CHAPTERII
MATHEMATICAL MODEL

2.1 Liquid Flow in Pipelines

Fig. 2.1 Pressure drop in an inclined pipeline for flow from node j to node i.

A steady state momentum balance in the direction of flow from node j
to node i in the pipeline gives:

(pj-p,)"j--TwitDL-"-pLgsin0=0 (2.1)
The Fanning friction factor is defined as:
f,= ~[h- 22)
ipu>

Eqgn. (2.1) can be rewritten as.
Pj - Pi =2fFou2 +py(zi-Zj) (23)



Since;
: 16Q2 24

7t2D 4

Eqn. (2.3) gives:

2

32O
Pj-Pi = ,*F%g poz.” 2) (2.9)

Rearrangement of Eqn. (2.5) gives:
32O
(Pi-P,)+P8(zi - 2) i 25

Subscripts are now inserted to emphasize that the flow is from node j to node
1, 0 Eqn. (2.6) becomes:

(o -p.) +potzi -2 = 2 IPQIIL) 1)
The corresponding relation for flow from node i to nodej is:
2.8

Note that we always consider node i as the second or receiving node since the
simultaneous nonlinear equations are generated from nodal material balances
on every node i in the whole network.
All constant quantities are in consistent units. Equation (2.7) can be
rewritten as;
(Pj-Pi) +Kzj - zi) =ajifFjQl (2-9)
Here:

. =926 and  P=pg 2.10)

|fwe define;
y=Pj - Pi+p(z] -zj) .11



from Eqn. (2.9), the flow rate from node | to node i is given by:

Qi=fiF A for —y>° (2.12)
and from Eqn. (2.8), the flow rate from node i to node] is given by:
Qij=-1* y/ajiff for  y<0 (2.13)

2.2 Liquid Flow across a Pump with Elevation change

Pi -Pi

Pi = P; [ binjzj
Fig. 2.2 Centrifugal pump and performance curve.

There are two separate cases to be considered for each of three
possibilities, as follows:

L Qj>0, forflow across the pump from node j to node I

Qj=° for pivpzi >pa+pzivajl  (214)
Qi~ /bl for pj+pzj >pi+pz, (2.15)

J(pJ-P,+al+P(zd-2 ))/bj otherwise (2.16)



Note that QJcan not be negative, even if ri>pj +aji hecause the pump is
equipped with a check valve.

2. qij <0, for flow across the pump from node i to node .

Qy=0 for pjpzj >p1+pz,+a§  (217)
Qj=-~Valj for pi +(3z, >Fj +p4 (2.18)
V(Pi-Pj+ai+P( zi))bu Otherwise (2.19)

2.3 Compressible Gas Flow in Pipelines

2.3.1 Inclined Flow (z  z):

L, x=L, Pi, 7

X X
Direction of gas ﬂW{everse direction of gas flow
0

J» x=0, p;, z

Fig. 2.3 Inclined compressible gas flow from node| to node 1.

Consider the inclined steady flow of compressible gas in a long-
distance pipeline of length L and diameter D, with inlet and outlet pressures
and elevation change, flowing from node j to node i as shown in Fig. 2.3. If
the flow is upward, both 0 and sin0 will be positive and if it is downward,



both 0 and sin0 will be negative. The pipeline is assumed to be sufficiently
long in relation to its diameter so that it comes into thermal equilibrium with
Its surroundings; thus, the flow is isothermal.

In the absence of useful work effects, such as a compressor or
turbine, an energy balance on a differential length dx results in:

f 2
gdz+dk2) t—+0F=0 2.20)

In which frictional dissipation of energy per unit mass flowing is:
(2.21)

dF = 2fpu2 §
Expansion of the differential cb— i substitution of Egn. (2.21) for dF, and

division by 2, transforms Egn. (2.20) into:

z du d
N a0 222
The cross-sectional area of the pipeling is:
TtP2 (223)
Because of continuity, the mass velocity G =pu does not vary, so that;
dG=0=pdu+ udp (2.24)
Assuming an ideal gas and noting that absolute pressures must be used:
du do
- p 225)
Also note that:;
1
u & 02

The following relation exists between the elevation and length differential

increments;
dz = dxsin0 (2.27)
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Making the appropriate substitutions and collecting terms in Eqgns.
(2.22) results:

P , 3080 1 20+ o @B ging = 0 229)
in which:
az M
ZagRT
Rearrangement gives:
w cyb=iy o in o 229

The variables are now separated and integration is performed from the inlet
nodej to the outlet node i as follows:

| (2:30)
H—DA-+g G% inQ 0

Up in the numerator of the first integral is relatively small and can sometimes
be neglected. Inthis case, the integration can be performed as follows. Let;

=2 g v= g0 231)

50 that:
pdp -af pdp _
GZ&Zf, GZ'!(PWD =L (2.32)
D+g! 156

-af pd 1 AP+YPp._

G2] DE)?pZ ~2a0sin0 n P+ Yp2IO =L (2.33)
Therefore:

-q " pdp 1 P+Yp§\:
% 1y sagsingMp +yp - %)



Noting that:
E - 21];8[()33|2n0~5 (2.3))
in which:

"3 gDsin0  agD"zi-z ]
Eqn. (2.34) gives:

1 " (562+Pp _
V2agsindy  OGz +P- 7L (2.37)
5G2+P :
IngG, +pf2y = agLsino (2.38)
Rearrangement of Eqn. (2.38) gives:
5G~+p2 = exPleagLsing (2.39)

G - P - p 2exp(2agLsin0)
~ sexp(2agLsin0- 1)

Pj - pexp’agjz] - )
G21 , 2.41
bexp[(2a9(zi-z5)- 1 e

(2.40)

Thus, the square of the mass velocity in the pipeline with subscripts inserted to
Indicate the gas flow from node j to node i is:

Gzl M Y (> (x) P 2.2
AZEMRT>V 2 iLJ' y ’/_*) ( )

in which:



The corresponding relation for flow from node i to nodej would be:

M gpji(zi- zi) PT- 213
ART T o) 243)
in which:
. Mg(g-z))
GO IaT
Since:
m=GAb

where m = mass flow rate and A = cross sectional area of pipeline, the mass
flow rate from node j to node 1 is:

.o M Pi-
A RT MLt r (244)
In which:
$ :exp 2Mg(Z;-IZiT
V. Z- RT y

Likewise, the mass flow rate from node i to nodej is:

f M JgDJ'i(ZJ"~Zi)“F’*'2—3>iPJ2 (2.45)

LaRT, v 2Ly
in which:
f .
. My(Zj-1)
H=ED 71RT y
Note that:

¢; = 5 (246)
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As usual, all constant quantities are in consistent units. Therefore, the mass
flow rate from node| to node i is;

me=xa PIEPY (247)
1 Mg,

and the mass flow rate from node i to node] is:

m;;--X,I- .S (2.48)

Here:
v+ NTCDA
ARy 4
> 2.50
St = 0’(2 A ( )
i =exp \;Méé\zéﬁzj) (2.51)
|f we define:

=P - (2.52)

the flow rate from node | to node i is given by:
- oA for >0 (253)

The flow rate from node | to node i is given by:
mii =-*ji for <() (2.54)

The mass flow rate from node j to node i can be converted to a volumetric
flow rate at standard conditions:

L RT
Qsc-ji

for >0 (2.55)
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In the same manner, the volumetric flow rate from node i to nodej at standard
conditions is:

Qsc-ji fOI’ <0 (256)

2.3.2 Horizontal Flow (zi = zj).

Direction of gas flow

Fig. 2.4 Horizontal compressible gas flow fromnode] to node .

For Egn. (2.41), if the elevation change becomes zero or 0=o,
there is no definite value, because there is no effect for hydrostatic pressure in
the horizontal flow. Therefore, it is necessary to consider separately horizontal
steady flow from node j to node i as shown in Fig. 2.4. Thus, for 0=o, Eqn.
(2.29) gives:

L€, B, 81

Jdp
in which:
M
ZART
The variables are now separated and integration is performed from the inlet

node | to the outlet node i as follows:

2fcL (2.50)



15

Up in the first term of integration is often relatively small and can be
neglected, in which case integration of Eqn. (2.58) results in:

kol A At (259)
_aD [ »

=8 B, (260

oDl (261

G“Z RIUfxJ™ PIJ

Thus, the square of the mass velocity in the pipeline with subscripts inserted to
Indicate the gas flow from node | to node 1 is:

A7 DN
U 2R e (01P) 262
The corresponding relation for flow from node i to node would be:
. D; ,
T Za@T 4L, (P - P (263)

In the same manner, since m=GA, the gas flow from node | to node |

-0 [P [ P (264)

The gas flow from node ito node] is:

O M f D*
Ve agTigey BT

As usual, all constant quantities are in consistent units. The mass flow rate
from node  to node i is:

i = - pf) for  P>P  (2:66)

(2.65)
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and the mass flow rate from node i to nodej is:

=-Aji “P-) for — pi<pi  (2-67)
Here:
o nD.l
AP- A (2.68)
(2.69)

1 ZaRT i
The mass flow rate from node j to node i can be converted to a volumetric
flow rate at standard conditions:

Lo-pm  foropp 20
and, the volumetric flow rate from node i to node] at standard conditions is:

<3«-=- N WA T-Mps-pf) o for opcpi o (271)

24 Compressible Gas Flow across a Compressor with Elevation change
According to the energy equation, the theoretical work required to
compress a unit mass of gas from node | to node i is given by:
2A
dwe=vdp +dn"5 +gdz + dF (2.72)

Neglecting the friction losses and the change in kinetic energy, performing the
Integration from the inlet node j to the outlet node i gives:

0=jvdp +g(zi- 2) 273)
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For isentropic compression:

pv" =c=constant  and k:E/ (2.74)
Therefore:
c=Clkjp-p+g(zi-Z)) (2.75)
where ¢ is a constant. Upon integration, Eqn. (2.75) becomes:
=1 YCAPWA - pMAL+g(zi- 1) (2.76)
Xk £ \(kuk
oo kg e &1
£ \kDk
))C:/\p’v’ P! -1 +(zi- i) (278)
Since;

- e

Eqn. (2.78) becomes:
o \(kOk
-k ZaRT) et
e LT S 280
Conversion of the theoretical work required per unit mass to compression
power gives:

[ \elk
veen K ARTRTT 281)

Thus, the compression power with subscripts inserted to emphasize that the
power is required to compress gas from node | to node i is:

\(kDk
ook ZagT
L Mlﬁj 1t 4 (2.82)
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The mass flow rate across the compressor from node j to node i is given by:

T | K (289
k-l M 1 )

The corresponding relation for the mass flow rate across the compressor from
node i to node j would be:

-W.¢lj
_ 2-84)
“ k zagm fpyM (
k-1 M \Ez Ltgyr 1y

The mass flow rate across the compressor can be converted to a
volumetric flow rate at standard conditions as follows:

N
M= zsgch\#, (2.85)

Thus, the volumetric flow rate across the compressor at standard conditions for
flow from node| to node i is:

LISy o 1 (286

+ 8(z>~1zi)

k zaRT|
k-1 aﬁz | oj
and the volumetric flow rate at standard conditions across the compressor from
node I to nodej is:

Q "R « 2 P'delyk (287)

_ P
IT_T M VpJ l tg(zl-2>)>

Here:
1] 15 the compression power for flow from node i to node |

cji is the compression power for flow from node  to node i
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