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The structure and size of complexes formed by HPC and HTAB were
studied by light scattering and viscosity techniques in dilute solutions as a
function of CHIAB CMCand Chital/Chpc in %wt. The maximum binding point
occurs at CHIABCHY- = 1.35 and is independent of Chital/Chpc. Rheological
studies of the polymer system and the complex system in concentrated
solutions were carried out in order to identify gel point. The gel point was
determined by the observation of the frequency independent loss tangent. At
the gel point, a power law of frequency dependence of the G' and G" functions
was observed. For the pure polymer systems, the experiments were carried out
in the CHA-range from 3.0 to 5.0%wt. At gel point the power law exponent,
Increases from 0.06 to 0.19 and the critical gel strength parameter, , also
Increases with CHC For the complex systems, the measurements were
performed at fixed Chtat/Chpc = 1.35. In the CHIABrange 4.0 to 5.0%wt, the
gel point was found to shift toward higher temperatures. The value of
decreases from 0.50 to 0.39 but still increases with an increase in C|||AB and
Chipc. For C|||AB lower than 4.0%wt and higher than 5.0%wt, the gel point
could not be found.
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