

Vo OV, Q)

N

Proposition 2.2. The Clifford algebra CU(V,Q), if exists, is unique up to isomor-
phism.

2.1.2 Construction of Clifford algebra

Let (V, Q) be a quadratic vector space and TV = @,5,V*" denote the tensor
algebra of V, where V¥ = K, V¥ = V and V®” = ®_,V. The multiplica-
tion V&P x V&1 — Y@@+ ghtained by extending bilinearly the concatenation of

monomials
(@1® @) ®  QYy) =01 R VLAY D R Y,
Let I be a 2-sided ideal of T'V generated by elements of the form
rRr+Q(x) e V2o VO,

Consider the following diagram:

Let A be a unital associative algebra and ¢ : V' — A a Clifford map. By the
universal property of the tensor algebra, there exists a unique algebra homomor-

phism ¢ : TV — A such that ¢ oi = ¢. Since ¢ is a Clifford map, it follows that



Ig C ker b
dr @z +Q(r) = ¢(z)* + Qz) =0
By the universal property of the quotient space, there exists a unique algebra

homomorphism & : TV /Iy — A such that ® o 7w = ¢. Let ¢ = moi. Then
(TV /g, c) satisfies the definition @ of the Clifford algebra.

2.1.3 Real and Complex Clifford algebras

For computational purpose, let V = K", equipped with a symmetric bilinear
form B. Let {z1, 22, ..., 2,} be a K—basis, relative to which B;; := B(x;, z;) = ;.

For j =1,...,n, let ¢; denote the image of x; of the Clifford map c. Then we have

c(ws +25)* = =B(a; + xj, x; + )
co(z;)? + c(i)e(x;) + c(z;)e(x;) + c(x;)* = —(By + Bij + Bji + Bjj)
6? + 61‘63‘ + ejez» + 632- = —(B” + Bij —+ sz‘ + Bjj)

61'6]‘ + ejez- = —26,”
Equivalently,

€i€; = —€;6€;, Z7éj, i,j:1,2,...,n

e2=-1, i,j5=12,...,n

(]

We denote the Clifford algebra over K by K,,. If K = R or C, we call it a real
Clifford algebra or complex Clifford algebra, respectively. For example, when n =
1,23,

R, 2 C, R, =H (the quaternions), Ry = H?.

While,
Cont1 = Mon(C) @ Man(C), Cyy = Mon(C).



Note that {e4 | A C {1,2,...,n} = N} is basis for K,, where e4 = ¢;,¢;,---¢;,_ if

A =iy, d9,... g}, with 1 < iy < iy < --- < i < n, and ez = 1. Moreover, for

any A € CL(V,Q), it can be written as

A= Z >\A€A7

ACN

where A4 € K. Define the so-called k-vector part of A\, for £k =0,1,...,n, by

Now, we focus at C,,. One important operator of C,, the Hermitian conjuga-

tion, is defined by

where X denotes the complex conjugate of the complex number A4. This con-
tributes to a Hermitian inner product and its associated norm on C,,, defined,

respectively, by

(M) =Daloand AP =D =D [l

A

2.1.4 Clifford analysis

As we say earlier that the Cliford analysis generalize the Complex analysis. We

first begin with defining the generalized Cauchy-Riemann operator by by

D:amg +Q>



where
Q = Z 836].6]-.
j=1

To make things easier, we also identify the subspace of R,, of 1-vectors
{z = ijej cx = (21,...,2,) € R"},
j=1

which is identified with R” and —|z|* = —(z,2) = 2°. Now, a generalized concept
of holomorphic function is given. A continuously differentiable function f on an
open domain @ C R™™ taking values in C,, is called monogenic on O if it

satisfies the generalized Cauchy-Riemann equation:
Df(xzo,z) =0.

Next, we introduce a space of Clifford algebra-valued square-integrable func-

tions

L*(R™, fida; C,) = {f : R"™ = C, | |f(2)* fidz < oo},

Rn+1

which can be identified with the Hilbert space tensor product L*(R"*!, fidz) ® C,,.

It is equipped with the inner product:

)= [ sz = [ [T iz

Rn+l

2.2 Schwartz space S(R")

We recall the Schwartz space on R". For a multi-index o = (ay, ..., ay,), write

o = o o and z% =z
dr®  Ox™ Oxon a

Qn

.-x

The Schwartz space S(R™) is the space of smooth functions f such that f, together

with all its derivatives, decrease rapidly at infinity, i.e. a smooth funtion f lie in



S(R™) if

[0}

lim z”

f(x) = 0 for all multi-indices « and .
|z|—o0 ox®

Since S(R™) c L'(R™), we define the Fourier transform on S(R™) by

s 1

flz) = R Jon f(p)e P dp.

Let C°(R"™) denote the space of smooth functions with compact support. We list
some of the well-known results regarding Schwartz space and Fourier transform.

See e.g. [0].
Theorem 2.3. The Schwartz space S(R") is dense in LP(R™) for 1 < p < oc.
Theorem 2.4. C°(R") is dense in L*(R"™, pdx).

Proof. Let S be the class of measurable simple functions.
Step 1. We show that S is a dense subset of L*(R", pdx).
If ¢ € S then

/|¢I2pdx < sup(|¢|*) //)dx < 400,

and thus ¢ € L*(R", pdx). Let f € L*(R", pdx). First assume that f > 0. Then
there exist an increasing sequence of simple functions ¢,, such that 0 < ¢,, < f and
Gm N f. Also, | — f|* < 4|f|* and since |f|* € L'(R™, pdz), by DCT, ¢, — f
in L?(R", pdx). The extension to the general case follows a routine procedure.
Step 2. We show that a simple function in S can be approxmiated by a
continuous function with compact support. Let ¢ € S. Given € > 0, by Lusin’s
theorem, there exists a continuous function g with compact support such that

g = ¢ except possibly on a set of measure €, with respect to pdzx, and

9] < sup(|¢]).



10
Hence, for E = {z | (g — ¢)(z) # 0},

2 2
_ — _ d
lg — 9| /Rn|9 o|"pdx
2
d
S/E(\SJ\JFWD pdx

< desup(|o]*).
That is we can estimate, in L?(R"™, pdz), a simple function by continuous functions
with compact support.
Step 3. Let f € C.(R"). There exists a sequence (¢,) in C:°(R") with

supp(¢y), supp(f) C K for some fixed compact set K, and such that ¢, — f

uniformly on K. Thus

f — oulPpde :/ f — éuPpde < sup(|f - ¢n|2>/ pdz — 0,
R™ K K K

which completes the proof. [
Corollary 2.5. S(R") is dense in LP(R", pdx) for 1 < p < 0.
Proof. 1t follows directly from the fact that C2°(R") C S(R"). O

Theorem 2.6. The Fourier transform is a unitary isomorphism on S(R"™). More-

over, for any f € S(R"),

1

- F i(p,7) g

fx) =

Hence the Fourier transform can be extended to a unitary isomorphism on L*(R™).



CHAPTER I11
CLIFFORD ALGEBRA-VALUED SEGAL-BARGMANN
TRANSFORM

We briefly recall some useful facts in [§] regarding the Cauchy-Kowalevski ex-
tension. The Schwartz space of C,,-valued functions is identified with the tensor

product S(R")®C,,. Any f € S(R") ® C,, can be written as f = Z faea, where

ACN
fa € S(R™). In addition, the Fourier transform of f is given by f = Z faea.
ACN

Proposition 3.1. Let f € S(R") ® C,, be such that for all xy € R
e "2 f ¢ S(R") @ C,.

Then

1 o
(2m)n/? / (B2 f (p) dp

defines a monogenic function satisfying the Cauchy problem

F(xzg,2) =

oF
o~ 20
F(0,z) = f(z).

Proposition 3.2 ( [4]). Let F' be a monogenic function on R™™ with F(0,z) =
f(z). Then

F(xg,z) = e f(wo,z) = (Z(—Uk%gkf) (z)

k=0

where the series converges uniformly on compact subsets.

Our main result is to extend map U to Clifford algebra-valued functions as the
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following theorem.

Theorem 3.3. The map U given by

O(Dte0s) = r [ ([ e Feteenmay) ray

is a unitary isomorphism from L*(R", pdz) ® C,, onto ML*(R™", dji), the Hilbert
space of monogenic functions on R™™! that are square-integrable with respect to the

measure

[ — —zg—|z/?
dp = W(n+1)/26 0 drodx.

From Proposition @, the Cauchy-Kowalevski extension of p is

e—zon< ) = (QW)—nﬂ/ ei((gz)—mop)p(g) dB
Then

0 fan,z) = )" [ e*Lpta ) fig) dy
Lemma 3.4. For f € L*(R", pdz) ® C,, Uf is a monogenic function on R"*!.

Proof. From the above calculation and Leibniz rule,
Oy, U f, and DU f

can be taken under the integral symbol and calculated only at e=™2p. Hence, U f

is a monogenic function on R™*. O

Since, for f € S(R") ® C,, Vf = Uf, we have the following results from [g].

Remark 3.5. The map U can be shortly written as

oy
2

U(f) =e"2oez(f).

Lemma 3.6. Let f € S(R") ® C,,, with the Fourier transform f Then

- 1 p? A~
U(f)(x0’£>:W/Rne2l l ((p,z)—z0p) f( )
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IS

Remark 3.7. ¢ @02 — cosh(zo|p|) — 7 sinh(wo[p])

=

Let {Hey, k € NI} denote an orthogonal basis of L*(R", pdz) consisting of
Hermite polynomials on R"” with ||Hey||* = k!, where the multi-index notation is

used: for any k € Ny,
Hey(x) = Heg (1) ... Hey, (x,),

k!'=Fky!. . .k, and 2% = 2% . ahn

Lemma 3.8. e%Hek = zF.

Proof. From the identity

2
B Z Hek(x)y—‘, x,y € R"
kEND
and
(Hey, Hey) p2(rr pdzy = K0k,
we have

:(%)3/ " T Hey(y)dy
R
n 92 ‘I.k
= (27r)_2/ ez ZHBk(y)y Hey(y)dy
Rn keNp '

Lemma 3.9. For f,h € S(R") ® C,,, we have (U(f),U(h)) = (f,h).

Proof. Note that for any 1-vector p € R! we have

(eu,v) = (u,e®v), for any u,v € C,.
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Using the Fourier transform, we have the following identity:

lp—ql? 1 T )
T T — el(p—a.z) o~ | dz.

Tn/2

Let A = (e‘ixo@ﬂ)f(g), ﬂ(g)) By Lemma B8 and the above identity, we have

- - 1 lp-a®  Ip%+1al? 2
U Uh)) = ——— 71 e 2 Ae *dxydpd
< (f)u ( >> \/%(27_()” /]RXRQn € i€ € X B g

Also, from Remark @ and the fact that sinh is an odd function, we have

/RAB_’”?) dxy = /Rcosh(x(ﬂg +4q) (f(g), ﬁ(g)) e~ dag

lp+al?

= Ve (). h@)

By changing variables in the above identity and using the Fubini’s theorem, we

obtain

Now, we are ready to prove Theorem BZ3.

Proof of Theorem BZ3. Since S(R") is dense in L*(R", p dx), it follows that S(R™)®
C, is dense in L*(R", pdz) ® C,. The isometry part follows from Lemma B9. It
remains to show that U is surjective.

Let f € ML*(R""! dfi). Note that fo(z) = f(0,2) uniquely determines f by
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Cauchy-Kowalevski extension. Since an entire monogenic function has a Taylor

series with infinite radius of convergence, we can write fy uniquely as

fo=>_) " arattes.

A keNp

From Proposition B2, we have

|
7=0 J keNgy
oo
—xn)
-3 > E e e
A j=0 keNp J:

which follows from the fact that we can differentiate term-by-term in a power
series. Since it has infinite radius of convergence, it also converges absolutely in

R™™ and thus we can interchange the summations resulting in

ap D’ (z")eq

fla) =30 30 3 50

A keNp j=0 J:

— Z Z ahAe’””OQ(gk)eA.

A keNp

Take

g= Z Z apa(Her)ea

A keNp

Then g € L*(R", pdz) ® C,. By Lemma @ and Remark @,

U(g) = Z Z o e 02 (6%(H€k)> €

A keNp

— Z Z ak,Ae_IOQ(gk)eA =f.

A keNr

Hence U is a unitary map from L*(R", pdz) ® C, onto ML*(R™, dji). O
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For k C N", we have

k!
e—onQk - Vk<x07£) - Wzka

where |k| = an and 7" = 2 2" +. . 2, 25" with 200 = 1 and Z¥ = 0
i=1
if one of k; is negative, €' is the vector in R™ having i coordinate being 1, and

0 otherwise and z;(xg + x) = x; — xge;. Then we immediately have the following

result.
Corollary 3.10. {V, : k C Ny} is an orthogonal basis for ML*(R™" dji).

Proof. From Theorem @, we have that the map U is a unitary map. Since

Vi = e ®0L ok — U(Hek), we are immediately done. O

According to [2] and [4], a monogenic function admits the Taylor series of the

form:

f(zo,z) = Z oy Vi(zo, ).

keNp

Theorem 3.11. For each f € ML*(R"™ dji) such that

flao,z) =) aVi(zo, z),

keNp

we have || f||* = Z | |2k! and this sum converges in L*(R™™, dji) ® C, sense.
keND

Proof. 1t follows from Theorem that

(Vi, Vi) = (U(Hey,),U(Hey))
= <H6k,H€l>
= k0.
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Since Z | |2K! is finite, fi (20, 2) = Z Vi (20, ) converges in L*(R"™, dji)®

keNp keNg
k|<N
C,, sense to some function g. Then there is a subsequence converges a.e. to g point

wise and hence f = g a.e.. ]



CHAPTER IV
CREATION AND ANNIHILATION OPERATORS

In this chapter, we investigate properties of creation and annihilation operators
among different spaces. First, we recall the creation and annihilation operators on

L*(R", pdx), respectively,

ax = Oy,

~ %
ay, = T — Oy, .

It is well-known, see e.g. [5], that these creation and annihilation operators are
intertwined with diferrentiation operators and multiplication operators, respec-

tively, on HL?(C", i dz) by the Segal-Bargmann transform U:

Theorem 4.1. Forallk=1,....,n

o)
~ —1 .
UakU = —aZk
UaiU™! = z,.

Now, we give an analogous result for the generalized Segal-Bargmann transform

U:

Theorem 4.2. Forallk=1,...,n,

Uarf(z) = e P8, (Uf)(0,z) and
Uiy f(z) = e P x(Uf)(0, ).

Proof. Let f = Z faea € S(R") ® C,,. By Theorem @ and holomorphicity, we
A



19

have

€2 Oy fa = [U8s, falz + iy)]y—o0
= [0, U fa(x +iy)]y=o
= [amk Ufalr+ iy)]y=0

A
= 89%62 fA-

Then

Uan(f) = e L oe2d,, f
= e‘zogﬁxke%f

= e 2Ly (U£)(0,z).

The second equation follows by a similar argument. [

For 1 < j < n, the operators P; and X, are defined by
Pjf(zo,z) = 0y, f(z0,2) and X f(zo,z) = e P xz; f(0,2).

Lemma 4.3. P;(V;) = k;Vi—, = € "2 0 0,,Vi(0,2) and X;(Vi) = Viyes.

Proof. We will show only the first equality because the second is similar. First, we
show that P;j(Z*) = |k|Z*"% for all k C N". It clearly holds for |k| = 1. Assume
that it holds for |k| < n. For |k| = n, we have

0y, 2% = zn: Oy, 2"
i=1

=2 (100202 +2(0,2)

=78 4 (k] = 1) zzhe

=1

=78 1 (k| - 1) 2% = [k| 2+
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Then
k!
0y Vi = —0, 7"
A |17
k! ;
— —Zkfej
(k] = 1)!
(k= el e
=k; e
Tk — ed]!
=k;iVi_es. O
For a multi-index o = (ay, ..., ay), write
PY=P". . P and X%=X%...X%,
Define
Dpe = {f € MEAR™ dji) : P*f € MIA(R™, dji)}
and

Dxa = {f € ML*(R"" dji) : X*f € ML*(R"' dji)}.

We will see that Dpa = Dxa. In order to prove this we need the following

lemmas.
Lemma 4.4. Dpa C Dps if a and B are multi-indices such that f < «.

Proof. Tt suffices to show this for @ = 8 + €' where 1 < i < n. Let f(zg,2) =

Z arVi(zo,z) be a function in ML*(R"™, dfi). Then
k

Pﬁlf Z ( k — 61 )akaﬁiei

ki=p;
kCN"

and

k;!
Bi+1 E ' i Vi
Pi * f - <(kz _ ﬁz _ 1)[) Ak Vi—(Bi+1)e

ki=pB;+1
kCN™



By Theorem , we have

(e e}

1= 5 () e e

ki=p;
kCN"™

=3 () e = ket -

ki*ﬁl
kECN™

= N (k') Qg (&
= 3 e e

kECN™

| PP

and, similarly,

AR = Y (Lmk\ (k — k).

ki=B;+1 Bl )
kCN"

Thus D s;+1 € Dpp;. Now, for f € Dpe, consider

,B.
RL',L

pef = PP (PR f) € MIA(R™, dfi).

That is PP~P f € D 511 C D . Thus PP f € ML2(R™™, djy).

pfi

Lemma 4.5. Dxa C Dxs if a and B are multi-indices such that f < «.

Proof. Let f € ML*(R""! dji). Then f(zo,z) = Zaka(xo,g). We have
k

Xﬁf = Z aka+5.

kCNm

Then, by Theorem ,

IXPFIP =D Jawl (& + B))!

kCN"

< > laf(lk+al)l = [ X f))7

kCN™

Now, we are ready to prove the main resulf of this section.

Theorem 4.6. Dpa = Dxa for any multi-indices a.
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Proof. We first show that Dp, = Dy, for any 1 <7 < n. Let f € MLQ(R”H, dji)
with f(xo,z) = Zakvk(%,i)- Then
k

Pf=) akiVic
k

and

le = Z akvk—&-ei
k
Thus, by Theorem ,

IXaf 1P = 1P = Y lanl((k + )t — k1)
k
= lar]*k} (k — kie')!(k; — 1))
k

=PI

Hence Dpi = Dxi.
Next, assume that Dps = Dys for some multi-index 3. Let a = §+ ¢’ for some

i€{1,2,...,n}. We will show that Dpa = Dxa. If 8; =0, then we get

Pz'(Xﬁf) = XB(Pz‘f>‘
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That is

f € Dpa <= P*f € ML*(R"™ dji)
< P,f € Dps = Dxs
= X(P,f) € ML*(R™, dpy)
< P(X7f) € ML*(R™, dji)
«— XPf e Dp =Dx,

<= f € Dxa.
For the case ; > 1, we will use the identity, for f € ML*(R"*! djfi),
Pi(X7f) = B(X" f) + XP(Bf).

Let f € Dpa. Then P,f € Dps = Dys so XP(P,f) € ML*(R™™!, dji). Moreover,
since Dpa C Dps = Dxs C Dys_.i, we have Xﬂ_eif € ML*(R"" dji). Thus
Pi(XPf) € ML*(R"™ dji). That is X°f € Dp, = Dx,. Hence Dpa = Dxa. [



REFERENCES

Bargmann, V.: On a Hilbert space of analytic functions and an associated
integral transform part I, Comm. Pure Appl. Math. 14(3), 187-214 (1961).

Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis, Research Notes in
Mathematics 76, Pitman, Boston, 1982.

Brackx, F., Schepper, N. De, Sommen, F.: The Fourier transform in Clifford
analysis, Adv. Imag. Elect. Phys. 156, 55-201 (2009).

Delanghe, R., Sommen F., Soucek V.. Clifford algebra and spinor valued
functions: a function theory for the Dirac operator, Mathemaics and its Ap-
plications 53, Kluwer Academic, Dordrecht, 1992.

Hall, B. C.: Holomorphic methods in analysis and mathematical physics,
Contemp. Math. 260, 1-59 (2000).

Kesavan, S.: Topics in Functional Analysis and Applications, Wiley Eastern
Limited, New Dehli, 1989.

Lawson, H. B., Marie-Louise, M.:Spin Geometry, Princeton Mathematical Se-
ries 38, Princeton University Press, Princeton, 1989.

Mourao, J., Nunes, J. P., Qian, T.: Coherent state transforms and the Weyl
equation in Clifford analysis, J. Math. Phys. 58(1), 013503 (2017).

Segal, I. E... Mathematical characterization of the physical vacuum for a
linear Bose-Einstein field, lllinois J. Math. 6(3), 500-523 (1962).

Segal, I. E..: The complex-wave representation of the free Boson field, In Go-
hberg I. and Kac M. (eds.), Topics in Functional Analysis: Essays Dedicated
to M. G. Krein on the Occasion of his 70th Birthday, Advances in Mathematics
Supplementary Studies, 3, Academic Press, New York, 321-343, 1978.



Name
Date of Birth
Place of Birth

Education

Scholarship

25

VITA

Mr. Sorawit Faknipitsari
May 5, 1994
Bangkok, Thailand

B.Sc. (Mathematics)(First Class Honours),
Chaing Mai University, 2015

Science Achievement Scholarship of Thailand (SAST)(2012)

Development and Promotion of Science and Technology Talents Project

(DPST)(2013-Present)



	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	CHAPTER II PRELIMINARIES
	CHAPTER III CLIFFORD ALGEBRA-VALUED SEGAL-BARGMANNTRANSFORM
	CHAPTER IV CREATION AND ANNIHILATION OPERATORS
	REFERENCES
	VITA



