การศึกษาอิทธิพลของสารประกอบวงแหวนขนาดใหญ่ที่มีต่อโครงสร้างซอลเวชัน ของสารผสมน้ำกับเมธานอลโดยวิธีมอนติ คาร์โล

นางสาว บุษกรณ์ ผ่องใส

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

ภาควิชาเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2537

ISBN \$74-583-933-7

ลิขสิทธิ์ของบัณฑิดวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

工17211514

STUDY OF THE INFLUENCE OF MACROCYCLIC COMPOUND ON THE SOLVATION STRUCTURE OF WATER AND METHANOL MIXTURE BY MONTE CARLO METHOD

MISS BUSSAKORN PONGSAI

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry Graduate School Chulalongkorn University 1994 ISBN 974-583-933-7 Thesis TitleStudy of the Influence of Macrocyclic Compound on the Solvation
Structure of Water and Methanol Mixture by Monte Carlo MethodByMiss Bussakorn PongsaiDepartmentChemistryThesis AdvisorAssociate Professor Dr.Supot Hannongbua, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fufillment of the Requirement for the Master's Degree.

Thavan Vojnashaze Dean of Graduate School

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Salag Dhabanand Chairman

(Associate Professor Salag Dhabanandana, Ph.D.)

(Associate Professor Supot Hannongbua, Ph.D.)

Sivirat Krkp Member

(Associate Professor Sirirat Kokpol, Ph.D.)

.... Member

(Associate Professor Jumras Limtrakul, Ph.D.)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

บุษกรณ์ ผ่องใส : การศึกษาอิทธิพลของสารประกอบวงแหวนขนาดใหญ่ที่มีต่อโครงสร้างซอลเว– ขันของสารผสมน้ำกับเมธานอลโคยวิธีมอนติ คาร์โล (STUDY OF THE INFLUENCE OF MACROCYCLIC COMPOUND ON THE SOLVATION STRUCTURE OF WATER AND METHANOL MIXTURE BY MONTE CARLO METHOD) อาจารย์ที่ปรึกษา : รศ.คร.สุพจน์ หารหนองบัว, 77 หน้า. ISBN 974-583-933-7

ได้พัฒนาพังก็ขันศักย์สำหรับสารประกอบ 1,4,7,10-เตตระอาซาไซโคลโดเดคเคน (ไซคลีน) กับเมธานอลขึ้นใหม่บนพื้นฐานของการคำนวณในระดับ sto-3G/scf การประยุกต์ระเบียบวิธีมอนติ คาร์โล สำหรับโมเลกุลไซคลีนในสารละลายของเมธานอลเข้มข้น 18.45 โมลเปอร์เซ็นต์ (ประกอบด้วยน้ำ 165 โมเลกุล และเมธานอล 37 โมเลกุล) ที่อุณหภูมิ 298 เคลวิน ความดัน 1 บรรยากาศ โดยใช้ความหนาแน่น จากการทดลองคือ 0.96 กรัมต่อลูกบาศก์เซนติเมตร ผลการวิจัยแสดงให้เห็นถึงโครงสร้างชอลเวขันของ โมเลกุลไซคลีน /โดยในขั้นซอลเวขันที่หนึ่งจะประกอบด้วยน้ำ 6-7 โมเลกุล ซึ่ง 2 โมเลกุลจะวางตัวอยู่อย่าง ไม่สมมาตร คนละด้านของโมเลกุลไซคลีน โดยโมเลกุลหนึ่งอยู่ห่างจากศูนย์กลางของโมเลกุลไซคลีนประมาณ 2.3-3.4 อังสตรอม และอีกโมเลกุลหนึ่งอยู่ห่างประมาณ 3.4-4.0 อังสตรอม ซึ่งน้ำ 2 โมเลกุลนี้จะซื้ พันธะO-H เข้าสู่โพรงของลิแกนด์ ส่วนน้ำ 4-5 โมเลกุลที่เหลือนั้นเกิดพันธะไฮโดรเจนกับน้ำสองโมเลกุล แรกแต่ไม่เกิดกับหมู่พังก์ขัน NH ลำหรับขั้นซอลเวขันที่สองประกอบด้วยน้ำ 23-24 โมเลกุล และเมธานอล 1 โมเลกุล การจัดตัวของโมเลกุลไซคลีน 8-9 อังสตรอม ในขณะที่ลักษณะในอุดมคติของตัวทำละลาย นั้นไม่ถูกรบกวนอย่างมีนัยสำคัญ

ภาควิชาโอม	ถายมือชื่อนิสิต 2/5 ปีว่า
สาขาวิชา และไม้ก้อ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา <u>มีก็อ่</u> ะ	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

C425092 : MAJOR PHYSICAL CHEMISTRY

Keyword: MONTE CARLO SIMULATION / CYCLEN / METHANOL BUSSAKORN PONGSAI : STUDY OF THE INFLUENCE OF MACROCYCLIC COMPOUND ON THE SOLVATION STRUCTURE OF WATER AND METHANOL MIXTURE BY MONTE CARLO METHOD. THESIS ADVISOR : ASSOC.PROF. SUPOT HANNONGBUA, Ph.D. 77 pp. ISBN 974-583-933-7

1 1 Junit & State of the Jamma Har - 1

The analytical potential function for 1,4,7,10-tetraazacyclododecane (cyclen) and methanol system has been developed based on the STO-3G/SCF level. Monte Carlo simulation has been performed for a cyclen molecule in 18.45 mole % solution of methanol (165 water and 37 methanol molecules) using experimental density of 0.96 g/cm³ at 298 K 1 atm. The results shown that the first solvation shell consists of 6-7 water molecules from which two of them locate unsymmetrically, one at 2.3-3.4 Å and the other at 3.4-4.0 Å far from the molecular centre of cyclen.⁷ These two water molecules were found to point the 0-H bond toward the ligand's cavity. The other water molecules are coordinated to those two water molecules via hydrogen bond, but are not bound to the NH groups. The second solvation shell consists mainly of 23-24 water molecules and 1 methanol molecule. An arrangement of solvent molecules around cyclen has been observed up to the third shell, 8-9 Å far from the molecular centre, while ideal characters of bulk solvent were not significantly disturbed.

ภาควิชา	โคม	ลายมือชื่อนิสิต 212 ch.1.
สาขาวิชา	เลมีสิริกัล	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	8536	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENT

I would like to express my sincerest gratitude to my academic advisor, Associate Professor Dr. Supot Hannongbua, for his guidance and continuous support during the Master degree studies and the performance of this thesis. I am very obliged to Associate Professor Dr. Salag Dhabanandana, Associate Professor Dr. Sirirat Kokpol, of Chulalongkorn University, and Associate Professor Dr. Jumras Limtrakul, of Kasetsart University, for their many suggestions as thesis examiners. In addition, I am greatful to Austrian-Thai Center for Computer Assisted Chemical Education and Research, at Chemistry Building 2, Department of Science, Chulalongkorn University. Financial support by Graduate School is also greatfully acknowledged.

Finally, I would like to devote all the worthness of this work to my parent for their continuous support of this work.

CONTENTS

ABSTRACT II	N THAI	IV
ABSTRACT II	N ENGLISH	V
ACKNOWLEI	DGEMENT	VI
LIST OF FIGU	JRES	IX
LIST OF TAB	LES	XII
CHAPTER I	INTRODUCTION	1
1.1 Motiv	vation	1
1.2 Facto	ors Influencing the Macrocyclic Effect	2
1.3 Meth	od for Studying the Macrocyclic Molecules and	
the S	olvation Structure	2
1.3	.1 Experimental Methods	2
1.3	.2 Theoretical Methods	3
1.4 Ratic	nale for Studying the Solvation of Macrocyclic Compounds	4
CHAPTER II	QUANTUM CHEMICAL CALCULATIONS	5
2.1 Ab Ir	<i>iitio</i> Molecular Orbital Theory	5
2.1	.1 The Molecular Hamiltonian Operator	6
2.1	.2 The Hartree-Fock Wave Function	7
2.1	.3 Minimization of the Total Energy (Self-Consistent	
	Field Procedure)	8
2.2 Basis	s Functions	10
2.3 Basis	s Set Superposition Error (BSSE)	12
CHAPTER III	MONTE CARLO METHOD	13
3.1 Gene	eral Monte Carlo Method	13
3.2 Metr	opolis Monte Carlo Method	14
3.3 Char	acteristic of the Monte Carlo Simulations	17
3.3	3.1 Periodic Boundary Conditions	17
3.3	3.2 Minimal Image Convention	18

3.3.3 Spherical Cut-off	19
3.4 Radial Distribution Function (RDF) and its Integration	20
CHAPTER IV CYCLEN-METHANOL POTENTIAL FUNCTION	21
4.1 Analytical Form of Potential Functions	21
4.2 Development of Cyclen-Methanol Potential Function	22
4.2.1 Selection of Pair Geometries	23
4.2.2 Performance of the Ab Initio MO SCF Calculations	27
4.2.3 Fitting of the Computed Interaction Energies to the	
Functional Form	27
4.2.4 Testing of the Quality of the Function	28
4.3 Results and Discussion	28
CHAPTER V CYCLEN-WATER-METHANOL SIMULATION	37
5.1 Calculation Details	37
5.2 Results and Discussion	39
5.2.1 Solvent Structure	39
5.2.2 Solvation Structure of Cyclen-Water in Cyclen-	
Water-Methanol System	39
5.2.2 Solvation Structure of Cyclen-Methanol in Cyclen-	
Water-Methanol System	48
CHAPTER VI SUMMARY	56
6.1 Cyclen-Methanol Potential Function	56
6.2 Cyclen-Water-Methanol Simulation	56
6.3 Suggestions for Future Work	57
REFERENCES	58
APPENDIX	61
CURRICULUM VITAE	66

LIST OF FIGURES

Figures

3.1	The calculating steps of Monte Carlo simulations	16
3.2	A two-dimensional periodic system	18
3.3	The minimal image convention in a two-dimensional system	19
4.1	Three dimensional plotts of the optimized alternate form of	
	cyclen molecule (1,4,7,10-tetraazacyclododecane)	23
4.2	Classification of atoms of the methanol molecule according to	
	their atomic net charge obtained from Mulliken population	
	analysis in the SCF calculations	25
4.3	Indicating of geometric variables for configurations of cyclen-	
	methanol	26
4.4	The stabilization energies obtained from ab initio calculations	
	(ΔE_{SCF}) and from eq. (4.2) (ΔE_{FIT}) as a function of the	
	oxygen-origin distances	32
4.5	Energy data from <i>ab initio</i> calculations (ΔE_{SCF}) versus those	
	obtained by eq.(4.2) (ΔE_{FIT}) with optimized parameters	34
4.6	Comparison of the energies obtained from ab initio calculations	
	by including () and not including () the "BSSE" as a function	
	of the oxygen-origin distances	35
5.1	Convergence and fluctuation characteristics of simulations.	
	The arrow mark $ \leftrightarrow\rangle$ shows the range used for the calculation	
	of averaged quantities	38
5.2	Definition of (a) top, side and plane regions ($\gamma = 45^{\circ}$),	
	(b) the angle θ (for water orientation)	38
5.3	Atom-atom pair correlation functions of; (a) water-methanol,	
	(b) water-water, and (c) methanol-methanol obtained from the	
	simulation with and without cyclen molecule (solid lines and	
	dash lines, respectively)	40

Figures

5.4	Calculated atom-oxygen () and atom-hydrogen () radial	
	distribution functions and coordination numbers of water molecules	
	for the top (a), side (b), plane (c) regions of cyclen as defined in	
	Fig. 5.2a and for the entire system (d)	41
5.5	Distribution of the oxygen atoms of water (K) around the center	
	of mass of cyclen for the following regions; (a) entire ($r_m = 4.0$ Å)	
	$\overline{K} = 1.94$, (b) entire (r _m = 5.4 Å) $\overline{K} = 6.84$, (c) plane (r _m = 7.3 Å)	
	$\overline{K} = 3.93$, (d) top (r _m = 5.85 Å) $\overline{K} = 6.0$, (e) side (r _m = 7.3 Å)	
	\overline{K} = 16.0, and (f) distribution of H atom of water for the top	
	region ($r_m = 2.55 \text{ Å}$) $\overline{K} = 1.02$	42
5.6	Distribution of the angle θ as defined in Fig.5.2b for the top	
	region, only two water molecules located at the distance less than	
	3.4 Å () and between 3.4 Å to 4.0 Å () from the molecular	
	center of cyclen	43
5.7	Distribution of oxygen atoms of water up to 3.6 Å (the first	
	minimum of $g_{OO}(r)$) around the two oxygens located at the distance	
	less than 3.4 Å () and between 3.4 Å to 4.0 Å () from	
	the molecular center of cyclen	44
5.8	Calculated atom-oxygen () and atom-hydrogen () radial	
	distribution functions and running integration numbers of water	
	molecules for (a) N and (b) H_N atoms of cyclen	45
5.9	Distribution of the coordination numbers of O atoms of water	
	around; (a) N ($r_m = 3.55$ Å, $\overline{K} = 1.04$), and (b) H_N ($r_m = 3.1$ Å,	
	$\overline{K} = 1.3$) atoms of cyclen	45
5.10	Solvation model for water molecules in the first hydration shell	
	of cyclen	46
5.11	Calculated atom-oxygen () and atom-hydrogen () radial	
	distribution functions and running integration numbers of water	
	molecules for (a) C , (b) H_{c} and (c) H'_{c} atoms of cyclen	47

х

Figures

5.12	Distribution of the coordination numbers of O atoms of water	
	around ; (a) C ($r_m = 5.4 \text{ A}$, K = 10.7), (b) H_C ($r_m = 4.2 \text{ A}$, K = 4.3),	
	and (e) H'_{c} ($r_{m} = 3.8$ Å, $\overline{K} = 2.7$) atom of cyclen	48
5.13	Calculated atom-O () and atom-H _o () radial distribution	
	functions and coordination numbers of methanol molecules for	
	the top (a), side (b), plane (c) regions of cyclen (see Fig. 5.2a)	
	and for the entire system (d)	50
5.14	Distribution of the coordination numbers around the center of	
	mass of cyclen for the following regions; (a) entire $(r_m = 6.85 \text{ Å})$	
	\overline{K} = 1.3, (b) entire (r _m = 8.05 Å) \overline{K} = 4.6, and (c) top (r _m = 6.9 Å)	
	$\overline{\mathbf{K}} = 1.2$	51
5.15	The proposed binding of methanol molecule, centered in the	
	second shell of cyclen, to W2 (see Fig.5.10)	51
5.16	Calculated atom-O (—) and atom-H _{O} () radial distribution	
	functions and running integration numbers of methanol molecules	
	for (a) N, and (b) H_N atoms of cyclen	52
5.17	Calculated atom-C () and atom-H () radial distribution	
	functions and running integration numbers of methanol molecules	
	for (a) N (a), and (b) H_N atoms of cyclen	53
5.18	Calculated atom-O () and atom-H ₀ () radial distribution	
	functions and running integration numbers of methanol molecules	
	for (a) C , (b) H_{c} and (c) H'_{c} atoms of cyclen	54
5.19	Calculated atom-C () and atom-H () radial distribution	
	functions and running integration numbers of methanol molecules	
	for (a) C, (b) H_c and (c) H'_c atoms of cyclen	55

LIST OF TABLES

Tables

Pages

34

4.1	Optimized coordinates of cyclen (in atomic unit) and the atomic	
	net charges, (q) used in the Monte Carlo simulation	24
4.2	Internal coordinates and the atomic net charges of methanol	
	molecule	25
4.3	The selected trajectories, in term of θ and ϕ angles, as defined in	
	Fig.4.2, for methanol molecule around cyclen	26
4.4	The initial coordinates of methanol molecule where O is placed at	
	the origin (center of cyclen molecule see Fig.4.1) in Å	28
4.5	The computed energies from <i>ab initio</i> calculations (ΔE_{SCF}) and	
	from eq.(4.2) (ΔE_{FIT}), in kcal/mol at the selected values of the	
	O-origin distances (Å) along z-axis, starting from the configuration	
	given in Table 4.4	30
4.6	Comparison of the computed energies (kcal/mol) from ab initio	
	calculations (ΔE_{SCF}) and from eq.(4.2) (ΔE_{FIT}) for (a) $\theta = 45^{\circ}$	
	and $\phi = 45^{\circ}$, (b) $\theta = 90^{\circ}$ and $\phi = 135^{\circ}$, (c) $\theta = 135^{\circ}$ and	
	$\phi = 135^{\circ}$ by varying the O-origin distances (Å)	30
4.7	Characteristics of the optimization process (detail see text)	32
4.8	Final optimized parameters for interacting atoms j of	
	1,4,7,10-tetraazacyclododecan with atom i of methanol	
	(interaction energies in kcal/mol, r in atomic unit)	33
4.9	Standard deviations, σ , calculated from eq.(4.2) for different	
	interaction energy ranges	34
4.10	Comparison of the computed energies (kcal/mol) from ab initio	
	calculations by including and not including the "BSSE" as a function	
	of the oxygen-origin distances	35