CHAPTER Il
PRINCIPLES FOR ANALYZING GENERAL FLUID NETWORKS

3.1 Introduction

A general fluid network is formulated from a number of nodes, each
of which is identified by an index such as i orj.

The type of node i is specified as Tb which assumes one of the
following integral values:

0 - Pressure unspecified at node I.

1- Pressure specified at node 1.

2 - Injection or withdrawal rate specified at node .

3 - Terminal node i with a specified injection or withdrawal rate.

The nodal connection are connected directly to others nodes by a
pipeline or equipment. A connection matrix is established with possible values
for a representative element Jj, as follows:

1- Node i and node j arejoined by a pipeline.
2 - Centrifugal pump that pumps from node i to node j.
3 - Centrifugal compressor that compresses from node i to node|.

For nodal connection Cj =1, the pipeline diameter DB length Ljj, and
roughness Ejj, are symmetrical joining node i and node |.
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Nodes at which the specified injection rate is represented positive value
or withdrawal rate as negative value.

Note:

For nodal connection across an equipment such as pump or compressor,
If CB=2 or G =3then alwaysc1=0 because it can not operate in reverse flow.

The program always considers node i as the receiving node. Therefore,
the flow rate within pipeline connection given as "Qj" is positive value for

flow from node j to node i and negative for the reverse direction.

3.2 Flow in Pipelines
321 For Liquid

The flow rate from node| to node 11s given by:

S (g for y>0 31
The flow rate from node i to nodej is given by:
Q1= - yl(ah ) for y<0 (3.2)

Here:

P=pg

y=Pj- Pi +p(zj -Zi) (3.4)



3.2.2 For Gas
Inclined Flow"zj * 7):

The flow rate from node | to node i is given hy:
. X

@A vy

The flow rate from node i to node j is given by:

for >()

SC-li=yp |~ ~ for <0
B s oy

Here:

VIR )
VEaviw H y
N

SPiiA-Zj).
_ o 2Mo(z - Z)
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_ PscM
W=7 RT.
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Horizontal Flow(z; =zj

The flow rate from node j to node i is given hy:

Qe = Fjpph) B AR
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(312)
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The flow rate from node i to nodej is given by:
A i

Q-5 ~g,(p2-p2)  for  p<p, (3.13)

Here:
P4 (3.14)
() 615
Ve (3.16)

3.3 Flow in Equipment
3.3.1 For Liquid

There are two Separate cases to be considered for each of three
possibilities as follows:

L Qi>0 for flow across the pump from nodej to node I:

Qi= for p,+pz, >pJ+Pzl+aji  (3.17)
Q, = Vaii/bii for pj+pzi>p: +z, (3.18)

Qji=v(pJ - p, +P(Z - 2,))/bd otherwise (3.19)
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2. Qij <o for flow across the pump from node i to nodej:

o= for Pj+pg >p, +pz, +al  (3.20)
Qi =-Vauli for p, +pz, >Pj +pZ (3.21)
Qij =-)/(pi -Pj +aij+f - z,))m  Otherwise (3.22)
Here:
D= g (3.23)
3.3.2 For Gas

The flow rate across the compressor from node | to node i is:

1 I £-]
Q ¢t {NSJ / \( il)A (324)

k'lmlﬁ '1+ool

The flow rate across the compressor from node i to nodej is:

e ks e 3.25)
-1 & *,
Here:
Vel ZPSF?}/I (3.26)
o 52
ii=q(z. ~ 25) (3.28)

0i=9(zj- ) (3.29)
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=g (330)

34 Pipeline Flow with Partial Derivatives

In the followings relatively small variations of the Fanning friction
factor are ignored.

The partial derivatives for the Newton-Raphson method with respect to
Pj and Pi are given as follows:

34.1 For Liquid

Table 3.1 Liquid flow rate with partial derivatives

¥=p,—b; +B(ZJ R zi) Q; = Y/(“jifaa) Q; = —m

y>0 y<0

%2; aa?)jn = 0,5‘/1/(0,11&1i y) % = 0.5‘/— 1/((1Ji fFji y)

a_Q_ ani

. . —0.5,/1/ (a o y) Z—gzi =05~ 1[o;,)




3.4.2 For Gas

Inclined Flow(z.

Table 3.2 Inclined flow rate with partial derivatives

J

. in w e i - W
Q“—ji : Vs dsji(d)ji —l) QSHJ Ve vsii(d)ﬁ —l)
In which: w=p,2-—¢jipi2, In which: w=p§_¢jipi2,
and w>0 and w<0
aQsc—ji s A'ji P; aQsc—ij N i P;j
op; \j/scﬁ).i(d)ji ~ l) w op; Wscaji(d)ji = l) il
6ji(¢ji = 1) Sii(‘bii o l)
; 7\,1 —¢,-ip _¢jipl
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Horizontal Flow(z, =2):

Table 3.3 Horizontal flow rate with partial derivatives

Q“i K ( PI-P)
InCase:. B>A InCase: pj<p,

o, TP fA,  Sin
d(m s M pd-P?) qb WK (pi-p?

A

%}, rM _ 'CJIPI W 1 A || 'Ejlpl
J - ’ y
J Vigji(pi -p?) A.Sjifa-P*)



35 Equipment Flow with Partial Derivatives

The partial derivatives of non-zero Qi and Qy for the Newton-Raphson

method with respect to Fj and Pi respectively are given as follows:

35.1 For Liquid

Tahle 3.4 Non-zero liquid flow rate across a pump with partial derivatives

Q; =yW; /by Q; =—yW;/b;
Wi =P =P T3 +B(zj _Zi) Wi SR P; 13y +B(zi _zj)
In which: C; =2 In which: C; =2

Q; 1
o 1)

aQij
2L owd)
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3.5.2 For Gas

Table 3.5 Gas flow rate across a compressor with partial derivatives

flog (L

e sc' CR! ¢ VVsc CR.

f Ak f .VKDW

]
cr- -A-CT ! -leo cgy oA CIL + @1
P
In which: Ci, =3 In which: C: =3
, (k-i)/k
4Qsc-ji Tjc 1, f dQsc-, TC (
dpj - pjvse cr* |pjd dpj  PjVsc CR* 1pJ
¢y (kei)ik }
dQsc-jl TE -W ~, D, dQsc-ij T.c -W H fp,

dpi PVsc CR* |, dp, PiVsc CR* 1p)J



3.6 Conversion Units

Quantity

P» Psc

«©

o<

Zavg 5 zsc

Re

Table 3.6 British and SI units

British units
psig
gom

MMescfd

centipoise

ft
Inch

IbB
ft Ibf/lb mole °R

none

none
none

Sl units
bar

m3hr

MMscmd
kg/m3
mPa-

m
mm
m
mm
m/sec2



3.6.1 For Liquid

Table 3.7 Conversion units for (Xjj, 3and Re"

30

British units Sl units
32*(12)5*pljj 32*106*pLj
'~ 24432 2%(TA8%60)2 | aji ~ TR*(3600)2*101325*105*D],
_ 981*p
B= 1 r~ 10135 %105
4*12*105*pQji 4*106*pQ1
Reji - 748 *60*32.2*2.089*imDj R6ji - 3600*7tpDjl

3.6.2 For Gas
Inclined Flow(z, * Z))

Tahle 3.8 Conversion units for Aji, s1.and (j1

British units SI units
24*60%60 24*3600
K= (to)6*(12)2*ZaqgT  * (to)o*(10)6*Zagl =
2*fpL, 2+103* fLji

U2 (@0 Dl 2y, T 90135 1092°Dji -2

ey, , 2981 (2, -Z))
bi=e0 15457 Ty H=exp g3+ ZagT
32.2%(12)2ps 1013510 *p

& 1 ZT, Vs A ZSCTsc
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Horizontal Flow(z, =zj)

Table 3.9 Conversion units for Ajj, 4ji and \)x

British units SI units
24*60*60 * DI 24*3600 * TH1
Al (10)s*4*144 Al - (loys*4*106
f 32.2*(I2)3*|\/|Djj g f (L013%5*10s).MD} 7
A5 [4*1545,3%Z IsTHHLI Ao [4*83143*101*Z.\0 f HLjI
(12! *P«M 101325 *10s *psoM
ve " 15453 83143 ]
Note:
R = °F+459.67, °K = °¢ +273.15
3 3N
1h ] Pj " Pi
(Ee  popce 11473, agy Ip,J2- oL
British unit:
4*12*10s *(|2)2 *(10)6 *QSCJI
32.2*2.089*1545.3*24* 3600 *TaiDjj y v Zagl y
Sl unit;

ne 4105 L0035 (10 X(10s *Qji> p,,- M]
©1 B43%4*300*TD3 oA Zagly
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3.7 Nodal Material Balance Equations

The nodal material balance equations for all nodes i at which the
pressure P, is not specified (for T; * 1) can be described as follows:

For steady-state, the sum of the flows into any node i must be zero. That is:
A

Fi(p) =0, (331)
Here:
F:(p) is the net flow into any node I.
* = [p1>p2> vos )Pn]
3.7.1 For Liquid
F:(p) = injection rate (or withdrawal rate) (3.32)

+ net flow in from neighboring nodes to i by pipeline

+ net flow in from neighboring nodes to i from pumps
- net flow out to neighboring nodes from i through pumps

The equation forFj(p) becomes:

F(p) = Vinjection (positive) or withdrawal (negative) rate)
t Q Ktwo pipeline cases)
t A Qx(three cases for pumping in)

+ X Q, (three cases for pumping out)
B2

(333)
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3.7.2 For Gas

F. ()= injection rate (or withdrawal rate) (3.34)

+ net flow in from neighboring nodes to i by pipeline

+ net flow in from neighboring nodes to i from compressors

- net flow out to neighboring nodes from i through compressors
-0

The equation for F,(p) becomes:

F(p) = Vi(injection(positive) or withdrawal (negative) rate)
+ M QJ"wo pipeline cases for inclined flow)

j.Cji=l
+ " Qji(two pipeling cases for horizontal flow)

j.Cji=i
+ M Qji(the case for compressor coming in) (33

i.Cji=3

- b_ngi (the case for compressor going out)

3.8 Newton-Raphson Method

The simultaneous nonlinear equations in the unknown pressures that are
obtained from nodal material balances at all nodes i are solved by the iterative
Newton-Raphson method as follows:

1 Suppose we have an initial estimate of fH. for all connections
between nodej and node i such that c1=1
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2. Suppose we also know the approximate and specified pressure Pj, at
all nodes 1.

3. The next step is to find the appropriate partial derivatives of the
functions Fp), (1=12 .., ) withrespectto Pj, (j=12 .., ) which

are then stored as the eIements of the left hand side coefficient matrix, o of
the simultaneous linear equations;

<DP)OP = -F(p) (3.36)
In Eqn. (3.36), the right hand side vector is defined as;

FP)=1F.(P), (), BP). ... F.(o)I (3:37)

where the correction vector OP is the solution of the simultaneous linear
equations and a representative element of the coefficient matrix is:

®P)=Fs(P)=" p > I<i,j<n (339)

38.1 For Liquid

The partial derivative of F,(p) with respect to Pj is given by one
of following forms:

%, 0.5,/1/(aﬁfﬁiy) for y>0
F.(p) =5 If ¢, =1
¥ 0.5,/—1/(ajifFﬁy) for y<0
F,(p):"anf L Wow,) i Cj=2

(o) = aa‘f) - o) i C,=2




3

Here (i*)):

o= ) 1<iJ < 339

The partial derivatives of F (p) with respect to Pi are given by summation
as follows:

Fa(p) = X 7 -(two pipeline cases)

iCji=i dpi
+V (three cases for pumping in) (3.40)
j,C‘l:2 dZ‘i]_
+ V (three cases for pumping out)
j.CB2 dp;
1 1-°%5M a”™ ) for y>0
Fa(p) =
- 05f >/K figy) - for y<0,
- 11 (bjwij)
Here:
Fa(p) = de(p) 1<i< (342)
3.8.2 For Gas

The partial derivative of Fi(p) with respect to Pj is given by one
of following forms:
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§ g for >0
WSsagi-iy 1w
k(i)
Lo { for <0
VILS» (el -1) 1 -w
M . Y r if Cl1=1
A i for Pj>p1
Vifsc M7 P2
1 J
~oam for Pj<p
VVfsc J 1 (pi-pl)
dQSC'j, - i : .
4Pl ¥ 1 \kelk d ] if Cjj=3
p BN T
L. TMHA L
FIP)= o~ (ks I
Vol !

The partial derivatives of Fj(p) with respect to pj are given by
summation as follows;

5
Hi) = —Q—(two pipeline cases, for both inclined and horizontal flow)
.Cji=l dp.

+ A dQL(the case for compressor coming in)
1Cji=3

17 + (the case for compressor going out)
gy 1
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r«hiPi for >0
Vosc5 ji(4> * -1)

fa (v .-*)
zinNzj"
psesjiteer =1) T -w
Fy(r)= | .
[A,1  -SjiPi or
M pJ-p’)
.=V
A3 -EjiPi

r- Vi, (pi-pt) fOr

+ T Wi (p,v(k-!)/k
1 "N " \<kDA ;
Je_J +“jiI2VPJJ
: T, -WiC-ij Ip \MA
j'CAp, \& k (k)/k VP,>
K1

4. Use LU decomposition of the Gaussian elimination method with
column pivoting only to solve the simultaneous linear equation with o(p) as

the left hand side coefficient matrix.

5. Back substitution to find out the correction vector OP. Also using a
mathematical technique to improve the stability of the method at all nodes i by
factor a,, in the correction as follows:

spi = bpi" (3.43)
Where:
0p1 is the value of the correction actually applied.
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Op* is the value of the correction computed from

the Newton-Raphson method.
It is recommended that a, =0.5 is the best value to use in order to ensure

convergence for the first iteration. In subsequent iterations, the value of "a,"
IS determined as below:

For A<-1 O=c
For -1<Aj<0 a, =0.4-0.15/A,
For 0<A <l a, =0.4 + 0.15A,
For A>1 O=c

Here A1 is computed by using the GPi for the current and previous iterations
as follows:

A/ SR =12 .. (3.44)
In which:
Opf4 Is the correction to p, for the current iteration,
Opf  is the correction of Pi for the previous iteration.
Note:

The user has to do some experimentation to obtain the coefficients of
C,, 2,3, ¢4, cdandcb for the factor a5 in accordance with his or her own

system, (generally, 0.0<c1, ¢2, ¢3 ¢4, c5, ¢6<1.0)

6. Check for convergence after the corrections Op1 have been made at

all nodes i (improved by the factor to avoid instability in item 5. if necessary)
according to some criterion such as:

opil<A. =2 ., (345)
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7. If the corrections P do not satisfy the convergence condition, the
current vector of pressures is modified according to:
pkil= Pk +OPk (3.46)
Here:
Pk is the current vector (or set) of pressures.

BPktL Is the updated set of pressures for use the next iteration.
BPk is the set of pressure corrections just computed.

8. With these new pressures Pkt from equation (3.46), the updated
flow rates Qji, can be calculated with the old Fanning friction factor fo , for

all pipeline segments as follows:
For Liquid:

Q = y/(a)fF) for y>0 (3.47)
s —y/(anF for y<0 (3.48)

For Gas:

Inclined Flow ne zj)

for w>o0 (3.49)

sc-'i

b Ve 5,(¢, 1)

. - W
== . ’ f 0 3.50
QSC-U V. Sji (cbjl » l) or W< ( )

Horizontal Flow(z, =z :

for p>p (351)

A(pl i} po fOr p1<p1 (3-52I
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9. The Reynolds numbers Rej1, are computed for all pipeline segments
as follows:

For Liquid:
4*12*105*pQj L
Rej - 748*60*322+2080*Tpppj,  for  British units
4., 1060Qji _
6l = 36007ipDj] for Sl units
For Gas:
British units:

4%12*105%(12)2*Qjj PavgjM
Gl = 7.48*60*32.2*2.089 *1545.3 *TioDjj  ZaqT

SI' units:

4M067%1.01325*105*Q3 p3
RGji = 3600%83143*TipDjj  Z/RT

10. The program updates the Fanning friction factors fp , as functions

of the Reynolds number and roughness ratio in all pipeline segments as
follows:

For turbulent flow (r G, >4000):
) L 21% 145
1.7371In 0'269DJ m,ln 0.269" +Rejiy (3.53)
For laminar flow "Reji <2000)
16

R eji

(3.54)
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11 The sequence of calculations given above is repeated for successive
iterations k = 1 2, 3 ... until convergence occurs according to some
predetermined criterion such as;

(ph,),-(p,),|<? forain =12, . (3.55)
or until a specified maximum number of iterations knex has been exceed.

12 |f the ith node type is T, = 1 (pressure specified), it can be included

In the Newton-Raphson method by using it as an unknown in the simultaneous
linear equations and setting its correction 5P, to zero. This is achieved by
setting:

F(p)=0
F.(p)=1>For T =1 (3.56)

Fij(p) =0

3.9 Terminal Node with Specified Injection Rate

Consider the special case of a terminal node I with a specified injection
rate \j3 as follows:

For Liquid:

The net flow into terminal node i must equal zero, so that;
Qji =-X (3.57)

In the case of pipeline connection, the flow rates from Eqns. (3.1) and
(3.2) can be represented by one equation instead of two as follows:



Define:

F,(P) =-ajifRVi|V,]-y =0 (3.60)
Therefore:

-F,(P) =a JfAiV,V1+y (3.61)

The partial derivatives of the function Fj(p) with respect to Pj and P
are given by.

A lP,)= ?:(p) e (362)
Fifof- %) g 363

For Gas:

The net flow into terminal node i at standard conditions must equal
Zer0, thus:

Q~ji =+, (3.64)

Inclined Flow(z, *.,.

For pipeline connection, the flow rates from Eqns. (3.5) and (3.6) can
be placed by one equation as follows:



43

Rearrangement gives:
kzj,w
=NV |Vi| = m (367)
Define:
F (o) =vLvvI- ) (366
Therefore:

(369)

The partial derivatives of the function F,(p) with respect to Fj and P
are given by.

_F(P)  -2Mp
Fij'(P) = o, = 5, (¢ji \ 1) (370)
fh(p)= dF,(p)_ 2~>,,P. (371)

Horizontal Flow(z, =2\ .

In the same manner of inclined flow, the flow rates from Eqns. (3.12)
and (3.13) can be reduced to one equation as follows:

i
Quett= 1 o (p2- p?) (372)
-VV = '% p| (3.73)
Rearrangement gives:
“V.VIVAA'Ap ' -pf) (3.74)

Defing:
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Fi(p) = -H>iv,| vl -AjCjYpf-p?) =0 (375)

Thus:
F(P)=viV |v,|+ A~ J(pd-pf) (3.76)
The partial derivatives of the function Fj(p) with respect to Pj and P
are given by.

Fij(P) = a};lp—fJP) = _zij.»jiA?i (3.77)
Fii(P) = %lp) = zpi&jiA; (378)
3.10 FORTRAN Language

A FORTRAN program (Power Station Version 1.0) is written to accept
the above information concerning any network of nodes i and use the Newton-
Raphson iterative technique to compute the unknown nodal pressures at all
nodes i of node type Tj =0orTj=3. The output displays a set of matrices

containing the intemodal flow rates Qji, nodal pressures and the Fanning
friction factors fp.., for all pipeline segments.

3.11 Program Description

A general flow diagram of the program is shown in Fig. 3.1 Subroutine
SGEM is used to solve the simultaneous linear equations generated at each
new iteration of Newton-Raphson method. Subroutine UP is implemented to
generate the next estimates of fanning friction factor after no convergence test.



Read complete description of

Begin
n — nodes network parameters

Check input data

‘l

i

Starting estimate Fanning
| friction factors, including

Compute bandwidth setting |-

Controls successive Newton — Raphson

guesses and specified

nodal pressures
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iterations, iter=1, 2, ..., itmax.

A

Call on UP to generate the next
estimates of Fanning friction factor

|

p; < p; +dp;

Compute elements of matrix F
at Eqns. in item (3) and (4) of
Newton - Raphson method

'

Call on SGEM to solve for

pressure corrections, dp,

;

Improve to avoid instability

by factor s, (dpi =dp, * si)

v
=102, vy N1 all the |dpi|<k?

'

Convergence test:

(set A =0.01)

Compute final flow rates =

\

Print final nodal pressures (P),

flow rates (Q),
and Fanning friction factors (f,-u

Fig. 3.1 A general flow diagram for fluid network analysis program.
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