CONDUCTIVE POLYMER AS GAS SENSOR

Ms.Jiranapa Sangswarng

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2001 ISBN 974-13-0735-7 Thesis Title:Conductive Polymer as Gas SensorBy:Ms.Jiranapa SangswarngProgram:Polymer ScienceThesis Advisor:Prof. Johannes SchwankAssoc. Prof. Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyakint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

.....

Prof. Johannes Schwank)

thurals

(Assoc. Prof. Anuvat Sirivat)

(Dr. Manit Nithitanakul)

ABSTRACT

4272008063: POLYMER SCIENCE PROGRAM Jiranapa Sangswarng : Conductive Polymer as Gas Sensor Thesis Advisors: Prof. Johannes Schwank, Assoc. Prof.Anuvat Sirivat, 123.pp ISBN 974-13-0735-7 Keywords: Conducting polymers/Polyaniline and derivatives/ Gas Sensor

Polyaniline emeraldine base (EB) powder, a non-conductive form, was synthesized by chemical oxidative polymerization in HCl medium by using ammonia peroxydisulfate as an oxidant. In order to convert EB powder to emeraldine salt (ES) powder, a conductive form, EB powder was doped by using the acid doping process. Three different types of acid were chosen, hydrogen bromide (HBr), camphorsulfonic acid (CSA), and maleic acid (MA) to investigate the effect of acid dopant and concentration on the electrical conductivity of polyaniline film. The emeraldine salt films were prepared by hydraulic pressing for studying the film conductivity. In this work, it is found that the electrical conductivity of ES film increases dramatically with doping ratio less than 40 and then decreases gently, and finally, the conductivity is constant at higher doping ratios. It shows also that the CSA doped polyaniline is unsuitable to use as CO detector. While the electrical conductivity of the MA doped polyaniline at doping ratio 1000 decreased when exposed to CO gas. The MA doped polyaniline, hence, is appropriate to used as CO dectector. The minimum CO concentration that the MA doped polyaniline showed response was about 1 ppm.

บทคัดย่อ

นางสาวจิรนภา แสงสว่าง :พอลิเมอร์นำไฟฟ้าสำหรับตรวจจับก๊าซ (Conductive Polymer as Gas Sensor) อ.ที่ปรึกษา : ศ. คร.โจฮานเนส ชแวงก์, รศ.คร.อนุวัฒน์ ศิริวัฒน์ ISBN 974-13-0735-7

ผงพอลิอะนิลีนเอมเมอราลดีนเบล (สถานะไม่นำไฟฟ้า) ถูกสังเคราะห์ขึ้นโดยกระบวน การเคมีคอลออกซิเดทีฟพอลิเมอไรเซชั่น ซึ่งมีกรดไฮโดรคลอริกเป็นตัวกลางและใช้แอมโมเนียม เปอร์ออกซิไดซัลเฟตเป็นสารออกซิแดนท์ ผงเอมเมอราลดีนเบสจะถูกเปลี่ยนให้อยู่ในรูปผงเอมเมอ ราลดีนซอลท์(สถานะนำไฟฟ้า) โดยกระบวนการโต๊ปด้วยกรด ในงานวิจัยนี้ เลือกใช้กรดไฮโดรเจน โบรไมด์, กรดแคมเฟอร์ซัลโฟนิกและกรดมาเลอิก เพื่อศึกษาผลกระทบของซนิดและความเข้มข้น ของกรดต่อค่าการนำไฟฟ้าของแผ่นพอลิอะนิลีน แผ่นเอมเมอราลดีนซอลท์จะถูกขึ้นรูปโดยใช้ เครื่องอัดไฮโดรลิก จากการวิจัยพบว่า ค่าการนำไฟฟ้าของแผ่นเอมเมอราลดีนซอลท์จะเพิ่มขึ้น อย่างรวดเร็ว เมื่อใช้อัตราส่วนโดยโมลของกรดต่อพอลิเมอร์ในการโต๊ปน้อยกว่า 40 หลังจากนั้นจะ ลดลงเล็กน้อยและจะให้ค่าการนำไฟฟ้าที่คงที่เมื่อใช้อัตราส่วนโดยโมลของกรดต่อพอลิเมอร์ใน ปริมาณสูง นอกจากนั้นยังพบว่า พอลิอะนิลีนที่โต๊ปด้วยกรดแคมเฟอร์ซัลโฟนิกไม่เหมาะสมในการ นำมาใช้เป็นตัวตรวจสอบก๊าซคาร์บอนมอนอกไซด์ ในขณะที่ พอลิอะนิลีนที่โต๊ปด้วยกรดมาเลอิกมี การนำไฟฟ้าลดลงเมื่ออยู่ในสภาวะที่มีก๊าซคาร์บอนมอนอกไซด์ ดังนั้น พอลิอะนิลีนที่โต๊ปด้วยกรด มาเลอิกจึงสามารถใช้เป็นตัวตรวจสอบก๊าซคาร์บอนมอนอกไซด์ได้ปริมาณก๊าซ คาร์บอนมอนอกไซด์ที่น้อยที่สุดที่สามารถถูกตรวจจับได้คือที่ประมาณ 1ส่วนต่อล้านล่วน

ACKNOWLEDGEMENTS

The author would like to thank all teachers who have taught invaluable knowledge to her, especially, Assoc. Prof. Anuvat Sirivat who is her advisor.

She would like to thank C.P.O. Poon Arjpru for his hard works in construction and modification the conductive meter, temperature controller using in gas chambers, and, A/D converter, in addition, for taking care her health for all year. She would like to thank also Mr. Peerawat Somnuk and coworkers who dedicated their time in order to construct gas chambers and four point probe meters. Moreover, she would like to thank Mr. Jaturong Tiemsiri who construct the table putting the chamber and installation the flow meter. Special thank is extended to her entire friends for their helps and suggestions, especially, Ms. Jutharat Amornlertrattanatada and Ms. Ladawan Ruangchuay for her various discussions and suggestions the interesting ideas on their works, moreover, for the encouragement on her work. She would like to thank Mr. Siriponk Roatluechai who gave her the suggestions about gas line connection. She also thanks Mr. Srichalai Khunthon who operated ball mill. In addition, she would like to thank all the college members, and staff of the Petroleum and Petrochemical College, Chulalongkorn University for valuable equipment, instrument training both in theory and practice.

Finally, the sincerest appreciation is for her family for the love, understanding, encouragement, and financial support.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vii
List of Schemes	ix
List of Tables	xi
List of Figures	xii

CHAPTER

1.1 Introduction.	1 3 9
1.2 Background	3 9
1.2 BuckBround.	9
II LITERATURE SURVEY	
2.1 Synthesis of Polyaniline.	9
2.2 Doping of Polyaniline.	11
2.3 Polyaniline as Gas Sensor.	15
III EXPERIMENTAL	18
3.1 Materials.	18
3.2 Methodology.	18
3.2.1 Purification of Aniline Monomer.	18
3.2.2 Synthesis of Polyaniline Base.	19
3.2.3 Preparation of Doped Polyaniline Powder.	20
3.2.4 Preparation of Doped Polyaniline Pellet.	21
3.2.5 Characterization.	22
3.2.6 Conductivity Measurement.	24

PAGE

IV	RESULTS AND DISCUSSIONS	28
	4.1 Characterization.	28
	4.1.1 FT-IR Spectroscopy.	28
	4.1.2 UV-Visible Spectroscopy.	37
	4.1.3 Thermogravimetric Analyzer (TGA).	48
	4.1.4 X-Ray Diffraction.	54
	4.1.5 Scanning Electron Microscope (SEM).	64
	4.2 Electrical Conductivity of Doped Polyaniline.	
	4.2.1 Effect of Dopant Types and Doping	
	Ratios on the Specific Conductivity.	70
	4.2.2 Effect of the Amount of Bipolaron and	
	Polaron on the Specific Conductivity.	73
	4.2.3 Effect of CO/N_2 Mixtures on the Electrical	
	Conductivity of Doped Polyaniline.	76
	4.2.4 Characterization of Doped Polyaniline	
	after Exposing to a Series of CO/N ₂	
	Mixture Gas by Using FT-IR Technique.	79
V	CONCLUSIONS	83
	REFERENCES	84
	APPENDICES	91
	Appendix A Determination of ohmic's law regime.	91
	Appendix B Determination of the geometric correction	
	Factor.	93
	Appendix C Conductivity measurement.	98
	Appendix D % Bipolaron and % polaron determination	
	by UV-Visible spectrometer.	100

Appendix E	Calculation of number of charge carrier (n).	107
Appendix F	Sensitivity measurement ($\Delta \sigma$).	110
Appendix G	Flowmeter calibration data.	120

CURRUCULUM VITAE 123

•

LIST OF SCHEMES

SCHEME

3.1	A schematic of conductivity detectors with gas chamber.	26
4.1	The schematic of maleic acid doped polyaniline which	
	is a reversible process.	39
4.2	A schematic of morphological structure of maleic acid	
	doped polyaniline.	69
В	A schematic of the linear array four point probe meter.	95

i.

LIST OF TABLES

TABLE		PAGE
4.1	Assignments for FT-IR absorption bands of undoped and	
	doped polyanilines.	33
4.2	Assignments for UV-Visible spectrum of undoped and	
	doped polyanilines at fully doped state.	44
4.3	Assignments for UV-Visible spectrum of doped	
	polyanilines at various doping ratios.	45
4.4	Assignments for TGA themograms of undoped and doped	
	polyanilines.	53
4.5	The value of 2theta and d-value of undoped and doped	
	polynilines.	59
4.6	Comparison of experimental 2theta obtained from undoped	
	and doped polyanilines with the results of model calculations.	64
4.7	The relationship between the conductivity in air and	
	the number of charge carriers.	75
4.8	Assignments of FT-IR absorption bands of before and	
	after exposing to a series of CO/N_2 mixtures of doped	
	polyanilines.	81
B.1	The sheet resistivity and thickness of standard sheet (SiO).	95
B.2	Determination of K factor of the constructed four point	
	probe meter (Probe A).	96
B.3	Determination of K factor of the constructed four point	
	probe meter (Probe B).	97
C.1	The raw data of conductivity measurement.	98
D.1	The products absorptivity (a_i) of particular species of doped	
	polyaniline and the path lengths (b _i).	104

D.2	The raw data of the calibration curves of doped	
	polyanilines.	104
D.3	The raw data of % bipolaron and % polaron	
	determination.	105
D.4	The amount of % bipolaron and % polaron of doped	
	polyanilines at various doping ratios versus the	
	conductivity in air.	106
E.1	The total number of charge carrier of doped polyanilines	
	(n) versus the measured conductivity in air.	108
F.1	The raw data of sensitivity measurement of doped	
	polyaniline in CO/N_2 at various concentrations by	
	using four point probe (K=0.454).	111
F.2	The raw data of sensitivity measurement of doped	
	polyaniline in CO/N_2 at various concentrations by	
	using four point probe (K=0.435).	116
G.1	Density, viscosity, and specific gravity of gases.	121
G.2	Flowmeter calibration data of nitrogen gas (N ₂),	
	sulfur dioxide (SO_2) , and carbon monoxide (CO) .	122

LIST OF FIGURES

FIGURE		PAGE
4.1.1.1	The FT-IR spectra of polyaniline emeraldine base	20
	powder.	29
4.1.1.2	FT-IR spectrum of HBr doped polyaniline of at: (a)	
	emeraldine base; (b) $N_A/N_{EB} = 4$; (c) $N_A/N_{EB} = 40$; and	
	(d) $N_A/N_{EB} = 200$.	30
4.1.1.3	FT-IR spectrum of CSA doped polyaniline of at: (a)	
	emeraldine base; (b) N_A/N_{EB} = 4; and (c) N_A/N_{EB} = 200.	31
4.1.1.4	FT-IR spectrum of maleic acid doped polyaniline of	
	at: (a) emeraldine base; (b) $N_A/N_{EB} = 4$; and	
	(c) $N_A/N_{EB} = 200$.	32
4.1.2.1	UV-Visible spectra of undoped polyaniline	
	emeraldine base.	40
4.1.2.2	UV-Visible spectrum of HBr doped emeraldine of:	
	(a) emeraldine base; (b) N_A/N_{EB} = 4; (c) N_A/N_{EB} = 40;	
	(d) N_A/N_{EB} = 200; (e) N_A/N_{EB} = 400; and	
	(f) $N_A/N_{EB} = 1295$.	41
4.1.2.3	UV-Visible spectrum of CSA doped emeraldine of:	
	(a) emeraldine base; (b) N_A/N_{EB} = 4; (c) N_A/N_{EB} = 40;	
	(d) N_A/N_{EB} = 200; (e) N_A/N_{EB} = 400; and	
	(f) $N_A/N_{EB} = 1295$.	42
4.1.2.4	UV-Visible spectrum of HBr doped emeraldine of:	
	(a) emeraldine base; (b) $N_A/N_{EB}=4$; (c) $N_A/N_{EB}=20$;	
	(d) N_A/N_{EB} = 50; (e) N_A/N_{EB} = 200; (f) N_A/N_{EB} = 400;	
	and (g) $N_A/N_{EB} = 1295$.	43
4.1.2.24.1.2.34.1.2.4	emeraldine base. UV-Visible spectrum of HBr doped emeraldine of: (a) emeraldine base; (b) $N_A/N_{EB}=4$; (c) $N_A/N_{EB}=40$; (d) $N_A/N_{EB}=200$; (e) $N_A/N_{EB}=400$; and (f) $N_A/N_{EB}=1295$. UV-Visible spectrum of CSA doped emeraldine of: (a) emeraldine base; (b) $N_A/N_{EB}=4$; (c) $N_A/N_{EB}=40$; (d) $N_A/N_{EB}=200$; (e) $N_A/N_{EB}=400$; and (f) $N_A/N_{EB}=1295$. UV-Visible spectrum of HBr doped emeraldine of: (a) emeraldine base; (b) $N_A/N_{EB}=4$; (c) $N_A/N_{EB}=20$; (d) $N_A/N_{EB}=50$; (e) $N_A/N_{EB}=200$; (f) $N_A/N_{EB}=400$; and (g) $N_A/N_{EB}=1295$.	40 41 42 43

4.1.3.1	The TGA thermogram of polyaniline emeraldine	
	base powder.	49
4.1.3.2	The TGA thermograms of polyaniline emeraldine	
	base and HBr doped polyanilne at various doping	
	ratios.	50
4.1.3.3	The TGA thermograms of polyaniline emeraldine	
	base and CSA doped polyanilne at various doping	
	ratios.	51
4.1.3.4	The TGA thermograms of polyaniline emeraldine	
	base and maleic acid doped polyanilne at various	
	doping ratios.	52
4.1.4.1	XRD diffraction pattern of polyaniline emeraldine base.	55
4.1.4.2	XRD diffraction pattern of polyaniline emeraldine base	
	and HBr doped polyaniline at various doping ratios:	
	(a) $N_A/N_{EB}=0$; (b) $N_A/N_{EB}=4$; (c) $N_A/N_{EB}=40$;	
	(d) $N_A/N_{EB}=200$; (e) $N_A/N_{EB}=400$ and (f) $N_A/N_{EB}=1295$.	56
4.1.4.3	XRD diffraction pattern of polyaniline emeraldine base	
	and CSA doped polyaniline at various doping ratios:	
	(a) $N_A/N_{EB}=0$; (b) $N_A/N_{EB}=20$; (c) $N_A/N_{EB}=80$; and	
	(d) $N_A/N_{EB}=200$.	57
4.1.4.4	XRD diffraction pattern of polyaniline emeraldine base	
	and maleic acid doped polyaniline at various doping	
	ratios: (a) $N_A/N_{EB}=0$; (b) $N_A/N_{EB}=20$; (c) $N_A/N_{EB}=40$;	
	(d) $N_A/N_{EB}=200$; (e) $N_A/N_{EB}=400$; (f) $N_A/N_{EB}=500$;	
	(g) N_A/N_{EB} =800; and (h) N_A/N_{EB} =1295.	58
4.1.5.1	The morphological structure of undoped polyaniline	65
4.1.5.2	The morphological structure of HBr doped polyaniline	
	at various doping ratios: (a) $N_A/N_{EB}=4$; (b) $N_A/N_{EB}=40$;	
	(c) $N_A/N_{EB}=200$; and(d) $N_A/N_{EB}=1295$.	66

4.1.5.3	The morphological structure of CSA doped polyaniline	
	at various doping ratios: (a) $N_A/N_{EB}=4$; (b) $N_A/N_{EB}=40$;	
	(c) N_A/N_{EB} =80; and (d) N_A/N_{EB} =160.	67
4.1.5.4	The morphological structure of maleic acid doped	
	polyaniline at various doping ratios: (a) $N_A/N_{EB}=4$;	
	(b) N_A/N_{EB} =80; (c) N_A/N_{EB} =200; and (d) N_A/N_{EB} =500.	68
4.2.1.1	The electrical conductivity as a function of doping	
	ratio (N_A/N_{EB}) of the HBr, CSA, and Maleic acid	
	doped polyaniline.	72
4.2.2.1	The effect of amount of bipolaron and polaron on the	
	specific conductivity.	73
4.2.3.1	The change in the electrical conductivity as a	
	function of CO gas concentration of CSA doped	
	polyaniline at various doping ratios.	77
4.2.3.2	The change in the electrical conductivity as a	
	function of CO gas concentration of maleic acid	
	doped polyaniline at various doping ratios.	78
4.2.4.1	FT-IR spectrum before and after exposed to a series	
	of CO/N_2 mixtures of CSA doped polyaniline at doping	
	ratio ($N_A/N_{EB} = 200$).	79
4.2.4.2	FT-IR spectra before and after exposed to a series	
	CO/N ₂ mixture of maleic acid doped polyaniline at	
	doping ratio ($N_A/N_{EB} = 1000$).	80
A.1	The ohmic's law region of the current and the applied	
	voltage by using the silicone wafer (Si10-28A)	
	as a standard sheet.	92
A.2	The ohmic's law region of the current and the applied	
	voltage by using the maleic acid doped polyaniline	
	(PANI-HCl/MA) at doping ratio ($N_A/N_{EB}=200$) pellet	93

D.2	The calibration curve of CSA doped polyaniline	103
D.3	The calibration curve of maleic acid doped polyaniline	103

.