REFERENCES

- Adamson, A.W. (1990). <u>Physical Chemistry of Surfaces</u>. 5 th ed. New York: John Wiley.
- Alexandrova, L., and Grigorov, L. (1998). The three-phase contact parameters of thin water films on mineral surfaces. <u>Colloids and</u> <u>Surfaces</u>, 131, 265-269.
- Averyard, R., Cooper, P., Fletcher, P.D.I., and Rutherford, C.E. (1993). Foam breakdown by hydrophobic particles and nonpolar oil. <u>Langmuir</u>, 9, 604-613.
- Averyard, R., Binks, B.P., Fletcher, P.D.I., and Rutherford, C.E. (1994).
 Contact angles in relation to the effects of solids on film and foam stability. Journal of Dispersion Science and Technology, 15(3), 51-271.
- Bahr, M.V., Tiberg, F.,and Zhmud, B.V. (1999). Spreading dynamics of surfactant solutions. <u>Langmuir</u>, 15, 7069-7075.
- Basu, S., Nandakumar, K., and Masliyah, J. H. (1998). Effect of NaCl and MIBC/kerosene on bitumen displacement by water on a glass surface. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 136, 71-80.
- Bigelow, W.C., and Brockway, L.O. (1956). Variation of contact angle and structure with molecular length and surface density in adsorbed films of fatty acids. <u>Journal of Colloid Science</u>, 11, 60-68.
- Bourges-Monnier, C., and Shanahan, M.E.R. (1995). Influence of evaporation on contact angle. Langmuir, 11(7), 2820-2829.
- Chandra, S., Marzo, M., Qiao, Y.M., and Tartarini, P. (1996). Effect of liquid-solid contact angle on droplet evaporation. <u>Fire Safety Journal</u>, 27, 141-158.

- Chesters, A.K., Elyousfi, A., Cazabat, A.M., and Vilette, S. (1998). The influence of surfactants on the hydrodynamics of surface wetting. Journal of Petroleum Science and Engineering, 20, 217-222.
- Christenson, H.K., and Yaminsky, V.V. (1997). Is the long-range hydrophobic attraction related to the mobility of hydrophobic surface groups? <u>Colloids and Surfaces A: Physicochemical and Engineering</u> <u>Aspects</u>, 129-130, 67-74.
- Dahanayake, M., Cohen, A.W., and Rosen, M.J. (1986). Relation of structure to properties of surfactant 13: Surface and thermodynamic properties of some exythylenated sulfates and sulfonates. <u>Journal of Physicals</u> <u>Chemistry</u>, 90, 2413-2418.
- Dechabumphen, N., Luangpirom, N., Saiwan, C., and Scamehorn, J. F. (2000). Contact angle of surfactant solutions on precipitated surfactant surfaces. <u>Journal of Surfactants and Detergents</u>, submitted.
- Drelich, J., Miller, J.D., Kumar, A., and Whitesides, G.M. (1994). Wetting characteristics of liquid drops at heterogeneous surfaces. <u>Colloids and</u> <u>Surfaces A: Physicochemical and Engineering Aspects</u>, 93, 1-13.
- Drelich, J., Wilbur, J.L., Miller, J.D., and Whitesides, G.M. (1996). Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips. <u>Langmuir</u>, 12, 1913-1922.
- Erbil, H.Y., McHale, G., Rowan S.M., and Newton, M.I. (1999).Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. <u>Langmuir</u>, 15, 7378-7385.
- Garrett, P.R. (1993). The Mode of action of antifoams, in <u>Defoaming</u>, Garrett, P.R. (Ed), Marcel Dekker, New York, 1993.
- Gonzalez-Garcia, C.M., Gonzalez-Martin, M.L., Gomez-Serrano, V., Bruque, J.M., and Labajos,-Broncano, L. (2000). Determination of the free

energy of adsorption on carbon black of nonionic surfactant from aqueous solutions. Langmuir. 16, 3950-3956.

- Good, R.J., and Mitta, K.L. (1993). <u>Contact angle, wetting, and adhesion: A</u> <u>critical review</u>. The Netherlands: VSP. Utrecht.
- Guy, D.W., Crawford, R.J., and Mainwaring, D.E., (1996). The wetting behavior of several organic liquids in water on coal surfaces. <u>Fuel</u>, 75 (2), 238-242.
- Gyorvary, E., Peltonen, J., Linden, M., and Rosenholm, J.B. (1996). Reorganization of metal stearate LB films studied by AFM and contact angle measurements. <u>Thin Solid Films</u>, 284, 368-372.
- Harwell, J.H., and Scamehorn, J.F. (1993). Adsorption from mixed surfactant systems, in <u>Mixed Surfactant Systems</u>, Ogino, K. and Abe, M. (Eds), Marcel Dekker, New York.
- Janczuk, B., Zdziennicka, A., and Wojcik, W. (1997). Relationship between wetting of teflon by cetyltrimethylammonium bromide solution and adsorption. <u>European Polymer Journal</u>, 33, 1093-1098.
- Johnson, R.E., and R.H. Dettre. (1993). Wetting of Low-Energy Surfaces, in <u>Wettability</u>. Berg, J.C. (Ed.), Marcel Dekker, New York.
- Kwok, D.Y., Gietzelt, T., Grundke, K., Jacobasch, H.J., and Neumann, A.W. (1997). Contact angle measurements and contact angle interpretation:
 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique. <u>Langmuir</u>, 13, 2880-2894.
- Kwok, D.Y., Lam, C.N. C., Li, A., Leung, A., Wu, R., Mok, E., and Neumann,
 A. W. (1998). Measuring and interpreting contact angles: A complex issue. <u>Colloids and Surfaces A: Physicochemical and Engineering</u> <u>Aspects</u>, 142, 219-235.
- Kwok, D.Y, and Neumann, A.W. (1999). Contact angle measurements and contact angle interpretation. <u>Advances in Colloid and Interface</u> <u>Science</u>, 81, 167-249.

I 19737270

- Lange, K.R. (1994). <u>Detergents and Cleaners: a Handbook for Formulations</u>. New York: Hanser/Garder Publications.
- Lin, F.Y.H. (1995). The effect of surface heterogeneity on the drop size dependence of contact angles. <u>Chemical Engineering Science</u>, 50 (16), 2633-2639.
- Lunkenheimer K. and Wantke, K.D. (1981). Determination of the surface tension of surfactant solutions applying the method of Lecomte Du Nouy (ring tensiometer). <u>Colloid and Polymer Science</u>, 25(93), 354-366.
- Marmur, A. (1996). Equilibrium contact angles: Theory and measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 116, 55-61.
- Miwa, M., Nakajima, A., Fujishima, A., Hashimota, K., and Watanabe, T. (2000). Effect of surface roughness on sliding angles of water droplets on superhydrophobic surfaces. <u>Langmuir</u>, 16, 5754-5760.
- Mukerjee, P., and Mysel, K.J. (1970). <u>Critical Micelle Concentrations of</u> <u>Aqueous Surfactant Systems</u>. Department of commerce, U.S. Government: Washington D.C.
- Nakae, H., Inui, R., Hirata, Y.,and Saito, H. (1998). Effect of surface roughness on wettability. <u>Acta matter</u>, 46(7), 2313-2318.
- Neumaan, A.W., and Good, R.J. (1979). Technique of measuring contact angles, in <u>Surfactant and Colloid Science</u>, Good, R.J., and Stronberg R.R.(Eds.), New York: Plenum press.
- Oner, D., and McCarthy, T.J. (2000). Ultrahydrophobic surfaces. Effect of topography length scales on wetability. <u>Langmuir</u>, 16, 7777-7782.
- Pitt, A.R., Morley, S.D., Burbidge, N.J., and Quickenden, E.L. (1996). The relationship between surfactant structure and limiting values of surface tension, in aqueous gelatin solution, with particular regard to

multilayer coating. <u>Colloids and Surfaces A: Physicochemical and</u> <u>Engineering Aspects</u>, 114, 321-335.

- Rathman J.F., and Scamehorn, J.F. (1984). Counterion binding on mixed micelles. Journal of Physical Chemistry, 88, 5807-5816.
- Rodriguez, C.H., Chintasathien, C., Scamehorn, J.F., Saiwan, C., and Chavadej, S. (1998). Precipitation in solution containing mixtures of synthetic anionic surfactant and soap. I. effect of sodium octanoate on hardness tolerance of sodium dodecyl sulfate. <u>Journal of Surfactant</u> <u>and Detergent</u>, 1, 321-328
- Rosen, M. J., (1989). <u>Surfactants and Interfacial Phenomena</u>. 2 nd ed., New York: John Wiley.
- Ruijter, M., Kolsch, P., Voue, M., Coninck, J.D., and Rabe, J.P. (1998).
 Effect of temperature on the dynamic contact angle. <u>Colloids and</u> <u>Surfaces A: Physicochemical and Engineering Aspects</u>, 44, 235-243.
- Scamehorn, J.F., Schechter R.S, and Wade, W.H.J. (1982). Adsorption on mineral oxide surface from aqueous solutions. I: Isomerically pure anionic surfactants. Journal of Colloid Interface Science, 85, 463-478.
- Serre, C., Wynblatt, P., and Chatain, D. (1998). Study of a wetting-related adsorption transition in the GA-Pb system: 1. surface energy measurements of Ga-rich liquid. <u>Surface Science</u>, 415, 336-345.
- Shanahan, M.E.R. (1995). Simple theory of stick-slip wetting hysteresis. Langmuir, 11(3), 1041-1043.
- Shiao, S.Y., Chhabra, V., Patist, A., Free, M.L., Huibers, P.D.T., Gregory, A. Patel, S., and Shah, D.O. (1998). Chain length compatibility effects in mixed surfactant systems for technological applications. <u>Advances</u> <u>in Colliods and Interface science</u>, 74, 1-29.
- Smith, S.A., Shiau, B., Harwell, J.H., Scamehorn, J.F., Sabatini, D.A. (1996) Performance and chemical stability of a new class of ethoxylated

sulfate surfactants in a subsurface remediation application. <u>Colloids</u> and <u>Surfaces</u>, 116, 225-239.

- Somasundaran, P., and Hanna, H.S. (1979). Adsorption of sulfonates on reservoir rocks. Journal of Polymer Science and Polymer Physics. 19, 221-232.
- Subrahmanyam, T.V., Prestidge, C.A., and Ralston, J. (1996). Contact angle and surface analysis studies of sphalerite particles. <u>Minerals</u> <u>Engineering</u>, 9 (7), 727-741.
- Teeters D., Takach, N.E., and Redman, W.A. (1992). Aerobic and anarobic three dimensional wetting maps for oil/brine/solid system, in <u>Physical</u> <u>Chemistry of Colloids and Interfaces in Oil Production</u>. Toulhoat, H,. Lecourtier, J. (Eds.), Paris.
- Vogler, E.A. (1998). Structure and reactivity of water at biomaterial surfaces. Advance in Colloid and Interface Science, 74, 69-117.
- Zettlemoyer, A.C. (1968). Hydrophobic surface. Journal of Colloid and Interface Science, 28, 343-369.
- Zisman, W.A. (1964). Contact angle, wettability and adhesion, in <u>Advances</u> <u>in Chemistry Series: Vol 43</u>, Gould, R.F (Ed.). American Chemical Society, Washington DC.

APPENDICES APPENDIX A

Experimental Data of Contact Angle Study with Time

Table A1 The advancing contact angle of saturated CaC_{12} solution containingNaDS at [NaDS] = 0 mM, solution volume = 20 μ L.

Time (min)	Advancing contact angle (θ_A)
0.00	82.3
0.25	82.0
0.50	81.8
1.00	81.7
5.00	81.6
10.00	81.4
15.00	81.3
20.00	81.1

Table A2 The advancing contact angle of saturated CaC_{12} solution containingNaDS at [NaDS] = 5 mM, solution volume = 20 μ L.

Time (min)	Advancing contact angle (θ_A)
0.00	47.2
0.25	47.0
0.50	46.4
1.00	46.3
5.00	46.3
10.00	46.1
15.00	45.8
20.00	45.5

Table A3	The advancing contact a	ngle of saturated (CaC_{12} solution	containing
NaDS at []	NaDS] = 10 mM, solution	n volume = 20 μ L		

Time (min)	Advancing contact angle (θ_A)
0.00	40.5
0.25	40.3
0.50	40.1
1.00	40.0
5.00	39.9
10.00	40.0
15.00	38.5
20.00	38.1

Table A4 The advancing contact angle of saturated CaC_{12} solution containingNaDS at [NaDS] = 100 mM, solution volume = 20 μ L.

Time (min)	Advancing contact angle (θ_A)
0.00	40.6
0.25	40.1
0.50	39.9
1.00	39.9
5.00	39.8
10.00	39.5
15.00	38.6
20.00	38.1

APPENDIX B

Experimental Data of Contact angle for mixed surfactant system

Table B1 The contact angle of saturated CaC_{12} containing NaDS..[NaDS] = 0 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	81.5	31.0
30	81.6	35.1
40	81.3	48.5
50	81.7	52.4
60	81.8	59.6
70	82.0	69.0
Average	81.7	

Table B2 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 0.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	70.8	22.8
30	71.4	33.0
40	72.1	42.6
50	72.5	48.9
60	72.4	56.5
70	73.0	65.6
Average	72.0	4.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	69.6	15.4
30	70.0	23.1
40	69.7	33.6
50	68.9	41.4
60	70.1	53.2
70	68.7	58.2
Average	69.5	

Table B3 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 1.0 mM.

Table B4 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 1.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	66.2	14.9
30	66.4	22.9
40	66.3	32.7
50	66.5	40.6
60	66.1	54.0
70	66.2	57.6
Average	66.3	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	63.5	5.1
30	64.0	15.4
40	62.5	26.2
50	62.8	36.1
60	62.8	43.3
70	63.5	46.0
Average	63.2	

Table B5 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 2.0 mM.

Table B6 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 2.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	61.5	6.1
30	61.2	15.6
40	61.1	24.9
50	60.9	35.2
60	61.3	42.4
70	61.2	45.5
Average	61.2	

i			
	Volume (µL)	Advancing contact angle	Receding contact angle
		(θ_A)	(θ_R)
	20	59.0	11.4
	30	58.8	21.6
	40	59.4	30.1
	50	60.2	39.0
	60	58.9	47.2
	70	58.7	54.4
	Average	59.2	

Table B7 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 3.0 mM.

Table B8 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 3.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	57.5	12.1
30	58.0	22.4
40	57.1	29.5
50	57.2	38.8
60	57.3	46.5
70	57.0	51.1
Average	57.4	14

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	54.5	6.2
30	53.9	15.1
40	54.5	21.5
50	54.8	30.1
60	53.6	39.4
70	55.0	46.2
Average	54.4	
		1

Table B9 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 4.0 mM.

Table B10 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 4.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	49.5	9.5
30	49.0	14.1
40	48.8	20.2
50	49.4	30.4
60	49.1	36.4
70	49.0	45.2
Average	49.1	

.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	46.8	6.1
30	46.1	12.4
40	46.3	17.3
50	46.5	26.0
60	46.2	32.2
70	46.6	39.1
Average	46.3	

Table B11 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 5.0 mM.

Table B12 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 5.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	43.6	5.5
30	43.5	11.2
40	42.9	14.1
50	43.0	20.8
60	42.9	29.9
70	43.9	35.6
Average	43.3	

46

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.5	5.1
30	40.1	10.4
40	39.8	13.2
50	39.5	20.5
60	40.8	29.6
70	40.1	33.3
Average	40.1	6

Table B13 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 6.0 mM.

Table B14 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 6.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ _A)	(θ_R)
20	37.0	5.7
30	35.9	11.1
40	36.0	14.2
50	36.5	20.5
60	35.9	28.8
70	36.4	34.0
Average	36.3	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	36.5	3.1
30	37.2	5.5
40	37.1	10.2
50	36.8	19.4
60	36.5	21.0
70	37.0	29.1
Average	36.9	

Table B15 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 7.0 mM.

Table B16 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 7.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	36.8	4.4
30	37.8	9.5
40	36.8	12.1
50	37.2	20.3
60	37.6	21.5
70	36.8	30.0
Average	37.2	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	38.0	4.5
30	37.7	8.3
40	36.5	16.2
50	36.9	21.2
60	37.0	28.1
70	36.7	31.0
Average	37.1	

Table B17 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 8.0 mM.

Table B18 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 8.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	37.5	4.6
30	37.8	9.6
40	37.1	13.4
50	37.6	21.5
60	37.0	23.6
70	37.5	32.4
Average	37.4	

.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	38.5	6.1
30	38.9	10.2
40	37.5	18.1
50	37.8	22.0
60	38.2	30.0
70	38.2	36.1
Average	38.2	

Table B19 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 9.0 mM.

Table B20 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 9.5 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	39.4	7.0
30	39.5	11.4
40	39.2	19.2
50	39.1	21.9
60	39.3	30.4
70	39.2	35.1
Average	39.3	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	41.0	6.8
30	40.1	9.9
40	39.9	16.4
50	39.7	23.2
60	39.6	28.5
70	39.9	30.0
Average	40.0	

Table B21 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] =10.0 mM.

Table B22 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 11.0 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.2	6.4
30	40.1	10.5
40	39.7	17.2
50	40.1	22.8
60	39.9	28.8
70	39.9	30.4
Average	40.0	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.0	6.1
30	40.5	9.6
40	40.3	15.9
50	39.5	24.0
60	39.8	29.1
70	40.3	31.0
Average	40.1	

Table B23 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] =12.0 mM.

Table B24 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 13.0 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.1	6.5
30	40.0	10.2
40	39.9	16.4
50	39.8	25.5
60	40.0	30.1
70	40.3	31.5
Average	40.0	

.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.0	5.9
30	40.1	12.4
40	40.3	22.1
50	40.2	30.1
60	40.4	30.5
70	39.9	35.4
Average	40.0	

Table B25 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 14.0 mM.

Table B26 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 15.0 mM.

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.0	5.9
30	41.1	10.0
40	39.4	15.6
50	39.5	23.4
60	40.5	29.3
70	40.1	31.4
Average	40.1	

Volume (µL)	Advancing contact angle	Receding contact angle
	(θ_A)	(θ_R)
20	40.4	6.4
30	40.2	11.5
40	39.9	16.2
50	40.0	21.8
60	39.9	29.9
70	40.6	31.6
Average	40.2	

Table B27 The contact angle of saturated CaC_{12} containing NaDS.[NaDS] = 20.0 mM.

ł

NaDS concentration (mM)	Advancing contact angle (θ_A)
0.0	81.7
0.5	72.0
1.0	69.5
1.5	66.3
2.0	63.2
2.5	61.2
3.0	59.2
3.5	57.4
4.0	54.4
4.5	49.1
5.0	46.3
5.5	43.3
6.0	40.1
6.5	36.3
7.0	36.9
7.5	37.2
8.0	37.1
8.5	37.4
9.0	38.2
9.5	39.3
10.0	40.0
11.0	40.0
12.0	40.1
13.0	40.0

Table B28 The average advancing contact angle of saturated CaC_{12} withvarying NaDS concentration.

Advancing contact angle (θ_A)
40.0
40.1
40.2

.

۲

.

APPENDIX C

Experimental Data of the CMC of Aqueous Solution of NaDS and Saturated CaC₁₂ Solution with NaDS.

Table C1 The measured liquid/vapor surface tension of mixed solution ofsaturated CaC_{12} and NaDS and aqueous solution of NaDS as a function ofNaDS concentration.

NoDS concentration	Surface tension of	Surface tension of
(mM)	aqueous solution of NaDS	mixed surfactant , γ_{LV}
	(mN/m)	(mN/m)
0	63.2	59.0
0.5	59.9	57.2
1.0	59.7	54.0
1.5	53.2	50.2
2.0	52.7	45.0
2.5	50.1	41.5
3.0	46.1	37.0
3.5	42.6	35:9
4.0	40.9	34.2
4.5	39.5	33.7
5.0	38.4	32.5
5.5	37.0	31.0
6.0	36.0	30.6
6.5	35.5	30.1
7.0	36.0	30.3
7.5	35.0	30.8
8.0	34.7	31.0
1	1	1

NaDS concentration	Surface tension of aqueous solution of NaDS	Surface tension of mix surfactant , γ_{LV}
(mM)	(mN/m)	(mN/m)
8.5	34.8	31.1
9.0	35.0	31.2
9.5	35.4	31.0
10.0	35.8	31.4
11.0	35.5	32.1
12.0	34.4	32.5
13.0	35.1	32.5
14.0	35.2	32.6
15.0	36.8	32.8
20.0	35.7	32.5

)

)

APPENDIX D

The Experimental Data of NaDS Adsorption Study

The surface concentration Γ_s , in micromoles/m², of the surfactant can be calculated when a_s , the surface area per unit mass of the solid adsorbent, in m²/g, (the specific surface area), is known (Rosen, 1989).

$$\Gamma_{\rm s} = \frac{\left({\rm C}_{\rm i} - {\rm C}_{\rm e}\right){\rm V}}{{\rm a}_{\rm s} \, {\rm x} \, {\rm m}}$$

where C_i is the molar concentration ,in moles/liter, of the solution before adsorption, C_e is molar concentration of surfactant at adsorption equilibrium, and V is the volume of the solution, in liters.

Weight of precipitate CaC_{12} (m)= 0.5 gSurface area of CaC_{12} precipitate (as)= 3.457 g/m²Volume of mix surfactant solution (V)= 20 mLTemperature= 30 °C

Table D1. Adsorption of NaDS on CaC_{12} with equilibrium NaDS concentration.

Initial NaDS concentration (mM)	Equilibrium NaDS concentration (mM)	NaDS adsorption (µmole/g)	NaDS adsorption (µmole/m ²)
1.0	0.65	13.99	4.05
1.5	0.95	22.02	6.37
2.0	1.43	22.99	6.65
2.5	1.74	30.60	8.85

Initial NaDS	Equilibrium NaDS		
concentration	concentration	NaDS adsorption	NaDS adsorption
(mM)	(mM)	(µmole/g)	(µmole/m ²)
3.0	2.26	31.39	9.08
3.5	2.67	33.07	9.56
4.0	3.00	40.04	11.58
4.5	3.55	38.09	11.02
5.0	3.97	41.50	12.01
5.5	4.22	51.13	14.79
6.0	4.59	56.49	16.34
6.5	4.87	65.37	18.91
7.0	5.45	62.08	17.96
7.5	5.80	67.80	19.61
8.0	6.24	70.59	20.42
8.5	6.78	68.86	19.92
9.0	7.30	68.02	19.68
9.5	7.75	70.20	20.31
10.0	8.16	73.49	21.26
20.0	15.58	176.69	51.11
30.0	20.88	364.40	105.41
40.0	26.89	524.47	151.71
50.0	32.31	707.63	204.70
60.0	36.76	929.37	268.84
70.0	42.94	1082.29	313.07
80.0	45.00	1399.20	404.74
90.0	48.01	1679.56	485.84
100.0	49.14	2034.57	588.54
1	1	1	1

ŧ

APPENDIX E

Correlation of Measured Contact Angle and Liquid/Vapor Surface Tension to Young's Equation and Calculation of Solid/Liquid Surface Tension.

Table E 1 The contact angle as a function of reciprocal of liquid/vapor

 surface tension.

$\cos \theta_A$	$1/\gamma_{LV}$ (m/mN)
0.1444	0.0169
0.2470	0.0175
0.3502	0.0185
0.3987	0.0199
0.4509	0.0222
0.4924	0.0.241
0.5120	0.0.270
0.5678	0.0279
0.5821	0.0292
0.6547	0.0297
0.6909	0.0308
0.7278	0.0323
0.7649	0.0327
0.8059	0.0332

.

ì

NaDS concentration	NaDS adsorption	γsl [°] - γsl
(mM)	(µmol/g)	(mN/m)
0.0		0.0
0.5	-	-1.8
1.0	14.72064	-5.0
1.5	23.01873	-8.8
2.0	24.13803	-14.0
2.5	32.11436	-17.5
3.0	32.92115	-22.0
3.5	34.77952	-23.1
4.0	42.05937	-24.8
4.5	39.70279	-25.3
5.0	43.54549	-26.5
5.5	53.65271	-28.0
6.0	58.93114	-28.4
6.5	68.49463	-28.9

6

.

)

 Table E2
 The reduction of solid/liquid surface tension as a function of NaDS

 concentration and NaDS adsorption.

1.1

CURRICULUM VITAE

Name: Piyada Balasuwatthi

Date of Birth: 12 July 1977

Nationality: Thai

University Educatiion:

1995-1998Bachelor's Degree of Engineering in ChemicalEngineering, Srinakarinwirot University.

. .