REFERENCES

- Alvarez, W.E., and Resasco, D.E. (1996). Methyl cyclopentane ring opening as a reaction test for Pt catalysts supported on non-acidic materials. <u>Journal of Catalysis</u>, 164, 467-476.
- Bond, G.C., and Cunningham, R.H. (1996). Alkane transformations on supported platinum catalysts: 3. the stability of Pt/Al₂O₃ (EUROPT-3) and of PtRe/Al₂O₃ (EUROPT-4) during the hydrogenolysis of alkanes. Journal of Catalysis, 163, 328-337.
- Bond, G.C., and Cunningham, R.H. (1997). Alkane transformations on supported platinum catalysts: 4. kinetics of hydrogenolysis of ethane, propane, and n-butane on Pt/Al₂O₃ (EUROPT-3) and PtRe/Al₂O₃ (EUROPT-4). Journal of Catalysis, 166, 172-185.
- Bond, G.C., and Hui, L. (1997). Alkane transformations on supported platinum catalysts: 1. reactions of ethane, propane, and n-butane on 6.3% platinum/silica (EUROPT-1). Journal of Catalysis, 137, 462-472.
- Bond, G.C., and Lin, X. (1997). Hydrogenolysis of propane and of n-butane on Pt/KL zeolite. Journal of Catalysis, 169, 76-84.
- Buzzi-Ferraris, G. (1999). Planning of experiments and kinetic analysis. <u>Catalysis Today</u>, 52, 125-132.
- Fogler, H.S. (1999). <u>Elements of Chemical Reaction Engineering</u>. New Jersey: Prentice Hall.
- Guczi, L., Frennet, A., and Ponec, V. (1983). Kinetics of hydrocarbon reactions on metal. <u>Acta Chimica Academiae Scientarium</u> <u>Hungaricae</u>, 112(2), 127-152.
- Heck, R.M., and Farranto, R.J. (1994). <u>Catalytic Air Pollution Control:</u> <u>Commercial Technology</u>. New York: Van Nostrand Reinhold.

- Jacobs, G., Padro, C.L., and Resasco, D.E. (1998). Comparative study of nhexane aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO₂ catalysts: clean and sulfur-containing feeds. <u>Journal of Catalysis</u>, 179, 43-55.
- Jacobs, G., Ghadiali, F., Pisanu, A., Borgna, A., Alvarez, W.E., and Resasco, D.E. (1999). Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation and its influence on aromatization activity and deactivation behaviour. Applied Catalysis, 188(1-2), 79-98.
- Kempling, J.C., and Anderson, R.B. (1972). Kinetics of hydrogenolyses of nbutane and isobutane on supported ruthenium. <u>Industrial and</u> <u>Engineering Cemistry Process Design and Development</u>, 11(1), 146-151.
- Sackamduang, P., Osuwan, S., Rirksomboon, T., and Resasco, D.E. (2001).
 <u>The aromatization of n-hexane and n-octane on Pt/KL catalysys</u> prepared by vapor-phase impregnation method. M.S. Thesis in Petroleum and Petrochemical Technology, Petroleum and Petrochemical College, Chulalongkorn University.
- Satterfield, C.N. (1991). <u>Heterogeneous Catalysis in Industrial Practice</u>. USA: McGraw-Hill.
- Stakheev, A.Y., Shpiro, E.S., Jaeger, N.I., and Schulz-Ekloff, G. (1995).
 Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. <u>Catalysis Letters</u>, 32, 147-158.
- Tauster, S.J., and Steger, J.J. (1990). Molecular die catalysis: hexane aromatization over Pt/KL. Journal of Catalysis, 125, 387-389.
- Van de Runstraat, A., van Grondelle, J., and van Santen, R.A. (1997). On the temperature dependence of the arrhenius activation energy for hydroisomerization catalyzed by Pt/mordenite. <u>Journal of Catalysis</u>, 167, 460-463.

APPENDICES

APPENDIX A F value calculation

For
$$C_2/C_1 = 1.5$$

 $35 C_4 \rightarrow 20 C_4 \xrightarrow{1-F} 20 C_3 + 20 C_1$ (terminal C - C bond cracking)
 $\downarrow \rightarrow 15 C_4 \xrightarrow{F} 30 C_2$ (middle C - C bond cracking)
 $C_2/C_1 = 30/20 = 1.5$
 $F = 15/35 = 0.43$

For
$$C_2/C_1 = 0.6$$

 $13 C_4 \rightarrow 10 C_4 \xrightarrow{1-F} 10 C_3 + 10 C_1$ (terminal C - C bond cracking)
 $3 C_4 \xrightarrow{F} 6 C_2$ (middle C - C bond cracking)
 $C_2/C_1 = 6/10 = 0.6$
 $F = 3/13 = 0.23$

For
$$C_2/C_1 = 0.5$$

 $5C_4 \rightarrow 4C_4 \xrightarrow{1-F} 4C_3 + 4C_1$ (terminal C - C bond cracking)
 $\downarrow \rightarrow C_4 \xrightarrow{F} 2C_2$ (middle C - C bond cracking)
 $C_2/C_1 = 2/4 = 0.5$
 $F = 1/5 = 0.2$

APPENDIX B Kinetics calculations

$$A + B \rightarrow C + D + E + F$$

Assign A = n-butane, B = hydrogen, C = methane, D = ethane,

E = propane, and F = isobutane.

 $X_A = X =$ n-butane conversion, and $X_B =$ hydrogen conversion.

1. $P_A \& P_B$

$$P_{AO} = \frac{V_{A0}}{V_{T0}} \times P_T$$
$$P_{BO} = \frac{V_{B0}}{V_{T0}} \times P_T$$
$$P_A = P_{A0} (l - X)$$
$$P_B = P_{B0} (l - X_B)$$

where:

 $P_{A0} =$ initial n-butane partial pressure

 P_{B0} = initial hydrogen partial pressure

 V_{A0} = initial n-butane volumetric flow rate

 V_{B0} = initial hydrogen volumetric flow rate

 V_{T0} = initial total volumetric flow rate

 P_T = total pressure

 $P_A =$ n-butane partial pressure

 P_B = hydrogen partial pressure.

From stoichiometry, $X_B = X_A = X$ Hence,

$$P_{\rm B} = P_{\rm B0} (1 - X)$$

2. Rate of Reaction

$$rate = \frac{A_{reacted}}{time \times g \cdot cat} = \frac{A_{react}}{A_{fed}} \times \frac{A_{fed}}{time} \times \frac{1}{g \cdot cat}$$
$$rate = \frac{conversion \times molar feed flow rate}{amount of catalyst}$$

where:

- rate = n-butane consumption rate A_{react} = mole A reacted A_{fed} = mole A fed into the reactor.
- 3. Order & Rate Constant

$$r = k P_A^{\alpha} P_B^{\beta}$$

Fixed H₂

$$k' = k P_B^{\beta}$$

hence,

$$r = k' P_A^{\alpha}$$
$$\ln r = \alpha \ln P_A + \ln k'$$

where:

- r = n-butane consumption rate
- k = rate constant
- α = n-butane order
- β = hydrogen order.

Plot $\ln r$ vs. $\ln P_A$ Slope = α Y-intercept = $\ln k$ '

Fixed HC

$$k^* = k P_A^{\alpha}$$

hence,

.

$$r = k * P_B^{\beta}$$
$$\ln r = \beta \ln P_B + \ln k *$$

Plot
$$\ln r$$
 vs. $\ln P_B$
Slope = β
Y-intercept = $\ln k^*$

4. Activation Energy

$$k = Ae^{-E_{a}/RT}$$

$$r = kP_{A}^{\alpha}P_{B}^{\beta} = \frac{F_{A0}X}{W}$$

$$X = \frac{Ae^{-La/RT}P_{A}^{\alpha}P_{B}^{\beta}W}{F_{A0}}$$

$$\ln X = \frac{-Ea}{RT} + \ln \frac{AP_{A}^{\alpha}P_{B}^{\beta}W}{F_{A0}}$$

where:

A = pre-exponential factor

 E_a = activation energy

R = gas constant

T = absolute reaction temperature

 F_{A0} = n-butane molar feed flow rate

W = the amount of catalyst used for the reaction.

Plot ln X vs. 1/T (Arrhenius plot) Slope = $-E_a/R$

(Fogler, 1999; Buzzi-Ferraris, 1999)

APPENDIX C Calculation of chemicals required for IWI & VPI method.

The objective of both preparation methods was to load 1 %wt Pt and 0.15 %wt RE (optional), e.g., Ce, Er, Yb, on the support (zeolite).

For IWI method:

1 %wt Pt/KL 1 gram of catalyst contain 0.01 gram of Pt.

But Pt 1 %wt is extremely insignificant when compared to zeolite weight; hence, catalyst 1 gram \sim zeolite 1 gram, and zeolite 1 gram requires Pt 0.01 gram.

Tetraamineplatinum (II) nitrate 387.09 gram contains Pt 195.09 gram.

So Pt 0.01 gram requires Tetraamineplatinum (II) nitrate

$$\frac{0.01 \times 387.09}{195.09} = 0.0199 \ g$$

Therefore, zeolite 1 gram requires Tetraamineplatinum (II) nitrate 0.0199 gram.

The calculation results of other catalyst samples were shown in Table C1 and Table C2.

Table C1	The amount of chemicals required for catalyst preparation by IWI
method.	

Chemical	MW _{chemical}	MW _{metal}	The amount required per gram of zeolite (gram)
Tetraamineplatinum (II) nitrate	387.09	195.09	0.0199
Cerium (III) nitrate hexahydrate	434.23	140.12	0.0047
Erbium (III) nitrate pentahydrate	443.35	167.26	0.0040
Ytterbium (III) nitrate pentahydrate	449.13	173.04	0.0039

Chemical	MW _{chemic} al	MW _{metal}	The amount required per gram of zeolite (gram)
Platinum (II) acetyl-acetonate	393.31	195.09	0.0202
Cerium (III) acetyl-acetonate	437.45	140.12	0.0047
Erbium (III) acetyl-acetonate	464.26	167.26	0.0042
Ytterbium (III) acetyl-acetonate	470.04	173.04	0.0041

Table C2 The amount of chemicals required for catalyst preparation by VPI method.

Set A = n-butane; B = hydrogen

Assume: since n-butane conversion is very low, product coverage can be neglected.

Therefore, $\Theta_T = \Theta_A + \Theta_B + \Theta_V = 1$

Consider A:

At equilibrium

$$r_{adsorb} = kP_A \Theta_V$$
$$r_{desorb} = k' \Theta_A$$
$$r_{adsorb} = r_{desorb}$$

$$\Theta_{A} = \frac{k}{k'} P_{A} \Theta_{V} = K_{A} P_{A} \Theta_{V} = K_{A} P_{A} (1 - \Sigma \Theta)$$

 $kP_{A}\Theta_{V} = k'\Theta_{V}$

let

$$\Sigma \Theta = \Theta_A + \Theta_B = (1 - \Sigma \Theta)(K_A P_A + K_B P_B)$$

$$\Sigma \Theta = K_A P_A + K_B P_B - K_A P_A \Sigma \Theta - K_B P_B \Sigma \Theta$$

$$\Sigma \Theta (1 + K_A P_A + K_B P_B) = K_A P_A + K_B P_B$$

$$\Sigma \Theta = \frac{K_A P_A + K_B P_B}{1 + K_A P_A + K_B P_B}$$

$$1 - \Sigma \Theta = 1 - \frac{K_A P_A + K_B P_B}{1 + K_A P_A + K_B P_B} = \frac{1}{1 + K_A P_A + K_B P_B}$$

Therefore;

$$\Theta_{A} = \frac{K_{A}P_{A}}{1 + K_{A}P_{A} + K_{B}P_{B}}$$
$$\Theta_{B} = \frac{K_{B}P_{B}}{1 + K_{A}P_{A} + K_{B}P_{B}}$$

let

$$r = k\Theta_{A}\Theta_{B} = \frac{kK_{A}P_{A}K_{B}P_{B}}{\left(1 + K_{A}P_{A} + K_{B}P_{B}\right)^{2}}$$
$$r = \frac{k_{0}e^{-E/RT}K_{A0}e^{\Delta H_{A}/RT}K_{B0}e^{\Delta H_{B}/RT}P_{A}P_{B}}{\left(1 + K_{A0}e^{\Delta H_{A}/RT}P_{A} + K_{B0}e^{\Delta H_{B}/RT}P_{B}\right)^{2}}$$

APPENDIX E n-Butane conversion results

.

Figure E1 Relationship between n-butane conversion and reaction time of different catalyst types and preparation methods carried out at 350 °C, HC : $H_2 \sim 1 : 10$.

Figure E2 Relationship between n-butane conversion and reaction time with and without promoters carried out at 350 °C, HC : $H_2 \sim 1 : 10$.

Figure E3 Relationship between n-butane conversion and reaction time carried out on Pt/KL (IWI) catalyst at different temperatures, HC : $H_2 \sim 1 : 10$.

Figure E4 Relationship between n-butane conversion and reaction time carried out on Pt/KL (VPI) catalyst at 350°C, with different hydrogen and hydrocarbon flow rates^{*}.

^{*} High H₂ flow rate refer to 30 cm³ min⁻¹, Low H2 flow rate refer to 17.5 cm³/min. High HC flow rate refer to 4.5 cm³ min⁻¹, Low HC flow rate refer to 3 cm³/min.

Figure E5 Relationship between n-butane conversion and reaction time carried out on Pt/KL (VPI) catalyst at 375°C, with different hydrogen and hydrocarbon flow rates.

Figure E6 Relationship between n-butane conversion and reaction time carried out on Pt/KL (VPI) catalyst at 400°C, with different hydrogen and hydrocarbon flow rates.

CURRICULUM VITAE

Name: Titipong Issariyakul

Date of Birth: 24 February 1978

Nationality: Thai

University Education:

1995-1998Bachelor Degree of Engineering in Chemical Engineering,
Thammasat University, Bangkok, Thailand.