
PROBLEM SOLVING METHOD
C H A P T E R  III

3.1 Elliptic Equation

The general form of the elliptic equation in three space dimensions is

d 2 น  1. Ô2น _ d 2นa ^ Y  + b ^ = r  + c ^ : = f { x , y l z )
d x 2 d y 2 d z 2

(3.1)

3.1.1 One-Dimensional Elliptic Equation
The general form of the one-dimensional elliptic equation is 

shown in eq.(3.2).
d u  /  ๆ \ๆa - ^ 1 = r77 (3.2)

The central finite difference is substituted in eq.(3.2) with a grid shown in fig.
3.1 to get eq.(3.3).
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Figure 3.1 Arrangement of grid points for one dimension.

3  - ■ —fr  —  =  177 (3.3)(A X )2

Here, the spatial variable 0< X <L is discretized such that Ax = L /p (p = 
number o f increment) and Xj =  iAx. 5 5
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The eq. (3.3) is rearranged to eq.(3.4).

พ,- =(«,4., + -m (A x)21 a) 12 (3.4)

By adding a superscript to denote the number o f the iteration, eq.(3.4) 
becomes the recursive form, eq.(3.5).

น?*1 = « 1  + บ เ -X
/77(AA')2 ) / 2 (3.5)

The explicit recursive form is calculated repeatedly until the latest relative 
difference o f the values o f น and previous values o f น is less than the relative 
tolerance, ธ, which is shown in eq.(3.6).

น?*1 -  บ? < £ (3.6)

3.1.2 Two-Dimensional Elliptic Equation
The general form of the two-dimensional elliptic equation is

d 2u  , d 2u  a - ^ - ~  + b — ^r = ทา 
d x 2 d y 2

(3.7)

The central finite difference form is used for eq.(3.7) is

J  U I+1J ~ ^ u i j  + u '-h j 1 ^ u i.j+1 ~ 2u i , j + u i , j-1 _ m
(A  x y (A  y y

(3.8)

Here, the subscription scheme, corresponds to the two-dim ensional space grid
shown in fig. 3.2
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Figure 3.2 Arrangement o f grid points for two dimensions.

3.1.2.1 Gauss Seidel Method
The Gauss Seidel method is applied to eq.(3.8), which

is rearraged to eq. (3.9).

นI,j = ( ( Â ^ F {Um j  + u '-'->) + X w f  + ) - m )

ï ' é r w f '
(3.9)

The recursive form of eq.(3.9) is shown in eq.(3.10), where the superscript 
denotes the number o f the iteration.

« V  + ) ■+ K m  + ) - m )

จ ร r & >
(3.10)

The explicit iterative calculation for น continues until the latest relative
difference between the new value o f น at point ij and previous value o f น is
less than the relative tolerance, 8 as shown in eq.(3 .11).
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(3.11)

The Gauss Seidel method will solve the solution, น by using the components 
of น on the right hand side o f recursive form

convergence to the solution of the finite-difference equations. The eq.(3.8) is 
rearranged to the two sets o f linear equations eq.(3.12) and (3.13) with a 
tridiagonal coefficient matrix. The eq.(3.12) uses the implicit form only in the 
x-direction and eq.(3.13) uses it only in y-direction. Eq.(3.12) and eq.(3.13) 
can be solved by using the Thomas method

At the first iteration, all values of u"ij on the right hand side of eq.(3.12) are 
assumed for the initial guess. Then น1'+1ij can be solved by the Thomas 
method. After that, น11+2jj, is calculated by eq.(3.13) which นn+1ij is known from 
the previous equation. The iteration continues by solving with eq.(3.12) again. 
Like the Gauss Seidel method, the iteration continues until the relative error

3.1.2.2 Alternating Direction Implicit Method
This numerical method will help accelerate

(A
(3.12)

(3.13)
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between the new and previous iterative values is less than the relative
tolerance, ธ.

. /7+1
' i .J - u i , i

'น
< ร (3.11)

3.1.3 Three-Dimensional Elliptic Equation
The elliptic equation in the x,y and z directions is shown in eq.

(3.14).
d 2บ  . d 2บ  d 2น~~~r + b ~—~rr + c -A—A — /77 
d x 2 d y 2 d z 2

(3.14)

The above equation will be transformed to eq.(3.15) by substituting the central 
differences.

g  น  i+hJ,k ~  2 u i,j,k  +  น /-!1] ,k +  £  น/,]*!,k -  2 น/, j,k  +  น / ,]- !,k

(A x y (A /)2
1 c  น/,],k*! ~  ^น/,],k +  น/,],k -! m

(Az y
(3.15)

3.1.3.1 Gauss Seidel Method
Eq.(3.15) is rearraged to eq.(3.16)

น/,]  =  ( t t - t t  {น/*!,],k +  น /-1 J 1k )  +  1 . \  2 {น/1]*!,k +  น / ,]-!,k  )(AX)
c

(A /)2

+
พ ...................  . . 11 2a 2b 2c .---------T  {.น/ i k*\ ^  น / / )  — rri)  / ( ------- ะr  H------------ ะ- H------------zr)

( A z ) 2 ,J 'k+l ( A x ) 2 ( A / ) 2 ( A z ) 2
(3.16)

Eq.(3.16) is changed into the iteration form for the Gauss Seidel method,
where superscript denotes the num ber o f  the iteration



10

เก+l1 IJ,k = ( (A*)
c

■ ( U M J , k  +  U i- l J , k

+

) + (fry)2 ^U'JA,k + U'l,J~1,k ̂

- r — r « ik+i + < i k  1 ) — m ) l ( ~ ~ ~ T  "*■— 7~ZT "*■— t t t )(Az )2 ๙’ J- (Ax) ( A y f  (Az)2 (3.17)

The iteration continues until the relative error in ท, i, j, and k for the new and 
previous iterative values is less than the tolerance.

,n+1'บ ,k -  นIJ,k
' u . k

< ร (3.18)

3.1.3.2 Alternating Direction Implicit Method
Eq.(3.15) is rearranged to the three sets o f linear 

equations with a tridiagonal coefficient matrix. The implicit form is used only 
in the x-direction, y-direction, and z-direction in eq.(3.19), eq.(3.20), and eq. 
(3.21) respectively, where the superscript denotes the number o f the iteration.

(AX)^ ( 0 - 7 ^ ( 0  + TTTÂT (u "+ij.k ) =(Ax)2 (Ax)

m  -  t A ü  (uบ -น  ) + K j . k  ) -(Ay)

IÂZŸ

(Ay)2
2c

(Ayy
c

' ( U /J + l,k  )

( UIJ,k-1 )  +  1 , _ \2 ( UIJ,k ) ~  77ไ“โr  ( U!J,k+1 )(A z) (A zf (3.19)

b r..n+2 \ 7/7 f,,n+2  \ 1 b fiin+2 ไ —
\ u /J + l ,k J  -(Ay)2 ^ ''' u }  ” (AyŸ ) +

ทา  - (AX)2

(Â^r

( U " - \J ,k  ) +

2 ( C - i )  +

(Ay)2
2a ,__n+1

(A*)2

M

K f . k ) ~

2 ( O -
(AX)2

TKzÿ

JM J , k  )

K ï k +1) (3.20)
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2 c  ,  /J+3. c("ร-1 ) - TTTvT ("ร ) + TTTTT «ill ) =( A z ) 2 ( A Z ) (Az y
๓  -  7737 ̂ /-น,* ) + 7ไ777 ("ร ) -(A * ) 2 ( A A " ) ( A A ' ) 2

( C , y

("รน )+7377 ("ร ) - 7-̂77 (Cu )(A /)2 (A / ) 2
(3.21)

These three sets of linear equations cannot be expressed explicitly in terms of 
the known values at the previous time step which are implicit forms. They can 
be solved by using the Thomas method. Like the two-dimensional problem, 
the solving algorithm starts with eq.(3.19), eq.(3.20), and then eq.(3.21). The 
iterative calculation continues until the relative error is less than the relative 
tolerance, 8 ,as show in eq.(3.18).

3.2 Parabolic Equation

The general form of the parabolic PDE is shown below.
d 2u  b  d 2u  1 d 2น d u (3.22)

3.2.1 One-Dimensional Parabolic Equation
The one-dimensional parabolic equation is shown in eq.(3.23).

(3-23)

3.2.7.7 Method o f  Lines
The method of lines (MOL) converts the partial 

differential equations into a set o f coupled first order ordinary differential 
equations by using the finite difference method from eq.(3.23) and the central 
finite difference approximation of the second derivative .
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du_ = a{ u <* -  2Ui + u 1-! N
^ = l M 5 J = ^ ) (3.24)

Eq.(3.24) is solved by using the fourth-order o f the Runge-kutta algorithm

y,+! = y  1 +1  (*1 + 2 k 2 +  2 k  2 + /r4 ) (3-25)
Where

K = n x „ y 1 )  (3.26)
k 2 = ^(/V/ + — /? ,// + — /7^ ) £2 27)

3̂ = f { x ,  +  ^ h , y  1 +  ^ เ า k 2 )  (3.28)
/ ' 4 =  f { x l + h , y , + t i k 3 )  (3.29)

below.

3.2.1.2 Implicit Method
The one-dimensional parabolic equation is shown

d u  _  d 2น  
~ d t = a ~ d x 2

(3.23)

A forward finite difference form is substituted for the left hand side term.
d u  =  บ/.ท,! - บ / , n m ( 3.30 )
d t  A t

The represent ร2u/cbc2 by a central finite difference form evaluated at the 
advance point o f time tn+i.

d 2U  _ บ /-! n+1 ■ บ/,ท+! + บ/+!,n+l (3 31ไ
( ร f

When eq.(3.30) and eq.(3.31) are substituted in eq.(3.23) 5 the difference 
equation becomes eq.(3.32).
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น  i,n+\ ~  น!,ท _ ( น  i-l.n+l ~  2^/(fl+l +  น /+l,n+l \ 
At  = ( }

The eq.(3.32) is rearranged into eq.(3.33)

-  น/-!,ท+! + (1 ~ 2 F )U / n+1 -  F u /+11n+1 =  น 111

(3.32)

(3.33)

A tridiagonal coefficient matrix is solved by using the Thomas method. 
F is defined by eq.(3.34)

eq.(3.23).

3.2.1.3 Forward Time Central Space Method
The one-dimensional parabolic equation is shown in

d u  _  d 2น
~di = a ~dx2 (3.23)

The derivative o f eq.(3.23) can be replaced by finite difference form.

d u  _  น!,n+1 ~ น /,!7 
~ d t =  Â F ~

Eq.(3.30) is rearraged to eq.(3.35).

d 2 น  น ,-1,ท - 2 น , ,ท + น  1+11ท
( Â x f

(3.30)

(3.35)

All the Ujn are known at any time level, tn. Eq.(3.36) enables น(1ท +1 to be 
calculated directly at the time level tn+1.
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3.2.1.4 Crank Nicolson Method
Crank Nicolson is one of the implicit methods which 

is stable for all values of F.
=  (3.23)d t d x 2

In this method, to march one time step from ท to n+1, the one-dimensional 
heat equation is represented in finite difference form at the half-time step.
For the t-derivative, a central difference is used.

^ ' ’+1/2
dt

น ^ - น ,
At (3.36)

The x-derivative is taken as the average o f the x-derivatives at the ท- and 
(n+l)-th t-steps which are represented by the central difference.

(3.37)
J W

«+1 /2  1 ' d V
r7+1

+

^
ะว1

PM ท "

น * ฯ ,  2 น ^ 2 J / /

Therefore,

'a น?+} — 2 บ1?*1 + น? t1 น? — 2 น? 4- น?u i+1 *-u เ ^  U I-1 +  “ / + !  *-u เ ^  U /-1
(A x f  (AX)2

Eq.(3.37) and eq.(3.39) are substituted into eq.(3.23).

(3.38)

U?+1-Uj_ = a
A t V2 U

/?*} — 2 น?+1 + น??} น? — 2น? 4- น?'/+1 * •" / +  ty / - l  +  _ / + !  +  “ / - !
(A*)2 (A*)2 -1/

Eq.(3.39) is rearranged to eq.(3.40).

(3.39)

-  Ft/";1 +  (2 + 2 F ) U - +1 -  Ft/;.;1 = F u nu  1 + (2 -  2 F ) u  โ  4- F u U (3.40)
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This is an implicit method, as Uni+1 cannot be expressed explicitly in terms of 
the known values at the n-th step. A set of linear equations has to be solved for 
each time step by the Thomas method.

3.2.2 Two-Dimensional Parabolic Equation
The two-dimensional parabolic equation is shown as below.

5*/ d 2 น ^  d 2U
~ d t = a ~dx2 +  ô ÿ 2

(3.41)

3.2.2.1 Alternating Direction Implicit Method
The alternating direction implicit method manages to 

use a system of equations with a tridiagonal coefficient matrix. The principle 
is to employ two difference equations which are used in turn over successive 
time-steps each of a duration of At/2. Eq.(3.42) is implicit only in the X 
direction, and the eq.(3.43) is implicit only in the y-direction.

U i , J , n +1 -  U ! J
A t / 2 =  พ น +  à  y U /J ,n+l

u i , j  ~  U i , J , ท
A t / 2 = พ น +  ô l uVu i,J,n

(3.42)

(3.43)

Here, น*ij is an intermediate value at the end o f the first time-step and Ô2xUjj 
and ร2yนij are central difference forms

i , j  =

นเ-น + u /+!,/
M 2

(3.44)

and
U ij - 1  ~ 2-u i j  +  U IJ+1

S > 'J = — W f
(3.45)
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Eq.(3.44) and eq.(3.45) are written out in full and rearranged to eq.(3.46) and 
eq.(3.47).

Fxu !-ij ~ QFX + 2)น/J + Fxน,+11J — -Fyบ,J _ 1n
+ (2Fy -  2)น 11J 11, -  Fyบ,.J+11n (3.46)

Fy น ij-i'D+i ~ (2 F Y + 2 )u ,Jn+1 + Fyu j j +1 n+1 —
-  F.น]-IJ + (2/r̂  -  2) น 1 j  -  Fx น*+1J  (3.47)

Fxand Fy are difined by eq.(3.48) and eq.(3.49).

= a { A t )  (3.48)
' = M 2

F = ?(3.49) 
'  ( A / ) 2

3.2.2.2 Forward Time Central Space Method
The equation of unsteady-state heat conduction is 

substituted with the forward difference for the t-derivative and the central 
difference for the x-derivative and the y-derivative to become eq.(3.50).

— น? นn ~ 2นก + นก นn — 2น + น /") cmu  เ _______ u  เ  _  J  M J ___________ เ.1  i - l . j  1 บ * !  i j  l . j -1  p . D U J

A t  =  ( A * ) 2 (A  y ) 2

The differential equation of eq.(3.50) is rearraged to eq.(3.51).

น:" = F, K „ * น:,,)*Fv (1/»,1 + น11) >1/”(3.51)
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3.3 Linear Equations with a Tridiagonal Coefficient Metrix Solved by 
Thomas Method

This system of equations can be written in the following form.

๕1;<'1 + £1;<'2 = b1

C2X1 + ๕2;<'2 + e 2Xj = ๕2

C3X2 + d  3X3 + e 3x  4 = ๕3

c nx n- i + d nx„ = b n (3.52)

where Ci, dj, and ej represented the coefficients o f Xj_i, Xj 5 and x i+1 5repectively, 
in the i-th equation.

By application of Gaussian elimination, the solution to such a set of 
linear equations is as follows:

x„ = V n (3.53)

and

X , = r  / - G/X/+1
P i

(/ =  ท - 1 1 ท - 2 , . . . , 1 ) (3.54)

where Yi and pi are determined by the following recursive relationships ะ
A  = ๕1 (3.55)

Y i  =
di_
P i

(3.57)
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Yi =

d  1 -
P i-1 (/ = 2 , 3 , . . . ,  ท ) (3.57)

b , - c , y , _  1 
P i

(/ = 2 , 3 , . . .  1 ท ) (3.58)

Therefore, the Pi’s and Yi’s are first calculated using eq.(3.57) through eq. 
(3.60). Then eq.(3.55) and eq.(3.56) are used to determine the values o f Xj that 
solve the set o f linear equations. This procedure is known as the Thomas 
method.
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