ผลการวิจัย

5.1 การศึกษาธาตุต่าง ๆ ที่เครียมอึ้นบนกระดาษกรอง

5.1.1 การหาพื้นที่ของกระดาษกรองที่ถูกกระตุ้นด้วยรังสีเอกซ์ปฐมภูมิ โดยใช้ฟิล์ม ถ่ายรูปวางบริเวณที่ใส่ตัวอย่าง สำหรับเครื่อง WDX พื้นที่มากที่สุดที่ถูกกระตุ้นด้วยรังสีเอกซ์ ปฐมภูมิจะเท่ากับพื้นที่ช่องว่างของหน้ากาก (Aluminum mask) ที่ใช้ ผลการหาพื้นที่แสดงใน รูปที่ 5.1

รูปที่ 5.1 พื้นที่ของกระดาษกรองที่ถูกกระตุ้นด้วยรังสีเอกซ์ปฐมภูมิ (ก) สำหรับเครื่องระบบ EDX (ข) พื้นที่ของช่องว่างของหน้ากากที่ใช้วางตัวอย่าง 5.1.2 การวิเคราะห์เชิงคุณภาพและเชิงปริมาณของกระดาษกรองที่ใช้

ในงานวิจัยนี้ เลือกใช้กระดาษกรองเซลลุโลส ของ Whatman No.41 เนื่องจากเป็นกระดาษชนิดที่มีปริมาณเถ้าต่ำ และสามารถใช้กับเครื่องเก็บตัวอย่างแบบ Hi-Vol ได้ ในการวิเคราะห์เชิงคุณภาพด้วยเทคนิคการเรืองรังสีเอกซ์ระบบ WDX สเปคตรัมของรังสี เอกซ์เรืองที่ได้แสดงในรูปที่ 5.2 จากสเปคตรัมในรูปที่ 5.2 นั้น จะสามารถวิเคราะห์เชิง คุณภาพสำหรับรังสีเอกซ์เรืองระดับชั้น K ตั้งแต่ธาตุแคลเซียม (Ca) จนถึง ธาตุโมลิบดินัม (Mo)

และ รังสีเอกซ์เรืองระดับชั้น L ตั้งแต่ธาตุดีบุก (Sn) จนถึง ธาตุยูเรเนียม (U) จากสเปคตรัมในรูปที่ 5.2 ธาตุที่ตรวจพบในกระดาษเชลลูโลส ได้แก่ธาตุ ทองแดง นิกเกิล เหล็ก และแมงกานีส ซึ่งธาตุที่ปรากฏผีดเหล่านี้อาจไม่ได้มาจากกระคาษกรอง แต่เพียงอย่างเดียว เนื่องจากวัสดุที่ใช้บรรจุตัวอย่าง และชิ้นส่วนบางอย่างของเครื่องมือที่ใช้ จะมีส่วนประกอบของธาตุเหล่านี้อยู่ด้วย ซึ่งจากการตรวจสอบโดยใช้วัสดุอื่นเป็นแบลงค์ก็พบพีด ของธาตุเหล่านี้ด้วย อย่างไรก็ตามสเปคตรัมของรังสีเอกซ์เรืองในรูปที่ 5.2 จะใช้เป็นตัวแทน ของกระดาษกรองแบลงค์ และสิ่งรบกวนของระบบที่ใช้ศึกษาด้วย

ผลการวิเคราะห์เชิงคุณภาพของกระดาษกรองแบลงค์ด้วยเครื่องระบบ EDX แสคงในรูปที่ 5.3 ธาตุที่ตรวจพบ ได้แก่ แมงกานีส เหล็ก ทองแคง และนิกเกิล สำหรับพืด อื่น ๆ ที่ปรากฏจะเป็นพืดที่เกิดจากการกระเจิง (Scattered peak) ของรังสีเอกซ์ปฐมภูมิ เมื่อเกิดอันตรกิริยากับตัวอย่าง พืดที่เกิดจากการกระเจิงที่พบในช่วงระดับพลังงาน 2.376 -3.363 keV เป็นชุดของ L X-rays ของธาตุโรเดียม (Rb) ธาตุโรเดียมนี้เป็นเป้า (Target) ของหลอดกำเนิดรังสีเอกซ์ที่ใช้ ดังนั้นรังสีเอกซ์ปฐมภูมิที่ได้จากหลอดกำเนิดรังสีเอกซ์จะมีรังสี เอกซ์เฉพาะตัวของธาตุโรเดียมด้วย ส่วนพืดที่เกิดจากการกระเจิงที่ระดับพลังงานอื่น อาจ เป็นผลมาจากการชนแบบไม่ยืดหยุ่น (Inelastic scattering)

รูปที่ 5.4 สเปคตรัมของรังสีเอกซ์เรื่องของกระดาษกรองชนิดใยแก้ว วิเคราะห์ด้วย เครื่องระบบ EDX

- (ก) กำหนดแกนตั้งแทนค่าจำนวนนับรังสีสูงสุด 33 K
- (ข) กำหนดแกนตั้งแทนค่าจำนวนนับรังสีสงสุด 1 K

ในการวิเคราะห์หาปริมาณฝุ่นละอองในอากาศ โดยทั่วไปจะใช้กระดาษกรองชนิด ใยแก้ว (Glass Microfibre filter) ในงานวิจัยครั้งนี้ได้ทดลองวิเคราะห์เชิงคุณภาพ ของกระดาษกรองชนิดนี้ ผลที่ได้แสดงดังรูปที่ 5.4 จะเห็นได้ว่ากระดาษกรองใยแก้วมีธาตุ ต่าง ๆ ปรากฏอยู่หลายชนิด ได้แก่ ซิลิกอน อลูมิเนียม โซเดียม แบเรียม สังกะสี โปแตสเซียม แคลเซียม กำมะถัน เหล็ก ทองแดง สตรอนเดียม (strontium, Sr) และ รูบิเดียม (Rubidium, Rb)

เนื่องจากธาตุที่ปนเปื้อนในกระดาษกรองเชลลูโลสมีปริมาณน้อยมาก การวิเคราะห์ หาปริมาณธาตุเหล่านี้จะใช้วิธีอะตอมมิคแอบสอร์ปชันสเปคโทรโฟโตเมตรี (AAS) และวิธีอินดัด-ทีฟลิดับเปิลพลาสมาอิมิชชันสเปคโทรเมตรี (ICP-AES) ผลวิเคราะห์ที่ได้แสดงดังตารางที่ 5.1

ดารางที่ 5.1 ผลการวิเคราะห์โลหะปนเปื้อนในกระดาษกรองเซลลูโลสชนิด Whatman No.41 ที่ใช้สำหรับงานวิจัยในครั้งนี้

ชาตุ (1)	ปริมาณธาตุ (ng/cm²)	ชาตุ (1)	ปริมาณธาตุ (ng/cm ²)
Cr	1.4	Си	3.2
Zn	6.0	Ti	1.3
Ni	ไม่เขบ	Pb	0.1
Mn	0.7	As	0.08
Fe	32.8	Cd	0.4
Ca	101.4		

หมายเหตุ : (1) วิเคราะห์โดยวิธีอินดัดที่ฟลิดับเปิลพลาสมาอิมิชชั่นสเปดโทรเมตรี ยกเว้น ธาตุ Pb, As และ Cd ซึ่งวิเคราะห์โดยวิธีกราฟไฟต์เฟอร์เนตอะตอมมิด แอบสอร์บชั่นสเปดโทรโฟโตเมตรี

5.1.3 การกำหนดเงื่อนไขที่จะใช้วิเคราะห์หาปริมาณฐาตุปริมาณน้อย

ในการวิเคราะห์หาปริมาณชาตุปริมาณน้อย ด้วยเทคนิคการเรืองรังสีเอกซ์ สำหรับงานวิจัยนี้จะเลือกใช้ระบบ WDX เนื่องจากระดับของปริมาณชาตุที่จะวิเคราะห์มีคำค่อน ข้างต่ำ และระบบ EDX ที่มีอยู่มีช้อจำกัคทางด้านเทคนิคของเครื่องมีออยู่มาก การกำหนด เงื่อนไขของเครื่องมือวิเคราะห์จะศึกษาจากสารมาตรฐานที่เตรียมอั้นบนกระดาษกรอง ชาตุ ปริมาณน้อยในฝุ่นจากอากาศที่จะศึกษาในงานวิจัยนี้ ได้แก่ ตะกั่ว ทองแดง สังกะสี แมงกานีส เหล็ก โบรมีน โครเมียม นิกเกิล ทิเทเนียม และกำมะถัน สเปคตรัมของรังสีเอกซ์เรืองของ ชาตุต่าง ๆ จากกระดาษกรองที่หยดสารมาตรฐานของชาตุเหล่านี้ เปรียบเทียบกับสเปคตรัมของ รังสีเอกซ์เรืองจากกระดาษกรองแบลงค์ และ จากกระดาษกรองที่ผ่านการเก็บฝุ่นในอากาศมา แล้ว แสดงไว้ในรูปที่ 5.5 ถึงรูปที่ 5.14 ในรูปที่ 5.15 นี้นจะแสดงลักษณะ และตำแหน่ง ของพืดที่เกิดจากการกระเจิงของรังสีเอกซ์ปฐมภูมิของ Rb K X-rays ในขณะที่วัดตัวอย่างที่ เป็นกระดาษกรองชนิดเซลลูโลส

จากลักษณะ และตำแหน่งของพีดของธาตุต่าง ๆ ที่ได้ สามารถใช้กำหนด เงื่อนไขในการวิเคราะห์หาปริมาณธาตุต่าง ๆ ด้วยระบบ WDX ซึ่งแสดงไว้ในตารางที่ 5.2

ผลึก วิเคราะท์	ค่ามุม 20 ลึก ราะท์		θ	กำลังของหลอด กำเนิดรังสีเอกช์(1)		หัววัด รังสีเอกซ์	เวลา ที่ใช้วัด แต่ละ
	พื่ค	แบคกราวน		kV	m A		ตำแหน่ง
		-	ł				(วินาที)
LiF(200)	33.95	0.95	1.05	37.5	30	SC	200
LiF(200)	62.98	1.00	-	37.5	30	SC	100
LiF(200)	29.98	-	1.10	37.5	30	SC	60
LiF(200)	48.68	-	0.82	37.5	30	SC	100
LiF(200)	41.80	0.80	-	37.5	30	SC	80
LiF(200)	57.52	1.00	-	37.5	30	SC	80
LiF(200)	86.15	1.15	-	37.5	30	SC	100
LiF(200)	69.37	1.00	1.20	37.5	30	SC	80
LiF(200)	45.03	1.03	-	37.5	30	SC	100
EDDT	74.73	1.20	-	27.5	40	PC	100
(020)						(gas-	
						flow	
						type)	
	ผลัก วิเคราะท์ LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200) LiF(200)	พลัก วิเคราะท์ พีค มีเคราะท์ มีคราะท์ มีคราราร มีคราร มีการ มีการ	 ค่ามุม 2 ผลัก วิเคราะห์ มีค แบคกร น้า นี่มีค แบคกร น้า น้ำมุม 2 <	หลัก วิเคราะท์ พีค แบลกราวน์ - + LiF(200) 33.95 0.95 1.05 LiF(200) 62.98 1.00 - LiF(200) 29.98 - 1.10 LiF(200) 48.68 - 0.82 LiF(200) 48.68 - 0.82 LiF(200) 41.80 0.80 - LiF(200) 57.52 1.00 - LiF(200) 86.15 1.15 - LiF(200) 86.15 1.15 - LiF(200) 45.03 1.03 - EDDT 74.73 1.20 - (020)	ผลัก ค่ามุม 2 () กำลังธะ มัก มีคราะท์ มีค แบคกราวน์ kV 1 1 1 1 kV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	налп ніліцатуні піліцатуніці Інальні Іінальні Піліцатуніці Інальні Іінальні Іінальні Іінальні Іінальні Іінальні	нап ніци 2 0 піліцаўна і алф (1) йоўа Эларони 1

ดารางที่ 5.2 เงื่อนไขที่ใช้ในการวิเคราะห์หาปริมาณธาตุด่าง ๆ ด้วยเครื่องมือ วิเคราะห์รังสีเอกซ์เรื่องระบบ WDX (JEOL JSX-60PA)

หมายเหตุ : หลอดกำเนิดรังสีเอกซ์ที่ใช้เป็นชนิดหน้าต่างค้านข้าง (Side window tube) มีเป้า เป็นธาตุโรเดียม (Rb)

รูปที่ 5.5 แสดงลักษณะ และดำแหน่งของพืดของ Pb La_{1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุตะกั่ว ความเข้มข้นต่าง ๆ เปรียบเทียบกับกระดาษกรอง แบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.6 แสดงลักษณะ และดำแหน่งของพืดของ Hn Ka_{1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุแมงกานีส ความเข้มอันด่าง ๆ เปรียบเทียบกับกระดาษ กรองแบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.7 แสดงลักษณะ และดำแหน่งของพืดของ Br Ka_{1.2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุโบรมีน เปรียบเทียบกับกระดาษกรองแบลงด์ และ กระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.8 แสดงลักษณะ และตำแหน่งของพีดของ Ni K_{α1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของชาตุนิกเกิล ความเข้มข้นต่าง ๆ เปรียบเทียบกับกระดาษ กรองแบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.9 แสดงลักษณะ และดำแหน่งของพืดของ Zn Ka_{1.2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุสังกะสี ความเข้มขั้นด่าง ๆ เปรียบเทียบกับกระดาษกรอง แบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.10 แสดงลักษณะ และตำแหน่งของพืดของ Fe Ka_{1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาดุเหล็ก ความเข้มขั้นด่าง ๆ เปรียบเทียบกับกระดาษกรอง แบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.11 แสดงลักษณะ และดำแหน่งของพีคของ Ti Ka_{1.2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุทิเทเนียม ความเข้มข้นด่าง ๆ เปรียบเทียบกับกระดาษ กรองแบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.12 แสดงลักษณะ และตำแหน่งของพีดของ Cr Ka_{1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุโครเมือม ความเข้มข้นต่าง ๆ เปรีอบเทือบกับกระดาษ กรองแบลงค์ และกระดาษกรองที่มีด้วออ่างฝุ่นจากอากาศ

รูปที่ 5.13 แสดงลักษณะ และดำแหน่งของพืดของ S Ka_{1,2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของธาตุกำมะถัน ความเข้มข้นด่าง ๆ เปรียบเทียบกับกระดาษ กรองแบลงค์ และกระดาษกรองที่มีด้วอย่างฝุ่นจากอากาศ

รูปที่ 5.14 แสดงลักษณะ และ ตำแหน่งของพีคของ Cu Ka_{1.2} X-Rays จากกระดาษกรอง ที่มีสารมาตรฐานของชาตุทองแดง ความ เข้มข้นต่าง ๆ เปรียบเทียบกับกระดาษ พีคของ กรองแบลงค์ และกระดาษกรองที่มีตัวอย่าง หากการ ผู่นจากอากาศ

5.2 การสร้างกราฟปรับเทียบ

5.2.1 กราฟปรับเทียบของธาตุต่าง ๆ

การหาความสัมพันธ์ระหว่างปริมาณของธาตุต่าง ๆ กับความเข้มของรังสี เอกซ์เรื่องของธาตุนั้น ๆ ผลวิเคราะห์ที่ได้แสดงดังตารางที่ 5.3 ถึงตารางที่ 5.12 และ กราฟปรับเทียบแสดงความสัมพันธ์ดังกล่าวแสดงดังรูปที่ 5.15 ถึงรูปที่ 5.28

ในการจัดเตรียมกราฟปรับเทียบเพื่อหาความสัมพันธ์นั้นจะศึกษาความสัมพันธ์ 2 ลักษณะ คือ

ก. ความสัมพันธ์ระหว่างปริมาณของธาตุ กับความเข้มของรังสีเอกซ์เรื่อง
 (หรืออัตราส่วนของความเข้มของรังสีเอกซ์เรื่องของธาตุในชุดของสารมาตรฐานนั้น)

๖. ความสัมพันธ์ระหว่างปริมาณของธาตุ กับอัตราส่วนของความเข้มของ
 รังสีเอกซ์เรืองของธาตุ ต่อความเข้มของรังสีเอกซ์กระเจิง ที่เกิดจากรังสีเอกซ์ชนิดต่อเนื่อง
 (Continuous X-rays) จากหลอดกำเนิดรังสีเอกซ์ ซึ่งในการวิจัยครั้งนี้เลือกวัดความเข้ม
 ของรังสีเอกซ์กระเจิงที่ความยาวคลื่น 0.9 อังสตรอม (ที่มุม 20 = 25.83 องศา สำหรับผลิก
 วิเคราะห์ LiF(200))

จากกราฟปรับเทียบสามารถที่จะหาความสัมพันธ์ในรูปของสมการทาง

คณิตศาสตร์ โดยอาศัยวิธี ผลต่างกำลังสองน้อยที่สุด (Least-Square Method) จากกราฟปรับเทียบที่ได้จะพบว่า ถ้าปริมาณของธาตุอยู่ช่วงต่ำ ๆ (ประมาณ 0-20 หรือ 40 ไมโครกรัม) ความสัมพันธ์ที่ได้จะอยู่ในลักษณะเชิงเส้นตรง และกราฟปรับเทียบ ที่ได้จากความสัมพันธ์ระหว่างปริมาณของธาตุกับความเข้มของรังสีเอกซ์เรืองของธาตุนั้น (หรือ อัตราส่วนของความเข้มของรังสีเอกซ์เรืองของธาตุในชุดของสารมาตรฐานนั้น) และความสัมพันธ์ ระหว่างปริมาณธาตุกับอัตราส่วนของความเข้มของรังสีเอกซ์เรืองของธาตุนั้น ต่อความเข้มของ รังสีเอกซ์กระเจิงที่ความยาวคลื่น 0.9 อังสตรอม จะเป็นไปในลักษณะทำนองเดียวกัน

ค่า A B C และ D ที่ปรากฏในรูปแสดงกราฟปรับเทียบ (รูปที่ 5.15 ถึง รูปที่ 5.28) เป็นค่าสัมประสิทธิ์ของสมการคังนี้

ในกรณีของสมการเส้นตรง

Concentration = $(A) \times (CR) + B$ (5.1)

ในกรณีของสมการที่ไม่ใช่เส้นตรง

เมื่อ

CR

Concentration	=	(A)	x	(CR) ³	Ŧ	(B)	х	(CR) ²	÷
		(C)	x	(CR)	+	D			(5.2)

Concentration คือ ปริมาณธาตุนั้น ๆ มีหน่วยเป็นไมโครกรัม ต่อ 9.621 ตารางเชนติเมตร

คือ อัตราส่วนของความเข้มของรังสีเอกซ์เรืองของธาตุ
 เมื่อเปรียบเทียบกับค่าความเข้มของรังสีเอกซ์เรือง
 ของธาตุนั้นในชุดของสารมาตรฐานที่เลือกกำหนคไว้
 เช่น กรณีของชาตุตะกั่วจะใช้ความเข้มของรังสีเอกซ์
 เรื่องของธาตุตะกั่ว ที่ความเข้มขัน 30 ไมโครกรัม
 เป็นค่าเปรียบเทียบกับค่าอื่น ๆ หรือ
 อัตราส่วนของความเข้มของรังสีเอกซ์เรืองของชาตุ
 นั้น ต่อ ความเข้มของรังสีเอกซ์กระเจิงที่ 0.9
 อังสตรอม

ดารางที่ 5.3 ผลการวัดความเฮ้มของ Pb La_{1,2} X-Rays บนกระดาษกรองที่มี สารมาดรฐานของธาตุดะกั่ว ความเอ้มอันด่าง ๆ กัน

Blank -135 -0.002930 10935 -0.012296 1 1234 0.026899 11472 0.107597 5 5502 0.119910 10952 0.502413 10 15893 0.346335 10973 1.448339 20 32078 0.699039 11840 2.868160 30 45888 1.00 11271 4.071223	ปริมาณตะกั่ว บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลี่ยของ ความเช้มสุทธิของ Pb La _{1.2} X-Rays (1) (จำนวนนับ ต่อ 200 วินาที)	อัตราส่วนของ ความเข้มของ Pb La _{1,2} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Pb La _{1.2} X-Rays ต่อ ความเข้มของ รังสีเอกซ์กระเจิง
43000 1.00 112/1 4.0/1333	Blank	-135	-0.002930	10935	-0.012296
	1	1234	0.026899	11472	0.107597
	5	5502	0.119910	10952	0.502413
	10	15893	0.346335	10973	1.448339
	20	32078	0.699039	11840	2.868160
	30	45888	1.00	11271	4.071333

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 2 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของธาตุตะกั่ว 30 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 ตะกั่วที่ความเข้มข้นอื่น ๆ

(n)

(7)

รูปที่ 5.15 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณตะกั่วกับความเข้มของ Pb La_{1,2} X-Rays ความเข้มของ Pb La_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเข้มของ Pb La_{1,2} X-Rays ต่อความเข้มของ Pb La_{1,2} X-Rays บนกระดาษกรองที่มีตะกั่ว 30 ไมโครกรัม (บ) อัตราส่วนของความเข้มของ Pb La_{1,2} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง

ตารางที่ 5.4 ผลการวัดความเข้มของ Mn Ka_{1.2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุแมงกานีส ความเข้มข้นต่าง ๆ กัน

ปริมาณแมงกานีส บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621	ค่าเฉลี่ยของ ความเข้มสุทธิของ Mn Ka _{1,2} X-Rays (1) (จำนวนนับ ต่อ	อัตราส่วนของ ความเข้มของ Mn Ka _{1.2} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ	อัตราส่วนของ ความเข้มของ Mn Ka _{1,2} X-Rays ต่อ ความเข้มของ
ตร.ชม.)	100 วินาที)		60 วินาที)	รังสีเอกซ์กระเจิง
Blank	739	0.030246	10935	0.067551
1	2129	0.087177	10376	0.205192
3	3971	0.162619	11366	0.349422
5	7033	0.287975	10142	0.693454
10	13196	0.540361	11374	1.160265
20	24422	1.00	12378	1.973041
40	41134	1.684260	11347	3.625055
60	54569	2.234380	12135	4.496803

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 3 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของธาตุแมงกานีส 20 ไมโครกรัมต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 แมงกานีสที่ความเข้มขันอื่น ๆ

(ก)

(🛯)

รูปที่ 5.16 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณแมงกานีสกับความเข้มของ Mn Ka_{1,2} X-Rays ความเข้มของ Mn Ka_{1,2} X-Rays แทนด้วย (ก) อัดราส่วนของความเข้มของ Mn Ka_{1,2} X-Rays ด่อความเข้มของ Mn Ka_{1,2} X-Rays บนกระดาษกรองที่มีแมงกานีส 20 ไมโครกรัม (ข) อัดราส่วนของความเข้มของ Mn Ka_{1,2} X-Rays ด่อความเข้มของ รังสีเอกซ์กระเจิง

รูปที่ 5.17 กราษปรับเทียบแสดงความสัมพันธ์เช่นเดียวกันกับรูปที่ 5.16 แต่หาความสัมพันธ์ ของค่าปริมาณแมงกานีสช่วง 0 ถึง 20 ไมโครกรัม

ดารางที่ 5.5 ผลการวัดความเฮ้มของ Br Ka_{1,2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุโบรมีน ความเฮ้มอันต่าง ๆ กัน

ปริมาณโบรมัน บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลี่ยของ ความเข้มสุทธิของ Br Ka _{1,2} X-Rays (1) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Br Ka _{1.2} X-Rays (2)	ความเช้มของ รังสีเอกช์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Br Ka _{1,2} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง
Blank	233	0.007371	10935	0.021342
1	1656	0.052314	12872	0.128674
3	3206	0.101276	12434	0.257882
5	6704	0.211754	12847	0.521861
10	13076	0.413016	12706	1.029159
20	24899	0.786431	13206	1.885445
30	32716	1.00	13146	2.488693
50	63795	2.014950	15136	4.214808
100	124241	3.924100	14148	8.781519

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 2 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของธาตุโบรมีน 30 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 โบรมีนที่ความเข้มขันอื่น ๆ

65

(3)

รูปที่ 5.18 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณโบรมันกับความเฮ้มของ Br Ka_{1,2} X-Rays ความเฮ้มของ Br Ka_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเฮ้มของ Br Ka_{1,2} X-Rays ต่อความเฮ้มของ Br Ka_{1,2} X-Rays บนกระดาษกรองที่มีโบรมัน 30 ไมโครกรัม (ข) อัตราส่วนของความเฮ้มของ Br Ka_{1,2} X-Rays ต่อความเฮ้มของ รังสีเอกซ์กระเจิง

ตารางที่ 5.6 ผลการวัดความเข้มของ Ni Kα_{1,2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุนิกเกิล ความเข้มข้นด่าง ๆ กัน

ปริมาณนิกเกิล บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลี่ยของ ความเข้มสุทธิของ Ni Ka _{1,2} X-Rays (1) (จำนวนนับต่อ 100 วินาที)	อัตราส่วนของ ความเข้มของ Ni Ka _{1.2} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Ni Ka _{1,2} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง
Blank	8555	0.114846	10935	0.782318
1	11718	0.157310	12051	0.972343
3	15749	0.211432	12034	1.308721
5	17167	0.230467	11375	1.509189
10	34722	0.466141	13296	2.611455
20	57707	0.774719	11727	4.920889
30	75233	1.00	12198	6.167641

หมายเหตุ : (1) ค่าเฉลียที่ได้จากการวัค 2 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของชาตุนิกเกิล 30 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 นิกเกิลที่ความเข้มข้นอื่น ๆ

1	n	١
×.	11	,

(1)

รูปที่ 5.19 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณนิกเกิลกับความเฮ้มฮอง Ni Ka_{1,2} X-Rays ความเฮ้มฮอง Ni Ka_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนฮองความเฮ้มฮอง Ni Ka_{1,2} X-Rays ต่อความเฮ้มฮอง Ni Ka_{1,2} X-Rays บนกระคาษกรองที่มีนิกเกิล 30 ไมโครกรัม (ฮ) อัตราส่วนฮองความเฮ้มฮอง Ni Ka_{1,2} X-Rays ต่อความเฮ้มฮอง

รังสีเอกชกระเจิง

ดารางที่ 5.7 ผลการวัดความเข้มของ Zn Ka_{1.2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุสังกะสี ความเข้มขันต่าง ๆ กัน

ปริมาณสังกะสี บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ด่าเฉลี่ยของ ความเข้มสุทธิของ Zn Kα _{1,e} X-Rays (1) (จำนวนนับต่อ 80 วินาที)	อัตราส่วนของ ความเขมของ Zn Ka _{1,2} X-Rays (2)	ความเข้มของ รังสีเอกชกระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Zn Ka _{1.2} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง
Blank	192	0.005075	10935	0.017538
1	2180	0.057696	12653	0.172307
3	5231	0.138444	12662	0.413167
5	9449	0.250060	13620	0.693779
10	9808	0.524236	12602	1.571959
20	37788	1.00	13586	2.781393
30	52459	1.388250	12741	4.117353
50	73933	1.956530	13427	5.506320

หมายเหตุ : (1) ค่าเฉลียที่ได้จากการวัด 3 ครั้ง

 (2) ใช้ความเข้มของรังสีเอกซ์เรื่องของธาตุสังกะสี 20 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ สังกะสีที่ความเข้มขันอื่น ๆ

(ก)

⁽³⁾

รูปที่ 5.20 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณสังกะสีกับความเข้มของ Zn Ka_{1,2} X-Rays ความเข้มของ Zn Ka_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเข้มของ Zn Ka_{1,2} X-Rays ต่อความเข้มของ Zn Ka_{1,2} X-Rays บนกระดาษกรองที่มีสังกะสี 20 ไมโครกรัม (ข) อัตราส่วนของความเข้มของ Zn Ka_{1,2} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง

รูปที่ 5.21 กราฟปรับเทียบแสดงความสีมพันธ์เช่นเดียวกันกับรูปที่ 5.20 แต่หาความสีมพันธ์ ของค่าปริมาณสังกะสีในช่วง 0 ถึง 30 ไมโครกรัม

ดารางที่ 5.8 ผลการวัดความเข้มของ Fe Ka_{1,2} X-Rays บนกระดาษกรองที่มี สารมาดรฐานของธาตุเหล็ก ความเข้มขันด่าง ๆ กัน

ปริมาณเหล็ก บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลี่ยของ ความเฮ้มสุทธิของ Fe Ka _{1,2} X-Rays (1) (จำนวนนับ ต่อ 80 วินาที)	อัตราส่วนของ ความเข้มของ Fe Ka _{ie} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Fe Ka _{i.e} X-Rays ต่อความเข้มของ รังสีเอกช์กระเจิง
Blank	4183	0.129230	10935	0.382529
10	18250	0.563810	11696	1.560326
20	33447	1.00	10949	3.054812
30	41426	1.279830	12213	3.391953
50	54530	1.684680	11883	4.588928
70	69125	2.135570	12027	5.747466
100	98492	3.042850	11560	8.520059

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 3 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของชาตุเหล็ก 20 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 ธาตุเหล็กที่ความเช้มขั้นอื่น ๆ

1	C	<u>۱</u>
J.	1	17

⁽⁷⁾

รูปที่ 5.22 กราฟปรับเทียบแสดงความสีมพันธ์ระหว่างปริมาณเหล็กกับความเข้มของ Fe Ka_{1,2} X-Rays ความเข้มของ Fe Ka_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเข้มของ Fe Ka_{1,2} X-Rays ต่อความเข้มของ Fe Ka_{1,2} X-Rays บนกระดาษกรองที่มีเหล็ก 20 ไมโครกรัม

(ข) อัตราส่วนของความเข้มของ Fe Ka_{1,2} X-Rays ต่อความเข้มของ
 รังสีเอกซ์กระเจิง

ตารางที่ 5.9 ผลการวัดความเข้มของ Ti Ka_{1.2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุทิเทเนียม ความเข้มขันด่าง ๆ กัน

ปริมาณทิเทเนียม บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลี่ยของ ความเข้มสุทธิของ Ti Ka _{1, e} X-Rays (1) (จำนวนนับ ต่อ 100 วินาที)	อัตราส่วนของ ความเข้มของ Ti Ka _{ı, e} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ Ti K.« _{1.e} X-Rays ต่อความเข้มของ รังสีเอกซ์กระเจิง
Blank	122	0.015879	10935	0.011134
1	418	0.054468	12639	0.033041
3	861	0.112321	12816	0.067194
5	1170	0.152610	11985	0.097627
10	4256	0.555058	12534	0.339527
20	7923	1.00	10910	0.726174
50	13043	1.701220	11667	1.117961

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 3 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรืองของชาตุทิเทเนียม 20 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรืองของ
 ทิเทเนียมที่ความเช้มขันอื่น ๆ

74

(n)

⁽⁷⁾

รูปที่ 5.24 กราฟปรับเทียบแสดงความสัมพันธ์เช่นเดียวกันกับรูปที่ 5.23 แต่หาความสัมพันธ์ ของปริมาณทิเทเนียมในช่วง 0-20 ไมโครกรัม

ดารางที่ 5.10 ผลการวัดความเช้มของ Cr Ka_{1,2} X-Rays บนกระดาษกรองที่มี สารมาดรฐานของธาตุโครเมือม ความเข้มข้นต่าง ๆ กัน

ของ อี	อัคราส่วนของ	ความเข็มของ	อัตราส่วนของ
สุทธิของ ค	ความเข้มของ	รังสีเอกซ์กระเจิง	ความเข้มของ
. 2	Cr Ka _{1.2}	(ที่ความยาวคลื่น	Cr Ka _{1.2}
s (1)	X-Rays	0.9 อังสตรอม)	X-Rays
ป ต่อ	(2)	(จำนวนนับ ต่อ	ต่อความเข้มของ
nn)		60 วันาท์)	ริงสเอกชกระเจ๋ง
5 3 7 8 8 8 2 5	0.007734 0.048281 0.106807 0.192887 0.351476 0.705246 1.00	10935 10076 10552 10523 10111 10964 10017	0.017846 0.116944 0.247034 0.447357 0.848385 1.569867 2.436428
2		0.705246	0.705246 10964
6		1.00	1.00 10017
1		1.287050	1.287050 10574

หมายเหตุ : (1) ค่าเฉล่ยที่ได้จากการวัด 3 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของชาตุโครเมียม 30 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 โครเมียมที่ความเข้มขันอื่น ๆ

(ก)
•		

⁽²⁾

รูปที่ 5.25 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณโครเมียมกับความเข้มของ Cr K_{α1,2} X-Rays ความเข้มของ Cr K_{α1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเข้มของ Cr K_{α1,2} X-Rays ต่อความเข้มของ Cr K_{α1,2} X-Rays บนกระดาษกรองที่มีโครเมียม 30 ไมโครกรัม (ข) อัตราส่วนของความเข้มของ Cr K_{α1,2} X-Rays ต่อความเข้มของ

รังสีเอกซ์กระเจิง

ดารางที่ 5.11 ผลการวัดความเข้มของ Cu Ka₁₊₂ X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุทองแดง ความเข้มขันต่าง ๆ กัน

	1		T	· · · · · · · · · · · · · · · · · · ·
ปริมาณทองแดง	ค่าเฉลี่ยของ	อัตราส่วนของ	ความเข้มของ	อัตราส่วนของ
บนกระดาษกรอง	ความเข้มสุทธิของ	ความเฮ้มของ	รังสีเอกชกระเจิง	ความเข้มของ
(ไมโครกรัม	Си Ка _{1.2}	Cu Ka _{1.2}	(ที่ความฮาวคลื่น	Cu Ka _{1,2}
ต่อ	X-Rays (1)	X-Rays	0.9 อังสตรอม)	X-Rays
9.621	(จำนวนนับ ต่อ	(2)	(จำนวนนับ ต่อ	ต่อความเข้มของ
ดร.ชม.)	100 วินาที)		60 วินาที)	รังสีเอกชกระเจิง
Blank	10105	0.174136	10935	0.924070
1	13008	0.224161	12164	1.069348
3	17980	0.309848	12064	1.490365
5	23700	0.408424	11489	2.062835
10	36406	0.627386	10437	3.488145
20	59190	1.00	10989	5.386332
40	90368	1.557320	12097	7.470257
60	116672	2.010620	12684	9.198333
100	146847	2.530640	11586	12.674540

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 3 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของชาตุทองแดง 20 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 ทองแดงที่ความเข้มขันอื่น ๆ

79

(n)

(1)

รูปที่ 5.26 กราฬปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณทองแดงกับความเฮ้มของ Cu Ka_{1.2} X-Rays ความเฮ้มของ Cu Ka_{1.2} X-Rays แทนด้วย (ก) อัตราส่วนของความเฮ้มของ Cu Ka_{1.2} X-Rays ต่อความเฮ้มของ Cu Ka_{1.2} X-Rays บนกระดาษกรองที่มีทองแดง 20 ไมโครกรัม (ข) อัตราส่วนของความเฮ้มของ Cu Ka_{1.2} X-Rays ต่อความเฮ้มของ รังสีเอกซ์กระเจิง

รูปที่ 5.27 กราฟปรับเทียบแสดงความสัมพันธ์เช่นเดียวกันกับรูปที่ 5.26 แต่หาความสัมพันธ์ ของค่าปริมาณทองแดงในช่วง 0-20 ไมโครกรัม

ดารางที่ 5.12 ผลการวัดความเข้มของ S Ka_{1.2} X-Rays บนกระดาษกรองที่มี สารมาตรฐานของธาตุกำมะถัน ความเข้มขันต่าง ๆ ถัน

ปริมาณกำมะถัน บนกระดาษกรอง (ไมโครกรัม ต่อ 9.621 ตร.ชม.)	ค่าเฉลียของ ความเข้มสุทธิของ S Ka _{1.2} X-Rays (1) (จำนวนนับ ต่อ 100 วินาที)	อัตราส่วนของ ความเข้มของ S Ka _{1,2} X-Rays (2)	ความเข้มของ รังสีเอกซ์กระเจิง (ที่ความยาวคลื่น 0.9 อังสตรอม) (จำนวนนับ ต่อ 60 วินาที)	อัตราส่วนของ ความเข้มของ S Ka _{1.2} X-Rays ผ่อความเข้มของ รังสีเอกช์กระเจิง
Blank	20	0.004457	10935	0.001842
10	371	0.082167	12700	0.029234
20	552	0.122072	12439	0.044343
30	757	0.167718	12121	0.062522
50	911	0.201691	11773	0.077409
100	2983	0.660119	12921	0.230845
200	4744	1.00	14691	0.322948
300	6057	1.34050	12858	0.471072

หมายเหตุ : (1) ค่าเฉลี่ยที่ได้จากการวัด 2 ครั้ง

(2) ใช้ความเข้มของรังสีเอกซ์เรื่องของธาตุกำมะถัน 200 ไมโครกรัม ต่อ
 9.621 ตร.ชม. เป็นค่าเปรียบเทียบกับความเข้มของรังสีเอกซ์เรื่องของ
 กำมะถันที่ความเข้มข้นอื่น ๆ

(n)

(3)

รูปที่ 5.28 กราฟปรับเทียบแสดงความสัมพันธ์ระหว่างปริมาณกำมะถันกับความเข้มของ S Ka_{1,2} X-Rays ความเข้มของ S Ka_{1,2} X-Rays แทนด้วย (ก) อัตราส่วนของความเข้มของ S Ka_{1,2} X-Rays ต่อความเข้มของ S Ka_{1,2} X-Rays บนกระดาษกรองที่มีกำมะถัน 200 ไมโครกรัม (ข) อัตราส่วนของความเข้มของ S Ka_{1,2} X-Rays ต่อความเข้มของ รังสีเอกช์กระเจิง

5.2.2 อีดจำกัดในการวิเคราะห์ธาตุ

การคำนวณหาขีดจำกัดในการวิเคราะห์จะใช้สมการที่ 4.1 ผลการคำนวณ หาขีดจำกัดในการวิเคราะห์ธาตุในฝุ่นจากอากาศโดยเทคนิคการเรื่องรังสีเอกซ์ระบบ WDX ของ ธาตุต่าง ๆ ที่ศึกษาแสดงได้ดังตารางที่ 5.13

ดารางที่ 5.13	ซีดจำกัดในการวิเคราะห์ธาตุด่าง ๆ ด้วยเทคนิคการเรื่องรังสีเอกซ์ระบบ
	WDX (JEOL JSX-60PA)

	2			
ธาตุ	R _b	m	Т	LLD
	(counts/sec)	((counts/sec)/1 ug)	(sec)	(ug/9.621 cm ²)
Pb	156.0112	7.9318	400	0.22
Mn	79.3467	11.9136	200	0.15
Br	137.2250	21.4285	120	0.14
Ni	119.1250	23.1165	200	0.09
Zn	96.9333	22.2572	160	0.10
Fe	111.8750	11.6433	160	0.20
Ti	18.9333	4.1305	200	0.21
Cr	60.5594	9.8642	160	0.18
Cu	119.7350	24.5287	200	0.09
S	5.4100	0.2215	200	2.10

5.3 ผลการวิเคราะห์ฝุ่นที่เตรียมจากสารมาตรฐาน

การวิเคราะห์หาปริมาณธาตุบางธาตุในฝุ่นจำลองที่จัดเตรียมอื้นในห้องปฏิบัติการ โดยใช้ สารอ้างอิงมาตรฐาน (Standard Reference Materials) ของ National Institute of Standards and Technology (NIST) ประเทศสหรัฐอเมริกา ผลวิเคราะห์ที่ได้แสดง ดังตารางที่ 5.14

ดารางที่ 5.14	แสดงค่าปริมาณธาตุที่วิเคราะห์ได้จากฝุ่นที่เตรียมจากสารอ้างอิงมาตรฐาน
	เปรียบเทียบกับค่าของปริมาณชาตุจากใบรับรองผล (ภาคผนวก ง.)

	ปริมาณธาตุ (ไมโครกรัม)										
ธาตุ	N] (0 .	IST 1633	3a ĭu)) (0.	VIST 268	34 šu)	NIST 2682 (0.0174 กรัม)				
	ค่า ที่รับรอง	ค่าที่วิเคราะห์ได้		ค่า ค่าที่วิเครา		ราะห์ได้	ค่า	ค่าที่วิเคราะห์ได้			
		ไม่แก้ไข แมทริกซ์	แก้ไอ แมทริกซ์	(3)	ไม่แก้ไข แมทริกซ์	แก้ไข แมทริกซ์	(3)	ไม่แก้ไข แมทริกซ์	แก้ไข แมทริกซ์		
Pb(1)	1.54	2.8 [6.2]	1.8 [3.9]	(2)	(µ.)	(u.)	(2)	(N°)	(11.)		
Mn	3.81	4.0	2.9	0.40	1.0	(u.)	0.45	0.7	(u.)		
Br	(2)	0.8	(u.)	0.12	0.8	(น.)	0.06	0.6	(u.)		
Ni	2.71	6.2	3.0	(2)	3.7	1.2	(2)	3.0	1.4		
Zn	4.69	5.6	4.1	1.23	1.3	0.9	0.15	1.3	1.1		
Fe	2002.2	2722.6	1789.7 (4)	26.76	52.9	30.7	41.8	46.9	31.8		
Ti	170.4 (3)	143.2	183.2	6.69	14.1	8.6	8.7	9.8	6.9		
Cr	4.17	4.0	4.1	0.19	(u.)	(น.)	0.26	(u.)	(u.)		

ดารางที่ 5.14 (ด่อ)

		ปริมาณธาตุ (ไมโครกรัม)										
สาต	NIST 1633a (0.0213 กรัม)			NIST 2684 (0.0112 กรัม)			NIST 2682 (0.0174 กรัม)					
	ค่า ค่าที่วิเคราะห์ได้		ค่า ที่รับรอง	ค่า ค่าที่วิเคราะห์ได้			ค่า ค่าที่วิเครา					
	110000	ไม่แก้ไข แมทริกช	แก้ไข แมทริกช์	(3)	ไม่แก้ไข แมทริกช	แก้ไข แมทริกช	(3)	ไม่แก้ไข แมทริกช	แก้ไข แมทริกช			
Си	2.51	3.4	2.6	(2)	1.2	(น.)	(2)	1.0	(u.)			
S	38.3	45.9	40.1	334.5	380.3	330.7	81.78	144.0	111.9			
	(3)											

หมายเหตุ: (1) พีคของธาตุตะกั่วที่ 33.95 (Pb La_{1,2}) จะถูกรบกวนด้วยพีดของ As Ka_{1,2} ที่ 34.00 เนื่องจาก NIST 1633a มีธาตุอาร์เชนิค 3.09 ไมโครกรัม คำที่ อยู่ใน Cวงเล็บก้ามปูว เป็นค่าที่ยังไม่ได้แก้ไขการรบกวนของ As Ka_{1,2}

- (2) ไม่มีค่าระบุไว้ในใบรับรอง
- (3) ใบรับรองให้ค่าไว้ แต่ไม่รับรองผลวิเคราะห์ และสำหรับ NIST 2682 และ
 NIST 2684 ไม่รับรองค่าของธาตุปริมาณน้อยทั้งหมด รับรองแต่เฉพาะค่า
 ปริมาณของธาตุกำมะถัน (S) เพียงธาตุเดียว
- (4) ค่าที่ได้เป็นค่าที่ได้จากการต่อเส้นกราฟออกไป (สมการของกราฟปรับเทียบที่
 ใช้เตรียมจากช่วงปริมาณธาตุจาก 0-100 ไมโครกรัม)
- (ม.) ไม่ได้วิเคราะห์
- (น.) น้อยกว่าซีดจ่ากัดของการวิเคราะห์

5.4 <u>การวิเคราะห์ตัวอย่างฝุ่นในอากาศ</u>

5.4.1 ผลการหาปริมาณฝุ่นที่เก็บจากอากาศ

ข้อมูลของตัวอย่างฝุ่นที่เก็บจากอากาศบริเวณศูนย์เครื่องมือวิจัยวิทยาศาสตร์ และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย และผลการวัดปริมาณฝุ่นแสดงดังตารางที่ 5.15

ดารางที่ 5.15 วัน–เวลา ที่เก็บด้วอย่างฝุ่น และผลการวัดปริมาณฝุ่นที่เก็บจากอากาศบริเวณ ศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย

หมายเลขตัวอย่าง	วัน เดือน ปี	ปริมาณฝุ่น
	ที่เก็บตัวอย่าง	(กรัม)
+		
1	21-22 มิ.ย. 34	0.0545
	(20.15-20.15 u.)	
2	29-30 มิ.ย. 34	0.0596
	(18.25-18.25 u.)	
3	6-7 ก.ค. 34	0.0607
	(18.25-18.25 u.)	
4	13-14 n. n. 34	0.0667
	(11.55-11.55 u.)	
5	14-15 ก.ค. 34	0.0278
	(13.00-01.00 u.)	
6	24 ส.ค.34	0.0381
	(07.30-19.35 u.)	

ดารางที่ 5.15 (ด่อ)

หมายเลชตัวอย่าง	วัน เดือน ปี ที่เก็บตัวอย่าง	ปริมาณฝุ่น (กรัม)
		·····
7	24-25 ส.ค. 34	0.0401
	$(20.00 - 12.05 \text$	
8	25-26 ส.ค. 34	0.0105
	(13.35 - 03.00 u.)	
9	1 ก.ศ. 34	0.0284
		000101
	(01.55 - 13.30 u.)	
10	1-2 ก.ฮ.34	0.0561
	$(14.10 - 02.00 \mu)$	
11	7-8 ก.ย. 34	0.0121
	(12.20 - 01.00 u.)	
12	8 ก.ย. 34	0.0334
	(02.40 - 14.20 u.)	
13	8-9 ก.ย. 34	0.0112
	(15.15 - 03.45 u.)	

สำหรับตัวอย่างฝุ่นที่เก็บจากอากาศบริเวณ อำเภอศรีราชา จังหวัดชลบุรี วัดปริมาณ ฝุ่นได้ดังตารางที่ 5.16

หมายเลชตัวอย่าง	ปริมาณฝุ่น (กรัม)	หมายเลขดัวอย่าง	ปริมาณฝุ่น (กรัม)
14	0.23321	22	0.10261
15	0.11453	23	0.05359
16	0.12979	24	0.03590
17	0.18209	25	0.08938
18	0.08800	26	0.05960
19	0.11732	27	0.09212
20	0.12524	28	0.02046
21	0.08759	55	0.07075

ตารางที่ 5.16 ผลการวัดปริมาณฝุ่นของตัวอย่างฝุ่นที่เก็บจากอากาศในเชต อ.ศรีราชา จ.ชลบุรี

5.4.2 การวิเคราะห์ตัวอย่างฝุ่นเชิงคุณภาพ

การวิเคราะห์เชิงคุณภาพของตัวอย่างฝุ่นที่เก็บจากอากาศ โดยใช้เทคนิค การเรืองรังสีเอกซ์ ทั้งระบบ WDX และระบบ EDX สเปคตรัมของรังสีเอกซ์เรืองของ ตัวอย่างฝุ่นบนกระดาษกรองบางตัวอย่าง แสดงดังรูปที่ 5.29 ถึง รูปที่ 5.32 ส่วนใน รูปที่ 5.33 เป็นตัวอย่างฝุ่นที่เก็บโดยใช้กระดาษกรองชนิดใยแก้ว

จากการศึกษาเชิงคุณภาพของฝุ่นในอากาศจาก 2 บริเวณ จะพบว่าธาตุที่ พบในตัวอย่างฝุ่นจะคล้ายกัน ซึ่งธาตุที่พบ ได้แก่ อลุมิเนียม ชิลิกอน กำมะกัน แคลเซียม โปแตสเซียม ทิเทเนียม แมงกานีส เหล็ก ทองแดง สังกะสี และ ตะกั่ว

รปที่ 5.29 สเปลดรัมของรังสีเอกซ์เรื่องของกระดาษกรองที่มีด้วอย่างฝุ่นในอากาศ

ของตัวอย่างหมายเลข 1 วิเคราะห์ด้วยเครื่องระบบ WDX

ของด้วอย่างหมายเลข 2 วิเคราะห์ด้วยเครื่องระบบ WDX

91

(ก) ด้วออ่างหมายเลข 1 (ข) ด้วออ่างหมายเลข 2 (ค) ด้วออ่างหมายเลข 4

รูปที่ 5.32 สเปคตรีมของรังสีเอกซ์เรื่องของกระดาษกรองที่มีด้วอย่างผุ่นในอากาศของด้วอย่าง ผุ่นบริเวณอำเภอศรีราชา จังหวัดชอบุรี วิเคราะห์ด้วยเครื่องระบบ EDX (ก) ด้วอย่างหมายเลข 14 (ข) ด้วอย่างหมายเลข 23 (ค) ด้วอย่างหมายเลข 55

5.4.3 การวิเคราะห์หาปริมาณธาตุในตัวอย่างฝนในอากาส

5.4.3.1 การวิเคราะห์ธาตุปริมาณน้อยในฝุ่น

การวิเคราะห์หาธาตุปริมาณน้อยในฝุ่นจะใช้การวิเคราะห์ระบบ

WDX การคำนวณหาปริมาณจะใช้กราฟปรับเทียบของธาตุต่าง ๆ ที่จัดเตรียมไว้แล้ว ผลวิเคราะห์ ที่ได้แสดงดังตารางที่ 5.17 และ ตารางที่ 5.18

5.4.3.2 การวิเคราะห์หาธาตุหลักในตัวอย่างฝุ่น

การวิเคราะห์หาปริมาณของธาตุที่เป็นธาตุหลักในตัวอย่างฝุ่นที่ เก็บจากอากาศ โดยใช้เทคนิคการเรืองรังสีเอกซ์ระบบ EDX ในการวิจัยครั้งนี้จะใช้โปรแกรม LINK QUANTEM/FLS โปรแกรมนี้เป็นโปรแกรมของบริษัท LINK ANALYTICAL ที่ใช้กับกล้อง จุลทรรศน์อิเลคตรอนแบบส่องผ่าน (Transmission Electron Microscope)โปรแกรมออก แบบไว้ให้ใช้กับตัวอย่างที่มีแมทริกซ์เป็นพวกสารอินทรีย์ และมีลักษณะเป็นแผ่นฟิล์มบาง ๆ (thin film) โปรแกรมจะคำนวณโดยใช้ค่าอัตราส่วนของความเข้มของรังสีเอกซ์เฉพาะตัว

ของธาตุต่อค่าความเข้มของรังสีเอกซ์ต่อเนื่องจาก background (ในงานวิจัยนี้เลือกใช้ค่า background ในช่วงระดับพลังงาน 5.0 ถึง 5.8 keV) เพื่อหาความสัมพันธ์กับปริมาณธาตุ ในงานวิจัยนี้จะใช้สารอ้างอิงมาตรฐาน NIST 1633a เพื่อใช้

ในการค่านวณค่าแฟคเตอร์ที่จะใช้ในการแก้ค่าผลรบกวน เนื่องจากแมทริกซ์อื่น ๆ ผลวิเคราะห์ ตัวอย่างฝุ่นในอากาศแสดงดังตารางที่ 5.19 และ ตารางที่ 5.19

หมาย	ปริมาณธาตุ (ไมโครกรัม ต่อ กรัม ของฝุ่น)									
ตัวอย่าง	Pb	Mn	Br	Ni	Zn	Fe	Ti	Си	S	
						(1)			(1)	
1	1959	202	731	81	2550	1.66	1394	1813	3.09	
	(2141)	(83)	(574)	(434)	(3255)	(1.53)	(1630)	(2157)	(3.91)	
2	1756	276	665	162	1650	2.02	1468	1286	2.31	
	(1824)	(159)	(549)	(332)	(1995)	(1.72)	(1612)	(1380)	(2.74)	
3	1369	254	528	น.	1627	1.90	1468	1559	3.62	
	(1513)	(191)	(384)	(316)	(2114)	(1.82)	(1690)	(1886)	(4.62)	
4	1488	263	508	78	2448	2.05	1421	838	1.99	
	(1609)	(192)	(386)	(301)	(3079)	(1.86)	(1602)	(1704)	(2.49)	
5	1572	370	796	น.	1537	1.98	1543	1423	2.59	
	(1753)	(182)	(413)	(538)	(2024)	(1.79)	(1879)	(2411)	(3.27)	
6	1946	178	688	и.	1690	1.80	1653	1618	2.73	
	(2162)	(164)	(431)	(429)	(2224)	(1.67)	(1956)	(1572)	(3.50)	
7	2156	170	702	84	8466	1.77	1389	1727	3.36	
	(2387)	(180)	(523)	(519)	(10468)	(1.70)	(1653)	(2186)	(4.33)	
8	1575	298	724	183	1977	1.89	1704	3276	3.26	
	(1674)	(237)	(329)	(487)	(2409)	(1.57)	(1952)	(3373)	(3.85)	

ดารางที่ 5.17 แสดงผลการวิเคราะห์ธาตุรองและธาตุปริมาณน้อยในฝุ่นที่เก็บจากอากาศ บริเวณศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย

ตารางที่ 5.17 (ด่อ)

หมาย	ปริมาณธาตุ (ไมโครกรัม ต่อ กรัม ของฝุ่น)										
ตัวอย่าง	Pb	Mn	Br	Ni	Zn	Fe (1)	Ti	Си	S (1)		
9	3669	237	1274	112	3770	1.51	1264	2724	5.38		
10	(3821) 1894	(227) 576	(1182) 593	(444) 160	(4591) 3686	(1.34) 2.25	(1471) 1351	(2930) 1106	(6.50) 4.16		
11	(1911) 2850	(696) 286	(379) 1225	(290) u.	(4255) 2645	(1.86) 1.53	(1464) 2010	(1144) 1673	(4.77) 3.64		
12	(3167) 1493	(316) 154	(779) 666	(933) u.	(3498) 3345	(1.42)	(2747) 1483	(2562) 1506	(4.69) 4.22		
13	(1629) 1481	(147) 277	(401) 973	(357) 437	(4206) 2889	(1.45) 1.77	(1732) 1796	(1889) 1985	(5.25) 4.11		
	(1497)	(71)	(448)	(374)	(3133)	(1.17)	(1964)	(1662)	(4.30)		

หมายเหตุ : (1) ปริมาณธาตุเหล็กและกามะถัน มีหน่วยเป็นร้อยละโดยน้ำหนัก

น. มีค่าน้อยกว่าปีคจำกัดในการวิเคราะห์

 ค่าที่ปรากฏในวงเล็บเป็นค่าที่ได้สมการของกราษปรับเทียบที่ใช้ความเข้มของ รังสีเอกซ์กระเจิงเพื่อแก้ไขค่าแมทริกซ์

หมาย	ปริมาณธาตุ (ไมโครกรัม ต่อ กรัม ของฝุ่น)										
เตบ ตัวอย่าง	Pb	Mn	Br	Ni	Zn	Fe	Ti	Cu	S		
						(1)			(1)		
14	160	510	147	164	236	1.88	2806	703	1.00		
	(168)	(518)	(u.)	(63)	(232)	(1.70)	(2243)	(463)	(0.94)		
15	183	787	293	210	130	2.21	2575	260	1.88		
	(229)	(769)	(u.)	(63)	(141)	(2.05)	(2210)	(93)	(1.83)		
16	236	564	203	151	81	2.11	2710	126	1.56		
	(270)	(639)	(u.)	(142)	(109)	(2.16)	(2477)	(114)	(1.68)		
17	132	512	178	158	60	1.80	2231	157	1.16		
	(158)	(526)	(11.)	(65)	(67)	(1.68)	(1877)	(55)	(1.13)		
18	282	660	315	372	119	2.24	2843	586	2.22		
	(331)	(554)	(u.)	(73)	(119)	(1.94)	(2374)	(209)	(2.03)		
19	442	476	373	316	253	2.02	2090	593	2.21		
	(418)	(360)	(u.)	(u.)	(228)	(1.67)	(1688)	(201)	(1.95)		
20	216	809	263	405	226	1.98	2472	(u.)	1.64		
	(242)	(680)	(11.)	(50)	(190)	(1.56)	(1879)	(u.)	(1.35)		
21	525	703	451	389	273	2.37	2442	419	3.23		
	(529)	(631)	(u.)	(137)	(274)	(2.13)	(2114)	(132)	(3.08)		

ตารางที่ 5.18 แสดงผลการวิเคราะห์ธาตุรองและธาตุปริมาณน้อยในฝุ่นที่เก็บจากอากาศ บริเวณอำเภอศรีราชา จังหวัดชลบุรี

ดารางที่ 5.18 (ต่อ)

หมาย		ปริมาณชาตุ (ไมโครกรัม ต่อ กรัม ของผุ่น)								
ตัวอย่าง	Pb	Mn	Br	Ni	Zn	Fe	Ti	Си	S	
						(1)			(1)	
22	244	476	208	296	166	1.59	3296	853	1.86	
	(288)	(432)	(u.)	(156)	(182)	(1.49)	(2841)	(582)	(1.84)	
23	286	659	470	700	196	1.88	2672	524	3.24	
	(405)	(377)	(u.)	(น.)	(181)	(1.50)	(2325)	(น.)	(2.81)	
24	919	1081	749	1212	384	4.25	5479	905	5.02	
	(969)	(616)	(u.)	(123)	(334)	(3.35)	(4462)	(u.)	(4.22)	
25	278	798	273	560	170	2.57	3094	527	1.63	
	(319)	(548)	(u.)	(u.)	(128)	(1.89)	(2281)	(u.)	(1.23)	
26	414	720	450	826	116	2.81	3560	889	2.47	
	(478)	(394)	(u.)	(u.)	(92)	(2.11)	(2784)	(u.)	(1.94)	
27	396	694	335	351	174	2.27	2258	241	1.99	
	(424)	(670)	(u.)	(177)	(194)	(2.12)	(2014)	(65)	(1.95)	
28	1901	1305	1716	1954	357	4.17	4443	1779	7.49	
	(1926)	(498)	(u.)	(205)	(337)	(3.21)	(4213)	(u.)	(6.36)	
55	588	625	392	314	335	2.52	2131	502	2.54	
	(626)	(598)	(µ.)	(215)	(389)	(2.49)	(2045)	(358)	(2.63)	

หมายเหตุ:

- (1) ปริมาณธาตุเหล็ก และกำมะถัน มีหน่วยเป็นร้อยละโดยน้ำหนัก
- น. มีค่าน้อยกว่าชีดจำกัดในการวิเคราะห์
- () ค่าที่ปรากฏในวงเฉ็บเป็นค่าที่ได้สมการของกราฟปรับเทียบที่ใช้ความเข้มของ รังสีเอกซกระเจิงเพื่อแก้ไขค่าแมทริกซ์

ตารางที่ 5.19 แสดงผลการวิเคราะห์ชาตุหลักในตัวอย่างผุ่นที่เก็บจากอากาศ บริเวณ ศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย โดยใช้เทคนิคการเรื่องรังสีเอกซ์ระบบ EDX ร่วมกับ โปรแกรม LINK QUANTEM/FLS

หมายเลขตัวอย่าง	ปริมาณธาตุ (% โดยน้ำหนัก)								
	Al	Si	К	Ca					
1	6.26	22.64	2.08	9.97					
2	7.17	24.14	1.97	8.43					
3	6.78	22.40	1.67	8.16					
4	6.25	24.03	1.75	10.37					
5	5.71	21.80	1.77	13.12					
6	6.62	22.96	1.68	10.01					
7	6.50	21.43	1.87	10.27					
8	6.12	22.12	1.94	10.92					
9	5.91	20.59	1.90	8.97					
10	5.89	21.81	1.46	10.17					
11	7.36	20.64	1.62	10.40					
12	5.66	20.65	1.78	11.76					
13	5.97	21.38	1.86	11.73					

ดารางที่ 5.20 แสดงผลการวิเคราะห์ธาดุหลักในด้วอย่างฝุ่นที่เก็บจากอากาศ บริเวณ อำเภอศรีราชา จังหวัดชลบุรี โดยใช้เทคนิดการเรื่องรังสีเอกซ์ ระบบ EDX ร่วมกับโปรแกรม LINK QUANTEM/FLS

หมายเลขตัวอย่าง	ปรีมาณชาตุ (% โดยน้ำหนัก)							
	Al	Si	К	Ca				
14	5.98	36.26	2.06	2.30				
15	6.69	33.86	3.32	2.00				
16	7.73	32.96	2.89	2.53				
17	7.79	33.77	2.55	3.04				
18	8.24	32.51	3.61	1.41				
19	7.29	29.80	3.02	2.93				
20	5.91	34.62	2.71	3.81				
21	7.60	30.87	3.09	3.19				
22	6.45	35.24	2.37	1.50				
23	7.73	32.35	3.16	1.81				
24	7.40	29.47	2.56	2.27				
25	7.83	33.33	2.44	3.17				
26	9.03	31.84	3.22	1.85				
27	6.86	32.44	2.62	4.28				
28	7.18	26.20	3.24	3.17				
55	8.89	29.38	3.01	4.27				
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 55	5.98 6.69 7.73 7.79 8.24 7.29 5.91 7.60 6.45 7.73 7.40 7.83 9.03 6.86 7.18 8.89	36.26 33.86 32.96 33.77 32.51 29.80 34.62 30.87 35.24 32.35 29.47 33.33 31.84 32.44 26.20 29.38	2.06 3.32 2.89 2.55 3.61 3.02 2.71 3.09 2.37 3.16 2.56 2.44 3.22 2.62 3.24 3.01	2.30 2.00 2.53 3.04 1.41 2.93 3.81 3.19 1.50 1.81 2.27 3.17 1.85 4.28 3.17 4.27				

5.5 ผลการวิเคราะห์ชาตุในฝุ่นจากอากาศโดยเทคนิคการวิเคราะหแบบอื่น

วิธีวิเคราะห์วิธีอื่นที่เลือกใช้ได้แก่วิธีอะตอมมิคแอบสอร์บชันสเปคโทรโฟโตเมตรี และ อินดัคทีฟลิคับเปิลพลาสมาอิมิชชันสเปคโทรเมตรี เงื่อนไขที่ใช้ในการวิเคราะห์ตัวอย่างฝุ่นจาก อากาศสำหรับวิธีทั้งสอง แสดงดังตารางที่ ง.4 และตารางที่ ง.5 ในภาคผนวก ง ผลการ วิเคราะห์ธาตุรองและธาตุปริมาณน้อยด้วยวิธีทั้งสอง แสดงดังตารางที่ 5.21

ดารางที่ 5.21 แสดงผลการวิเคราะห์ชาตุรองและชาตุปริมาณน้อยในฝุ่นจากอากาศโดยวิธี อะดอมมิคแอบสอร์บชันสเปคโทรโฟโดเมตรี และอินดัคลิทีฟคับเปิลหลาสมา-อิมิชชันสเปคโทรเมตรี

หมาย	ปริมาณธาตุ (ไมโครกรัม ต่อ กรัม ของฝุ่น)								
ตัวอย่าง	Pb	Mn	Ni	Zn	Fe	Си	Cr	As	Cd
(1)	(2)				(3)			(2)	(2)
1	2230	210	74.6	3451	1.55	2257	62.8	40.3	5.9
2	1864	317	97.2	2164	2.01	1367	47.2	26.0	2.9
3	1445	288	28.7	2347	1.91	1919	57.5	35.4	6.7
4	1707	241	59.2	2979	2.09	1728	57.6	34.7	3.4
6	2176	193	72.5	2296	1.62	1555	55.1	23.2	5.8
7	2436	182	81.1	10764	1.79	2257	51.1	51.1	7.5
8	1737	293	160	2481	1.83	3493	60.7	33.0	6.9
9	3898	261	83.3	5188	1.59	2903	68.2	42.3	6.8
10	2020	581	168	4315	2.38	1153	83.8	177	8.4
11	3458	316	58.8	3881	2.44	2791	143	33.6	14.0
12	1710	148	37.5	4412	1.56	1945	54.1	56.9	6.9

ดารางที่ 5.21 (ต่อ)

หมาย			ปริมาส	แฮาตุ (ไม	<i>เ</i> โครกรัม	ต่อ กรัม	ของฝุ่น)		
เสบ ตัวอย่าง (1)	Pb Mn (2)		Ni	Zn	Fe (3)	Cu	Cr	As (2)	Cd (2)
14	145	527	116	245	1.66	473	27.9	25.7	1.7
15	171	906	177	176	2.09	106	35.8	22.7	2.6
17	127	580	160	139	1.72	52	39.5	21.4	2.7
18	290	742	340	210	2.46	233	64.8	29.5	4.5
19	446	545	298	258	1.72	216	97.2	31.5	5.1
23	308	728	728	368	1.78	2219	67.2	22.4	7.5
24	1003	1201	1217	476	3.93	4563	78.0	41.8	16.7
25	283	886	527	234	1.99	2207	55.9	41.4	4.5
28	1799	1486	1838	670	4.66	181	127	92.9	19.6
55	620	779	355	355	2.60	411	48.0	58.0	5.6

หมายเหตุ : (1) ด้วอย่างหมายเลข 5, 13, 16, 20, 21, 22, 26, 27 ไม่ได้วิเคราะที่

- (2) วิเคราะห์โดยวิธีกราฟไฟต์เฟอร์เนตอะตอมมิดแอบสอร์บชั้นสเปคโทรโฟโตเมตรี
- (3) ปริมาณธาตุเหล็ก(Fe) มีหน่วยเป็นร้อยละโดยน้ำหนัก

5.6 ผลการวิเคราะห์ตัวอย่างดินบริเวณข้างเคียง

ตัวอย่างคินที่นำมาวิเคราะห์ทั้งเชิงคุณภาพและเชิงปริมาณนั้น เก็บตัวอย่างเฉพาะจาก แหล่งในต่างจังหวัด ได้แก่ บริเวณอำเภอศรีราชา จังหวัดชลบุรี สำหรับจุดที่เก็บตัวอย่าง แสดงดังตารางที่ ง.1 ภาคผนวก ง

5.6.1 การวิเคราะห์เชิงคุณภาพของตัวอย่างคิน

การวิเคราะห์เชิงคุณภาพของตัวอย่างดิน โดยใช้เทคนิคการเรื่องรังสีเอกซ์ ในการวิจัยในครั้งนี้จะเลือกใช้ระบบ EDX ผลวิเคราะห์ที่ได้แสดงดังตารางที่ 5.22 สำหรับ สเปคดรัมของรังสีเอกซ์เรื่องของตัวอย่างดินบางตัวอย่างแสดงดังรูปที่ 5.34

5.6.2 การวิเคราะห์หาปริมาณธาตุต่าง ๆ ในตัวอย่างดิน

การวิเคราะห์หาปริมาณชาตุที่เป็นส่วนประกอบของตัวอย่างดิน โดยเทคนิคการ เรื่องรังสีเอกช์นั้นในการวิจัยครั้งนี้จะใช้โปรแกรมสำเร็จรูป XFF/FLS (X-ray Fluorescence analysis with Fundamental parameters /Filtered Least Squares spectrum processing) ซึ่งใช้กับระบบ EDX ของเครื่อง LINK EDXRF XR-200 เนื่องจากโปรแกรมนี้ จะใช้ค่าพื้นฐานทางทฤษฎีของแต่ละธาตุที่เป็นส่วนประกอบของตัวอย่างและลักษณะการจัดดำแหน่ง ทางเรขาคณิตของเครื่องมือ เพื่อคำนวณหาค่าอิทธิพลของแมทริกซ์ และใช้ในการคำนวณเพื่อหา ปริมาณชาตุต่าง ๆ ในตัวอย่างแต่ละประเภท แต่อย่างไรก็ตามเพื่อเป็นการปรับค่าที่ใช้ในการ แก้ไขอิทธิพลของแมทริกซ์ที่เครื่องคำนวณหาค่าอิทธิพลของแมทริกซ์ และใช้ในการปรับค่าที่ใช้ในการ แก้ไขอิทธิพลของแมทริกซ์ที่เครื่องคำนวณได้ให้ใกล้เคียงกับตัวอย่างมากที่สุด ดังนั้น ในการวิจัย ครั้งนี้จะเตรือมชุดของสารมาตรฐานที่มีส่วนประกอบของชาตุต่าง ๆ ที่ใกล้เคียงกับตัวอย่างเพื่อ ใช้ในการตรวจสอบ และปรับค่าที่ใช้ในการแก้ไขอิทธิพลของแมทริกซ์ให้เหมาะสมกับตัวอย่างที่จะ ศึกษา ชุดของสารมาตรฐานที่เตรียมขึ้นนั้นแสดงดังตารางที่ จ. 1 ผลการวิเคราะห์ชุดของ สารมาตรฐานเหล่านี้โดยใช้ข้อมูลของเครื่องมือ แสดงดังตารางที่ จ. 2 และผลต่างระหว่าง ค่าที่วิเคราะห์ได้กับค่าปริมาณชาตุต่าง ๆ ในชุดสารมาตรฐานที่เตรียมขึ้น แสดงได้ดังดาราง ที่ จ. 3 (ภาคผนวก จ)

เมื่อเลือกใช้ค่าปริมาณธาตุต่าง ๆ ที่เป็นส่วนประกอบของชุดของสารมาตรฐาน SS2 เป็นตัวแทนของกลุ่มตัวอย่าง แล้วให้เครื่องคำนวณค่าแฟคเตอร์ที่ใช้ในการแก้ไขอิทธิพลของ แมทริกซ์ขึ้นใหม่อีกครั้ง แล้วใช้ค่าที่ค่านวณใหม่นี้เพื่อใช้ในการวิเคราะห์ชุดของสารมาตรฐานที่ เหลือ ผลวิเคราะห์ที่ได้แสดงดังตารางที่ จ. 4 (ภาคผนวก จ)

หมายเฉขตัวอย่าง						បី	าตุที่ด	รวจพ	บ (1)			-	
1	Si	Al	K	Ca	Ti	Fe	Mn	Cu	Rb	Zr	W			
2	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	W			
3	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	Sr	S	W	
4	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	Sr	W		
5	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	Pb	W		
6	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	W			
7	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	Sr	Pb	S	W
8	Si	Al	К	Ca	Ti	Fe	Mn	Cu	Rb	Zr	Sr	W		

ดารางที่ 5.22 ผลการวิเคราะห์เชิงคุณภาพของด้วอย่างดินจากแหล่งบริเวณใกล้เคียงกับจุด เก็บด้วอย่าง บริเวณอำเภอศรีราชา จังหวัดชลบุรี

หมายเหตุ : (1) ธาตุทั้งสเตน (W) จะพบในสเปคตรัมของรังสีเอกซ์เรื่องของตัวอย่างทุก ตัวอย่าง แต่จากการตรวจสอบแล้วพบว่า ธาตุทั้งสเตนเป็นสารปนเปื้อน ในตัวอย่างดิน ที่เกิดขึ้นจากการเตรียมตัวอย่างโดยใช้ชุดบดตัวอย่างที่ทำ ด้วยทั้งสเตนคาร์ไบด์ (WC)

การวิเคราะห์หาปริมาณธาตุต่าง ๆ ในตัวอย่างดินบริเวณใกล้เคียงกับแหล่งที่เก็บ ตัวอย่างผุ่นในอากาศโคยใช้เทคนิคการเรื่องรังสีเอกซ์ ผลการวิเคราะห์ที่ได้แสดงตั้งตารางที่ 5.23

ธาตุในรูป ของ	 ปริมาณธาตุที่วิเคราะห์ได้จากตัวอย่างดินหมายเลขต่าง ๆ (% โดยน้ำหนัก)							
តតារ ហេស	1	2	3	4	5	6	7	8
Al _e 0 ₃	3.92	2.44	10.00	7.18	1.06	2.37	12.15	2.36
Si0 ₂	91.07	92.54	68.90	85.54	94.91	94.48	69.11	87.34
K ₂ O	0.88	0.89	3.24	3.59	0.22	0.64	3.16	1.26
CaO	0.22	0.33	0.16	0.09	0.41	0.17	2.15	1.09
Ti0 ₂	0.28	0.22	0.61	0.32	0.08	0.21	0.43	0.11
MnO ₂	0.09	0.05	0.37	0.05	0.02	0.05	0.07	0.02
Fe ₂ 0 ₃	1.31	0.77	5.68	1.05	0.83	0.61	5.05	0.70
CuO	0.028	0.032	0.033	0.028	0.030	0.028	0.026	0.023
Zr0 ₂	0.058	0.113	0.106	0.069	0.086	0.115	0.047	0.024
S0 ₃	-	-	0.24	-	-	-	0.19	-
Pb	-	-	-	-	0.008	-	0.017	-
Sr	-	-	0.008	0.005	-	-	0.010	0.005
L.O.I.	1.91	2.34	8.48	1.74	2.03	0.99	6.64	3.19
(1)								

ตารางที่ 5.23 ผลการวิเคราะห์เชิงปริมาณของตัวอย่างดินจากบริเวณใกล้เคียงกับ จุดเก็บตัวอย่าง บริเวณอำเภอศรีราชา จังหวัดชลบุรี

หมายเหตุ : (1) Loss On Ignition หมายถึง การสูญเสียน้ำหนักในการเผาไหม้ อุณหภูมิที่ทดสอบ คือ 950 องศาเชลเชียส

5.6.3 การวิเคราะห์ชนิดของสารประกอบที่เป็นส่วนประกอบของคิน

การวิเคราะห์หาชนิดของสารประกอบของตัวอย่างดิน ทำโดยใช้เทคนิดการ เลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffraction) แล้วเปรียบเทียบสเปคตรัมที่ได้กับข้อมูลการ เลี้ยวเบนของรังสีเอกซ์ของสารมาตรฐานที่จัดรวบรวมไว้โดย JCPDS-International Centre for Diffraction Data (JCPDS = Joint Committee on Powder Diffraction Standards) ผลการเปรียบเทียบสเปคตรัมของรังสีเอกซ์เลี้ยวเบน ของ ตัวอย่างดินบางตัวอย่างแสดงดังรูปที่ จ. 1 และ รูปที่ จ. 2 (ภาคผนวก จ) ผลการวิเคราะห์ หาชนิดของสารประกอบของตัวอย่างดินแสดงดังตารางที่ 5.24

ดารางที่ 5.24 ชนิดของสารประกอบที่ดรวจพบในตัวอย่างดิน

หมายเลขตัวอย่าง	ชนิดของสารประกอบที่พบในตัวอย่างดิน							
1 ถึง 8	JCPDS 331161 : Quartz, Low (SiO ₂)							
	JCPDS 50490 : Quartz, Low (SiO ₂)							
	JCPDS 200452 : Gismondine (CaAl ₂ Si ₂ O ₈ .4H ₂ O)							
*	JCPDS 250618 : Sanidine, High (K Al Si ₃ 0 _e)							
	JCPDS 310966 : Orthoclase (K Al Si ₃ 0 ₈)							
	JCPDS 25068 : Microcline (K Al Si ₃ 0 _e)							
*	JCPDS 250618 : Sanidine, High (K Al Si ₃ O ₈) JCPDS 310966 : Orthoclase (K Al Si ₃ O ₈) JCPDS 25068 : Microcline (K Al Si ₃ O ₈)							

5.7 ผลการศึกษาชนิดของฝุ่นละอองโดยใช้กล้องจุลทรรศนอิเลคตรอนแบบส่องกราด

การศึกษาฝุ่นละออง โดยใช้กล้องจุลทรรสน์อิเลคตรอนแบบส่องกราด เป็นการศึกษา ตัวอย่างฝุ่นในระดับอนุภาคขนาดเล็กโดยตรง ข้อมูลที่ได้จะเกี่ยวข้องกับขนาด และรูปร่าง ของอนุภาคฝุ่นที่กระจายอยู่บนกระดาษกรอง ดังในรูปที่ 5.35 และ 5.36 ซึ่งเป็นภาพถ่าย จากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด ที่ได้จากตัวอย่างฝุ่นในอากาศที่เก็บจากบริเวณศูนย์ เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย ส่วนในรูปที่ 5.37 และ รูปที่ 5.38 เป็นฝุ่นในอากาศที่เก็บจากบริเวณอำเภอศรีราชา จังหวัดชลบุรี จากรูปทั้ง 4 รูป จะเห็นได้ว่าฝุ่นในอากาศที่เก็บได้มีขนาดเล็กกว่า 25 ไมครอน

การศึกษาถึงชนิดของธาตุที่เป็นองค์ประกอบของฝุ่น ต้องใช้กล้องจุลทรรศน์อิเลคตรอน แบบส่องกราคที่ติดตั้งหน่วยวิเคราะห์รังสีเอกซ์ที่เกิดขึ้นจากตัวอย่างฝุ่นนั้น หลักการวิเคราะห์ รังสีเอกซ์เรืองที่ประกอบกับกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดนั้น คือ จะใช้ลำอิเลคตรอน (electron beam) ส่องกราคไปมาบนผิวของตัวอย่าง อิเลคตรอนจะเกิดอันตรกิริยากับ ตัวอย่างเป็นผลทำให้ธาตุที่เป็นส่วนประกอบของฝุ่นเกิดการเรืองรังสีเอกซ์ เนื่องจากเรา สามารถที่จะกำหนดขนาด และพื้นที่ของการส่องกราดของลำอิเลคตรอนได้ ทำให้สามารถศึกษา ตัวอย่างเฉพาะจุดที่ต้องการได้ จากการศึกษาตัวอย่างฝุ่นให้ระดับอนุภาคขนาดเล็ก ผลที่ได้แสดง ในรูปที่ 5.39 รูปที่ 5.40 รูปที่ 5.45 และรูปที่ 5.46 สำหรับสเปคตรัมของรังสีเอกซ์ เรืองของอนุภาคที่สนใจจะแสดงในรูปที่ 5.41 รูปที่ 5.42 รูปที่ 5.43 รูปที่ 5.44 และ รูปที่ 5.47 รูปที่ 5.48 รูปที่ 5.49 รูปที่ 5.50 และรูปที่ 5.51

จากรูปที่แสดงสเปดดรัมของรังสีเอกซ์เรืองที่ได้จากกล้องจุลทรรศน์อิเลคตรอนแบบ ส่องกราดทั้งหมดจะพบว่า ธาตุทอง (Au) ปรากฏอยู่ เนื่องจากตัวอย่างฝุ่นที่จะนำมาวิเคราะห์ จำเป็นต้องฉาบพิวด้วยทอง เพื่อให้ตัวอย่างมีสภาพการนำไฟฟ้าที่ดี

จากภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด รูปที่ 5.39 ซึ่งแสดงลักษณะ ของอนุภาคฝุ่นชนิดหนึ่ง (A) สเปคตรัมของรังสีเอกซ์เรื่องของอนุภาค A แสดงในรูปที่ 5.41 จะพบว่าอนุภาคฝุ่น A นี้จะมีธาตุสังกะสี แคลเซียม และคลอรีน เป็นส่วนประกอบหลัก และมีธาตุ เหล็กปนอยู่เล็กน้อย ในรูปที่ 5.40 แสดงอนุภาคของฝุ่น A B และ C เมื่อศึกษาสเปคตรัมของรังสี เอกซ์เรืองของอนุภาคฝุ่นทั้ง 3 ชนิด ในรูปที่ 5.42 รูปที่ 5.43 และรูปที่ 5.44 พบว่าอนุภาค ฝุ่น A จะมีส่วนประกอบของธาตุตะกั่ว โบรมีน คลอรีน แคลเซียม และเหล็ก ส่วนอนุภาคฝุ่น B และ C ซึ่งอยู่ในตำแหน่งใกล้เคียงกับอนุภาคฝุ่น A พบว่ามีส่วนประกอบที่แตกต่างจากอนุภาค A อนุภาคฝุ่น B จะมีส่วนประกอบของธาตุซิลิกอน โปแตสเซียม แคลเซียม เหล็ก กำมะถัน โบรมีน ตะกั่ว ส่วนอนุภาคฝุ่น C นั้น พบว่ามีธาตุแคลเซียมเป็นธาตุหลัก

ในรูปที่ 5.45 แสดงอนุภาคของผุ่น A และ B ซึ่งมีสเปคตรัมของรังสีเอกซ์เรืองดัง รูปที่ 5.47 และรูปที่ 5.48 อนุภาคฝุ่น A นั้นจะพบว่ามีธาตุแคลเชียมเป็นธาตุหลัก ส่วน อนุภาคฝุ่น B จะมีส่วนประกอบที่แตกต่างกันไป คือ จะมีธาตุแบเรียม คลอรีน ซีลเฟอร์ และ เหล็ก ปนอยู่ด้วย

สำหรับรูปที่ 5.46 แสคงลักษณะของอนุภาคผุ่น A B และ C จากรูปร่างลักษณะของ อนุภาคผุ่นในภาพจะเห็นว่าอนุภาคผุ่น A B และ C จะลักษณะคล้ายกัน ส่วนอนุภาคผุ่น D จะมี ลักษณะที่แตกต่างกันออกไป จากสเปคตรัมของรังสีเอกซ์เรื่องรูปที่ 5.49 และ รูปที่ 5.50 พบว่าอนุภาคผุ่น A และ B มีธาตุชิลิกอน โปแตสเซียม แคลเซียม และเหล็ก เป็นองค์ประกอบ และจากรูปที่ 5.51 จะพบว่าอนุภาคฝุ่น D ไม่มีธาตุชิลิกอนเป็นส่วนประกอบ พบแต่ธาตุแคลเซียม โปแตสเซียม และเหล็ก

ในการวิจัยครั้งนี้ผลการวิเคราะห์อนุภาคฝุ่น ด้วยเทคนิคการเรืองรังสีเอกซ์อาจยังไม่ ค่อยสมบูรณ์ เนื่องจากในระหว่างที่ทำการวิจัยเครื่อง EDX ที่ติดตั้งร่วมกับกล้องจุลทรรศน์ อิเลคตรอนแบบส่องกราด มีปัญหาเกี่ยวกับประสิทธิภาพในการวัคธาตุที่มีเลขอะตอม (atomic number) ต่ำ ๆ เช่น ธาตุกำมะถัน ฟอสฟอรัส ชิลิกอน อลุมิเนียม แมกนีเซียม และโซเลียม ซึ่งทำให้ขาดข้อมูลเกี่ยวกับปริมาณธาตุที่เป็นส่วนประกอบของอนุภาคฝุ่นนั้น ๆ

รูปที่ 5.35 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด แสดงลักษณะของฝุ่นที่ติด อยู่บนกระดาษกรองเซลลูโลสของตัวอย่างฝุ่นหมายเลข 10 (ตัวอย่างฝุ่นจาก บริเวณศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุนีาลงกรณ์มหาวิทยาลัย) ขนาดกำลังขยาย 500 เท่า

รูปที่ 5.36 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด แสดงลักษณะของฝุ่นที่ติด อยู่บนกระดาษกรองเซลลูโลสของด้วอย่างฝุ่นหมายเลข 3 (ด้วอย่างฝุ่นจาก บริเวณศูนย์เครื่องมือวิจัยวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย) ขนาดกำลังขยาย 2000 เท่า

รูปที่ 5.37 ภาพถ่ายจากกล้องจุลทรรศน์อิเลดตรอนแบบส่องกราด แสดงลักษณะของฝุ่นที่ติด อยู่บนกระดาษกรองเซลลูโลสของด้วอย่างฝุ่นหมายเลข 14 (ด้วอย่างฝุ่นจาก บริเวณอำเภอศรีราชา จังหวัดชลบุรี) ขนาดกำลังขยาย 500 เท่า

รูปที่ 5.38 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด แสดงลักษณะของผุ่นที่ติด อยู่บนกระดาษกรองเชลลูโลสของด้วอย่างฝุ่นหมายเลข 17 (ด้วอย่างฝุ่นจาก บริเวณอำเภอศรีราชา จังหวัดชลบุรี) ขนาดกำลังขยาย 1500 เท่า

รูปที่ 5.39 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด แสดงลักษณะของอนุภาค ฝุ่น A จากตัวอย่างฝุ่นหมายเลข 2 ขนาดกำลังขยาย 3500 เท่า

รูปที่ 5.40 ภาพถ่ายจากกล้องจุลทรรศนอิเลคตรอนแบบส่องกราด แสดงลักษณะของอนุภาค ฝุ่น A B และ C จากตัวอย่างฝุ่นหมายเลข 11 ขนาดกำลังขยาย 2000 เท่า

รูปที่ 5.41 สเปลดรัมของรังสีเอกซ์เรืองของอนุภาคฝุ่น A ในรูปที่ 5.39 วิเคราะห์ด้วย กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่ดิดดั้งระบบ EDX

กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่ติดตั้งระบบ EDX

รูปที่ 5.44 สเปคตรัมของรังสีเอกซ์เรืองของอนุภาคฝุ่น C ในรูปที่ 5.40 วิเคราะห์ด้วย กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่ติดตั้งระบบ EDX

รูปที่ 5.45 ภาพถ่ายจากกล้องจุลทรรศนอิเลคตรอนแบบส่องกราด แสดงลักษณะของอนุภาค ฝุ่น A และ B จากตัวอย่างฝุ่นหมายเลข 4 ขนาดกำลังขยาย 3500 เท่า

รูปที่ 5.46 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอนแบบส่องกราด แสดงลักษณะของอนุภาค ฝุ่น A B C และ D จากด้วอย่างฝุ่นหมายเลข 13 ขนาดกำลังขยาย 7500 เท่า

รูปที่ 5.49 สเปคตรัมของรังสีเอกซ์เรื่องของอนุภาคฝุ่น A ในรูปที่ 5.46 วิเคราะห์ด้วย กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่ติดตั้งระบบ EDX

รูปที่ 5.50 สเปคตรีมของรังสีเอกซ์เรื่องของอนุภาคฝุ่น B ในรูปที่ 5.46 วิเคราะห์ด้วย กล้องจุลทรรศน์อิเลคตรอนแบบส่องกราดที่ดิดตั้งระบบ EDX

