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ABSTRACT

#972021 . POLYMER SCIENCE PROGRAM

KEY WORDS : Cetyltrimethyl ammonium chloride/ CTAC/ Fatty Acohol/
FA/ Hydroxyethyl Cellulose/ HEC/ Emulsion/ Annealing.
Tanapatr Barameesangpet : Rheology of Cationic

Surfactant and Fatty Alcohol Mixtures in the Presence of Flydroxyethyl

Cellulose. Thesis Advisors : Prof. Alexander M. Jamieson, Dr. Malika

Punyagupta and Assoc. Prof. Anuvat Sirivat, 112 pp. ISBN 974-331-939-5

The rheological and optical properties of CTAC/FA, BTAC/FA, and
CTAC/FA/HEC emulsions were studied as a function of aging time and fatty
alcohol concentration. The fatty alcohol interacts with the cationic surfactants
to form lamellar and vesicle structures. The zero-shear viscosity and
entanglement modulus increase with aging time which correlates to a growth
in the size of lamellar and vesicular structures. The morphology of the
emulsions depends on the type of cationic surfactant, fatty alcohol
concentration and the added polymer. In the CTAC/FA system, lamellar
aggregate structures are seen while in the CTAC/FA/HEC system, partition of
lamellar aggregates are observed. In addition, vesicle and symmetric
sunflower-like structures are found in the BTAC/FA system. Experiments
were conducted where emulsions were annealed and rheological properties
measured as a function of aging time after cooling down. After annealing at 40
°, the rheological and optical properties remained to their initial values and
conditions while they differ only slightly from initial values. At annealing
temperatures of 53 and 80 °c 5Sthe zero-shear viscosity decreases initially, then
returns to its initial value as a function of annealing time. This correlates to a
change from lamellar network structures to droplets of FA surrounded with
lamellar aggregates. On aging, the lamellar network morphology recovers.
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