
CHAPTER III

M O N T E  CA RLO  M ETH O D

T he M onte Carlo m ethod w as developed by  von N eum ann, U lam , and M etropolis 
at the end o f  Second W orld W ar to study the diffusion o f neutrons in  fissionable 
m aterial. T he nam e " M on te Carlo ", chosen because o f the extensive use o f  random  
num bers in  the calculations, w as coined by M etropolis in 1947 and used  in the title  o f  a 
paper describ ing the early w ork [19].

A  com m on goal o f  the M onte Carlo com puter sim ulations is to study the 
m icroscopic  properties o f  the solution, such as structural and energetical p roperties, 
based on the know ledge o f  potential functions; e.g. to study how  a solu te in fluences the 
solvent structure or how  a solute is solvated by solvent m olecules in the solution. Such 
inform ations are very d ifficult to obtain from  spectroscopic m easurem ents in dilute 
solutions.

In this chapter, the general M onte Carlo m ethod and the M etropolis version w ill 
be presen ted  together w ith som e im portant characteristics o f the sim ulation.

3.1 G eneral M onte Carlo M ethod

M onte C arlo  calculations are based on pair potential functions, im plem enting  the 
assum ption that only two body forces are considered, i.e. the total configurational 
energy, E(v) 5 o f  the system  can be w ritten thus as a sum  o f pairw ise in teraction  energies 
betw een the individual particles Ejj(v) o f the system ,

E(v) = X X  E„(v) 
i<  j

(3.1)

w here v i s a  configurational coordinate o f  the particles in the system .
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T he average o f  any quantity  o f  in terest (F) o f  the system , consisted  o f  N  particles 

in a volum e V  at a constant tem perature T , can be w ritten as

F(v) e x p ( - E ( v ) /k T )  d v
(F ) =  f — -------------------— - ^ ------  (3.2)

J . . . J  e x p ( - E ( v ) /k T )  d v

w here dv is a volum e elem ent in three dim ensional phase space and k  denotes 
B oltzm an constant. I f  the starting configuration is generated random ly  in three 
d im ensional space, in tegration over m any orders o f  m agnitude w ould  be needed for the 
integral exp(-E(v)/kT) , show n in eq.(3.2). This is the m ain p rinc ip le  o f  the general 
M onte C arlo m ethod, w hich is how ever, no t practicable.

3.2 M etropolis M onte Carlo M ethod

T he M onte Carlo m ethod  in troduced by  M etropolis et al. [19] is a sam pling 
algorithm  based on the idea o f  " im portance sam pling  A  finite num ber M  o f  possible 
configurations are not generated random ly but they are chosen according to a 
p robability  P(v). T hen eq.(3 .2) w ill be approxim ated [27] by the sum

X  F(v) P(v) e x p ( - E ( v ) /k T )
(f ) =  ¥  =  ------ — -------------- (3.3)

z  P(v) e x p ( - E ( v ) /k T )  
i =  1

T he sim plest and m ost natural possib ility  o f  the "M etropolis M onte Carlo m ethod' 
is to choose a specific value o f  P(v) as a B oltzm ann factor

P(v) =  exp(-E(v)/kT) (3.4)



Then eq.(3.3) can be reduced to a simple form of

F = -  I F .  (3.5)

w here Fj is the value o f  the property  F o f  the system  after the ith configurational 
change according to the follow ing m ethod.

T he initial configuration  o f  N  particles in a volum e V  is generated  radom ly  or 
taken from  a lattice structure o f  the system . Then a new  configuration  is ob tained by 
perfo rm ing  a random  displacem ent o f  one o f  the particles. T he configurational energy 
according to eq.(3 .1) for both the new  (E'(v)) and the old  (E(v)) system s are calculated 
and com pared. I f  ÀE =  [E'(v)) - (E(v)] < 0 , the m ove w ould bring the system  to a state 
o f  low er energy. In that case w e allow  the m ove and put the partic le  to this new  
position. I f  ÀE > 0 , the m ove w ill be allow ed w ith the probability  exp(-A E/kT) i.e., a 
random  num ber 1 betw een 0 and 1 w ill be taken and i f  exp(-À E/kT) > 1 , the 
particle  w ill be m oved to the new  position, i f  exp(-AE/kT) < 1 , the o ld  configuration  is 
reta ined  (see F ig .3.1).



F igure  3.1 T he calculating steps o f  M onte Carlo sim ulations.
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3.3 C haracteristic  o f  the M onte Carlo Sim ulations

3.3.1 Period ic  B oundary  Conditions

T he  p rob lem  o f  surface effects can be overcom e by im plem enting  periodic 
boundary  conditions. T he cubic box is replicated  throughout space to form  an infin ite  
lattice. In  the sim ulation, as a m olecule m oves in the original box, its per 
iodic im age in  each o f  the neighbouring boxes m oves in exactly  the sam e way. T hus, as 
a m olecu le  leaves the central box, one o f  its im ages w ill enter th rough the opposite face. 
T here are no  w alls at the boundary  o f  the central box, and no surface m olecules. T his 
box sim ply  form s a convenient axis system  for m easuring the coordinates o f  the N 
m olecules. A  tw o-dim entional version o f  such a period ic system  is show n in F ig .3.2. 
T he duplicate  boxes are labelled A, B, c , etc. As particle  1 m oves through a boundary , 
its im ages, 1 A , l g  , etc. (w here the subscript specifies in w hich box the im age lies) 
m ove across their corresponding boundaries. The num ber density  in the central box 
(and hence in the entire system ) is conserved.

A  side length  o f  the cubic box, L, can be calculated as

w here m  is the num ber o f  species certained in the system ,
Np is the num ber o f  particle o f  species p,
Mp is the ionic or atom ic w eight o f  species p , and 
D is the experim ental density o f  solution at tem perature T  and pressure p.

(3.6)
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Figure 3.2 A  tw o-dim ensional periodic system .

3.3.2 M inim al Im age C onvention

T he heart o f  M onte Carlo program s involves the calculation o f  the potential 
energy o f  a particu lar configuration. To calculate the potential energy involving 
m olecule 1 , one assum es pairw ise additivity. The interactions betw een m olecule 1 and 
every o ther m olecules i in the sim ulation box m ust be included. T here  are N - l  term s in 
this sum . H ow ever, in princip le the interactions betw een 1 and im ages iA , ig 5 etc. ly ing 
in the surrounding  boxes m ust be included as well. This is an infin ite num ber o f  term s, 
and o f  course it is im possible to calculate in practicle. F or a short-range potential energy 
function, an approxim ation m ay be used to restric t this sum m ation. C onsider m olecule 
1 , ly ing at the center o f  a region w hich has the sam e size and shape as the basic 
sim ulation box (F ig .3.3), it interacts w ith all the m olecules w hose centers located  w ithin  
this region, that is w ith the closest periodic im ages o f  the o ther N - l  m olecules. T his is 
called the "minimal im age convention"  ะ for exam ple, in F ig .3.3, m olecule 1 in teracts 
w ith  m olecules 2, ร£, 4E and 5 ç  . This technique, w hich is a natural consequence o f  
the period ic boundary  condition, w as first used in sim ulations by M etropolis et al.
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F igure  3.3 The m inim al im age convention in a tw o-dim ensional system .

3.3.3 Spherical C u t-o ff

In the m inim al im age convention, the calculation o f  the po ten tial energy due to 
pa irw ise-additive  interactions o f  N  particles involves Vi N (N -l)  term s. A  further 
approxim ation significantly  im proves this situation. The largest con tribu tion  to the 
potential com es from  neighbours close to the m olecule o f  in terest and fo r short-range 
in teractions, a spherical cu to ff can be applied. T his m eans that the pa ir potential V (r) 
is set to zero  for r  > r 0 , w here rc is the cutoff, distance. T he dashed circle in 
F ig .3.3 represents this cutoff, and in this case m olecules 2, 5 c  and 4E contribu te to 
the in teraction  w ith  1 , since their centers lie inside the cutoff, w hereas m olecule  3 E 
does no t contribute. In a cubic sim ulation box o f  side L , The num ber o f  neighbours
explicitly  considered is reduced by a factor o f  approxim ately  4 7 r r 3  /  3L3 , and th is m ay 
be a substantial saving. The introduction  o f  a spherical cu to ff could  be a perturbation , 
and the cu to ff distance should be sufficiently  large to ensure that th is pertu rbation  is 
very sm all.
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T he cu to ff distance m ust be no greater than Vi L fo r consistency w ith the 

m inim al im age convention, and it is applicable only to rap id ly  decreasing potential 
term s, e.g. 1 / r 1 2  or exponential term s.

3.4 R adial D istribution  Function (RDF) and its Integration

T he radial distribution function gives inform ation concerning the 
configurationally  averaged deviation o f  the local environm ent o f  a partic le  from  the 
value characteristic o f  bulk  density. This function can be calculated as :

w here N(r) is the average num ber o f  particles in a spherical shell o f  w idth  dr at a 
radial d istance r from  the central particle, and p is the num ber density  o f  the pair o f 
the particles in the cubic volum e V.

T he average num ber o f  particles K  w ithin a sphere o f  a given radius can be 
determ ined by :

w here pb is the num ber density  o f one k ind o f  the particle contain ing  in the cubic 
volum e V. For exam ple, the num ber density o f  the particle b around  the particle  a 
can be determ ined by :

(3.7)

(3.8)

num ber o f the particle  b (3.9)
V
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