
C H A P T E R  I
INTRODUCTION

1.1 Introduction

Analytical rheology is a tool for predicting polymer molecular 
properties from rheological properties or vice versa. Determination of 
molecular weight distribution from linear viscoelastic data is the major interest 
and of economic importance. The study of the effect of molecular weight 
distribution on the rheological properties of a polymer melt is one of the 
central concerns in macromolecular science. The knowledge contributes 
towards the optimization of material formulations.

The use of melt rheology to characterize the molecular weight 
distributions and number of chain atoms between entanglement of polymers 
can yield further insight on the relationship between the unique properties of 
polymer and the chemical structure. In the case of low molecular weight 
compounds, it is possible to determine molecular weight by analyzing the X- 
ray diffraction pattern. But for a macromolecule, it is impossible to use this 
method. Traditional methods such as light scattering from a dilute solution, 
dilute solution viscosity, dilute solution osmotic pressure, and rate of elution 
from a porous medium (gel permeation chromatography, GPC) have been 
developed for characterizing the size of high molecular weight polymers. 
These traditional methods require a polymer that is soluble in a suitable 
solvent but many important polymers are often insoluble in any suitable 
solvents and therefore the molecular weight distribution cannot be measured 
by these methods. In addition, solvents used in the traditional methods are 
very expensive and the traditional methods are time consuming.

On the other hand, viscoelastic properties can be easily measured and 
used to determine the molecular weight distribution. The reptation theory by
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de Gennes and the development of rheological constitutive equation by Doi 
and Edwards can be used to determine the molecular weight distribution on 
the basis of viscoelasticity. From these concepts, it is possible to develop a 
method in which polymer molecular weight and its distribution can be 
obtained from the rheological properties according to the dynamic theories.

This work focuses on the prediction of rheological data from a 
molecular weight distribution, for several commercial polymers such as high 
density polyethylene (HDPE), low density polyethylene (LDPE) and 
polystyrene (PS), using the double reptation theory (des Cloizeaux, 1988) and 
the dual constraint theory (Mead and Van dyke, 2000). Later, comparison 
between the predicted rheological properties and the experimental data is 
made.

1.2 Theoretical Background

1.2.1 Molecular Weight
We can define several measures of polymer molecular weight:

Number average molecular weight: พ ิ = i=i ( E l )ร N'
Weight average molecular weight: kj- ^  M 1 N1 (1 .2 )

" z  M,N,
where Mi is the molar mass of the ith polymer chain, and Nj is the number of 
chains with that mass.

The ratio Mm1 / M„, called the polydispersity, is a useful 
measure of the breadth of molecular weight distribution. Larger values of 
M„, / M„ indicate a very wide spread in weight and size. ForM„ / M, 1= 1,
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monodisperse polymer, all polymer chains have exactly the same mass, and 
therefore the number and weight average molecular weights are equal. In 
reality, monodisperse polymer distributions do not exist (รนท, 1994).

1.2.2 Rouse Theory
Rouse (1953) developed a molecular theory for dilute polymer 

solutions in which a polymer molecule is modeled as a chain of N consecutive 
segments submolecules that act as Hookean springs. Since the origin of the 
spring force is Brownian motion, the spring constant is proportional to the 
absolute temperature. These segments are connected by beads in which the 
mass of the molecule is assumed to be concentrated as shown in Figurel.l. 
The motion of the beads through the solvent gives rise to a viscous resistance. 
The combination of the elastic spring and the viscous resistance gives rise to a 
viscoelastic behavior (Dealy and Wissbrun, 1990).

The Rouse theory predicts that the viscosity should be directly 
proportional to the molecular weight, which is only true up to the 
entanglement Mc, beyond which the viscosity becomes proportional to the 
molecular weight to the power of 3.4. This is because in the Rouse model each 
chain is considered to be moving independently, so entanglements are 
neglected (Painter, 1997).

In Rouse’s model, there is no “hydrodynamic interaction”. This 
means that the resistance to bead motion due to the solvent is that of a particle 
moving in a liquid when there are no other particles. In reality, the flow 
pattern in the solvent caused by the motion of one bead has an influence on the 
resistance of the solvent to the motion of other beads, even of other beads on 
the same chain. Thus, the Rouse theory is not correct even for an infinitely 
dilute solution (Dealy and Wissbrun, 1990).

Ferry (1980) modified the Rouse theory by using Bueche’s 
hypothesis (1952) which suggested that for low molecular weight molten
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polymers in which there is no entanglement of molecules. The Rouse dilute 
solution theory can be used with rather minor modification to account for the 
fact that a polymer molecule is surrounded by not only solvent but other 
polymer molecules. This modification of Rouse theory can predict several 
important features of the behavior of molten linear polymers in which there 
are no entanglements. In case of entangle coupling, it is a rather sharp change 
in the dependence of viscosity on molecular weight. Whereas the modified 
Rouse theory predicts that ๆ0 is proportional to M in the neighborhood of a 
certain molecular weight, Mc, which depends on the chemical structure of the 
polymer, the viscosity starts to increase rapidly with molecular weight (Dealy 
and Wissbrun, 1990).

Figure 1.1 The Rouse beads and springs model for a polymer molecule.

1.2.3 Reptation Theory
Since the Rouse model does not predict the correct relaxation 

spectrum of a high molecular weight polymer melt where entanglements exist, 
another theory was needed.

For polymers that have molecular weights above the critical 
molecular weight, Mc, entanglements begin to form. Then the two distinct 
relaxation processes are readily seen. Consider the stress relaxation of high 
molecular weight polymer. Figurel.2 shows two graphs of log G(t) versus log 
t, and log G'(co) versus log CO. The region where the slope in Figure 1.2 is 
nearly zero is the plateau region G°n. The relaxations in this region are
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associated with entanglements time scale Te. The other region of importance 
for melt rheology is the terminal region, which corresponds to relaxation of 
the entire chain with a time scale Td. The model that best describes the rate 
dependence of the material functions of linear homogeneous polymer melts is 
the R ep ta tion  Tube M odel. For short relaxation times, t < Te, the dynamics of 
the Rouse model are active. However, at longer relaxation times t > Te, the 
Rouse model is restricted by tube constraints (Rohn, 1995).

Figure 1.2 Left graph shows the stress relaxation curve and the right graph 
shows the frequency dependent shear storage modulus curve. The location of 
the characteristic relaxation times for the entanglement spacing Te and contour 
length Td of the polymer chains are located on the curves. Also, the plateau 
modulus G°n is indicated.

Entanglements place topological constraints on the number of 
degrees of freedom of a polymer chain. This will have an effect on the entropy 
of the system. When a chain becomes deformed, it can only translate along its 
axis. The allowed conformations of the chain are confined in a tube-like 
region. Figurel.3 shows a chain in a tube. The length of the tube defines the 
shortest path connecting the two ends of the chain. The diameter of the tube 
corresponds to the topological constraints. A primitive path is defined as a 
group of chain conformations that are allowed by the topological constraints. 
The contour length of the chain is longer than the tube. Therefore, the chain is
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not fully extended and contains some slacks. The slacks will constitute a series 
of defects, de Gennes (1971) visualized that parts of the tube will form and 
disappear as the chain translates. This type of motion was called reptation by 
de Gennes. As the polymer chain moves along the tube, the moving front of 
chain may continue to form a new tube section and the trailing tube end may 
disappear. This process is called reptation as shown in Figure 1.4 (Rohn,
1995).

lube disappears

De feci

Figure 1.3 Polymer chain reptating through an imaginary tube.
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Figure 1.4 Reptative diffusion of a polymer molecule out of its tube.

1.2.4 The Doi-Edwards Theory
Doi and Edwards (1978) have developed the molecular theory 

of viscoelasticity for molten, high molecular weight polymers that makes use 
of the reptation concept. They started with the Rouse segmented chain model 
for a polymer molecule. Because of the presence of neighboring molecules, 
there are many places along the chain where lateral motion is restricted, as 
shown in Figure 1.5. To simplify the representation of these restrictions, Doi 
and Edwards assumed that they are equivalent to placing the molecule of 
interest in a “tube”, as shown in Figure 1.6. This tube has a diameter d  and a 
length L. Because the model does not refer to specific points of entanglement, 
the molecular weight between entanglements, Me, does not appear as a 
parameter. However, there is some basis for associating the number of 
entanglements, M/Me, with the ratio, L/ d .
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V Figure 1.5 Sketch showing one entire molecule together with the segments of 
other molecules that are located near to it and restrict motions.

Figure 1.6 Sketch showing the hypothetical tube as assumed by Doi and 
Edwards to be equivalent in its effect to the segments shown in Figure 1.5.

Doi and Edwards (1986) examined the ways in which the chain 
can respond to a change in the configuration of its tube. At very short times, 
the only reaction that occurs within the tube is the redistribution of extensions 
among the segments between the points where topological constraints
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(entanglements) are present. The theory predicts that this rapid relaxation 
process has a characteristic time, Xe , called the equilibration time. Once this 
process is completed only additional mechanism available for the molecule to 
further relieve the stress is disengagement. This is a relatively slow process 
with a characteristic time of which is a diffusion time. For long chain, A,d 
»  A.e. Another relaxation process that can occur in entangled melts is 
relaxation of the contour length, i.e., the retraction of the molecule within its 
tube. However, this process makes no significant contribution to linear 
viscoelastic properties.

relaxation times that are observed for high molecular weight, monodispersed, 
linear polymers. For times t < Xe , the theory predicts the same result as is 
given above for the modified Rouse theory. Even though the model does not 
predict a flat plateau, the decrease in G in the plateau-like region is only about 
20%. Doi and Edwards identified the plateau modulus with the value of G(t) at 
t = x e

In this way the theory accounts for the two distinct groups of

(1 .3 )

With this approximation, for t < Àe the model predicts:

(1 .4 )

In the plateau and terminal zones, the model predicts:

( 1.5)

Because of the 1/p2 factor, this result is quite close to a relaxation with a single 
relaxation time, i.e., the term with p = 1. This implies that the relaxation 
spectrum is quite narrow compared with the Rouse spectrum.
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The longest relaxation time, A-d, is:

^ = —  ; 2 2 (1 .6 )  M eM 27t2kT
where a is a tube diameter, Ç is the monomeric friction coefficient, M is 
molecular weight, Me is molecular weight between entanglement, M0 is 
monomer molecular weight, k is Boltzmann’s constant and T is absolute 
temperature.
Grassley (1980) has derived expressions for another linear properties predicted 
by the model:

1 p N ^ Ç M ^  7T 
ๆ ° =  15 M : M :  =  12 N d

( 1 .7 )

r  = 3M e
p R T 5G °n

(1 .8 )
where p is density, N0 is equal to M/Mo, and Js° is complex compliance. 
Making use of these expressions, the longest relaxation time, Ad, can be 
written in terms of rheological properties:

* d ๆ 0 j :7U2pRT 7I2 ( 1 .9 )

where ๆ0 is shear viscosity.
Comparing these results with experimental observations for linear, 
monodispersed, entangled polymers, the following general statements can be 
made. The very strong effect of M on the viscosity is in qualitative agreement 
with observation, but the value of 3 for the exponent is somewhat below the 
experimentally observed value of about 3.4. The steady state compliance is 
predicted to be independent of molecular weight for a given polymer. This is 
in agreement with observation for high molecular weight melts, and it is in a 
sharp contrast with the prediction of the modified Rouse theory, for
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u n e n ta n g le d  m e lts , th at J°s is  p ro p o r tio n a l to  m o le c u la r  w e ig h t .  It is  p r e d ic te d  
that J°sG °n =  6 /5 ,  w h e r e a s  th e  o b se r v e d  v a lu e  is  o fte n  a b o u t 2 .

T h e  p red ic ted  r e la x a tio n  m o d u lu s  b y  th e  D o i  an d  E d w a rd s  
th eo ry  at sh o rt t im e s  an d  th e  sh o r ta g e  an d  lo s s  m o d u li at h ig h  fr e q u e n c ie s  are  
n o t in  a c c o r d a n c e  w ith  o b se r v a tio n , fa ll in g  b e lo w  th e  e x p e r im e n ta l c u r v e s , 
e s p e c ia l ly  in  th e  c a s e  o f  G ” (co). T h e s e  re su lts  r e f le c t  th e  v e r y  n arrow  
r e la x a tio n  sp ec tru m  p r e d ic te d  b y  th e  th eo ry .

T h e  D o i-E d w a r d s  th eo ry  is  a m ajor  step  fo rw a rd  fro m  th e  
m o d if ie d  R o u s e  th eo ry  in  its a b ility  to  p red ic t  th e m o s t  p r o m in e n t e f f e c t s  o f  
e n ta n g le m e n t  in  h ig h  m o le c u la r  w e ig h t , lin ear , m o n o d isp e r se d  p o ly m e r s .  
E lo w ev er , it is  d e f ic ie n t  in  its a b ility  to  m a k e  accu ra te  q u a n tita tiv e  p r e d ic t io n s  
o f  m o st  p h e n o m e n a . In an e ffo r t  to  p reserv e  th e  b a s ic  tu b e  m o d e l w h ile  
im p r o v in g  q u a n tita tiv e  p r e d ic t io n s , se v e r a l m o d if ic a t io n s  o f  th e  th e o r y  h a v e  
b e e n  p r o p o se d . F or e x a m p le , c o n s id e r a tio n  o f  an a d d it io n a l re la x a tio n  
m e c h a n ism  d u e  to  co n to u r  len g th  flu c tu a tio n  lea d s  to  s ig n if ic a n t  

im p r o v e m e n ts  in  th e  sh a p e  o f  th e  sp ec tru m , th e  d e p e n d e n c y  o f  ๆ  0 o n  m  an d  th e  
v a lu e  o f  Js°.

A  cen tra l h y p o th e s is  o f  D o i-E d w a r d s  th eo ry  is  that th e  “ tu b e ” 
re ta in s  its  id e n tity  th ro u g h o u t th e  d is e n g a g e m e n t  t im e  for  an  in d iv id u a l  
m o le c u le .  F o r  a m o n o d isp e r se d  s y s te m  e s t im a te s  o f  th e  t im e  req u ired  fo r  th e  
tu b e  to  lo s e  its id e n tity  th ro u g h  B r o w n ia n  m o tio n  (d if fu s io n )  o f  th e  m o le c u le s  
c o m p r is in g  th e  tu b e  is  m u c h  larger than  A,d, an d  th e  h y p o th e s is  is  th u s v a lid . 
E lo w ev er , in  a p o ly d isp e r se d  sy s te m , th is  is  n o  lo n g e r  true, as s o m e  o f  th e  
m o le c u le s  m a k in g  up th e  tu b e  h a v e  a m u ch  lo w e r  M \v th an  th e  lo n g e s t  
m o le c u le s  in  th e  sy s te m . In th is  c a se , “ tu b e  r e n e w a l” p r o v id e s  an  a d d itio n a l  
m e c h a n ism  for  r e la x a tio n  an d  th u s s p e e d s  up th e  p r o c e ss .

T h e  p r e se n c e  o f  lo n g  ch a in  b ra n ch in g  le a d s  to  s ig n if ic a n t  
th e o r e tic a l c o m p lic a t io n s . R e p ta tio n  is n o  lo n g e r  p o s s ib le ,  and  re la x a tio n
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o c c u r s  p r im a r ily  th ro u g h  th e  m e c h a n ism  o f  co n to u r  le n g th  f lu c tu a tio n  (D e a ly  
an d  W issb r u n , 1 9 9 0 ) .

1 .2 .5  D o u b le  R e p ta tio n  M o d e l
In a p o ly m e r  m e lt , at a s tre ss  p o in t p ,  tw o  p o ly m e r s  are 

e n ta n g le d  an d  w e  sh a ll a s su m e  that su c h  s tre ss  p o in ts  are d is tr ib u ted  at ran d om  
o n  th e  p o ly m e r s . T h e  s tre ss  at p  w il l  d isa p p ea r  i f  o n e  en d  p o in t  o f  A  or B  
rep ta tes th ro u g h  th e  m o t io n le s s  p o in t p  (d e s  C lo iz e a u x , 1 9 8 8 ) .

Figure 1 .7  T h e  p o ly m e r s  A  and B are e n ta n g le d  and th ere  is  a p o in t  at p .  T h e  
s tre ss  d isa p p ea r s  i f  e ith er  A  or B  rep ta tes e n tire ly  th ro u g h  p .

T h e  c o n s t itu t iv e  eq u a tio n  o f  d o u b le  rep ta tio n  th e o r y  is:

md(t) = Z Z WAWBPA(t)PB(t) = I w , p , ( t )
i

( 1.10 )

w h e r e  m d(t) is  th e  fra ctio n  o f  u n re la x ed  s tress  at t im e  t an d  Wj is  v o lu m e  
fra c tio n  o f  c h a in  i. Pi is  th e  tu b e  su r v iv a l p ro b a b ility  o f  c h a in  i at t im e  t 
c a lc u la te d  fro m  th e  o r ig in a l th eo ry  o f  D o i an d  E d w a rd  w ith  a s in g le  re la x a tio n  
t im e  b y

P i( 0 =  ร ุ T - e x p [ - k 2t/-trepi] ~ e x p [ - t /T rep 1 ] ( 1 11 )
k=odd
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w h e r e  Trep i , th e  lo n g e s t  r e la x a tio n  t im e  o f  c h a in  i, is  o b ta in e d  fro m  an  
e m p ir ic a l d e p e n d e n c e  o n  m o le c u la r  w e ig h t:

V i  = K ’
M.„ ; X3.4

M = KM 3.4
( 1. 12)

e J
w h e r e  M w j is  th e  w e ig h t-a v e r a g e  m o le c u la r  w e ig h t  o f  c h a in  i, M e is  th e  
m o le c u la r  w e ig h t  b e tw e e n  e n ta n g le m e n ts , an d  K  is th e  e m p ir ic a l p a ram eter  
w h ic h  e q u a ls  K ’/M e3'4.

T h e  s tr e s s -r e la x a tio n  m o d u lu s  Gtotai(t) is  d ir e c t ly  p ro p o rtio n a l to
m d(t)

G 10131 ( t)  = G°Nm d(t)  = G 2 > , p , ( t ) ( 1 . 1 3 )

F o r  m o n o d isp e r se  p o ly m e r s , ๆ 0, th e z e r o -sh e a r  v is c o s ity ,  is  s im p ly  re la ted  to  

Trep b y

P o _  Trep _  j £  iy/j-3.4 ( 1 . 1 4 )G°" 2 "2 w
T h e  p a ra m eters  for  th is  m o d e l are th e  p la tea u  m o d u lu s  G N°, and  

th e  e m p ir ic a l p a ra m eter  K.
T h e  s tr e ss -r e la x a tio n  m o d u lu s  Gtotai(t) fro m  th e  m o d e l can  

c o n v e r t  to  th e  s to r a g e  m o d u lu s  ( G ’) an d  th e  lo s s  m o d u lu s  (G ” ) b y

G '(to )  =  CO J g  10131 ( t)s in (c o t)d t ( 115 }

G " (to) =  CO J g  10131 ( t)  co s(co t)d t ( 1.16 )
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1.2.6 Modified Dual Constraint Model
The dual constraint model combines two forms of constraint 

release into the dynamics of entangled polymers. The first form of constraint 
release is ‘double diffusion’ which augments ‘double reptation’ by inclusion 
of primitive path fluctuation as a mechanism of constraint release. This first 
mode of constraint release has been found successfully for the effects of 
polydispersity on the relaxation of polydispersed linear chains in most cases. 
The second form of constraint release is ‘dynamic dilution’ which describes 
the self-consistent time-dependent loosening of the effective entanglement 
network, or widening of the tube, that is realized when the relaxation of 
monodispersed star polymers is considered on ever longer time-scales. This 
second form of constraint release is required for stars, because even a 
monodispersed star has such a wide range o f relaxation times that over the 
time-scale required for the last interior part of an arm to relax, the tip of that 
arm has relaxed so many times that it acts more like a solvent than a real 
obstacle to motion of other chains (Pattamaprom et a l, 2000).

a) Reptation and fluctuation in a fixed matrix
The linear viscoelastic constitutive equation for highly 

entangled polymers proposed here is based on the tube model of Doi and 
Edwards. For an oscillatory deformation at low and moderate frequencies, the 
major relaxation mechanisms for linear polymers are reptation, contour-length 
fluctuation, and constraint release. For star polymers, the arms are joined 
together, preventing reptation. Thus, contour-length fluctuation and constraint 
release are the only relaxation mechanisms for stars at low and moderate 
frequencies. At high frequencies, Rouse processes are important for both 
architectures.

Reptation can be thought o f as the diffusion o f a chain out 
of a tube; therefore, it can be represented by a diffusion equation for the tube-
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survival probability. Contour-length fluctuation is a relaxation process induced 
by the thermal fluctuation o f the tube length with time. Including both 
reptation and contour-length fluctuation, the diffusion equation for linear 
polymers subjected to a small step strain at time t = 0 is (Mead, Van Dyke et 
al., 2000):

dp* (Sj’O _  Pj d 2P i(s j ,t)  P i(s j ,t)  (1 .1 7 )
dt L- ÔS? Tçj(sj)

The initial and boundary conditions are Pi* = 1 at t = 0, and 
Pi* = 0 at the chain end. The first term on the right of Equation (1.17) 
represents the reptation mechanism and the second term is for the contour- 
length fluctuation. The equation is the same for star polymers except for star 
the reptation term is removed. The subscript i denotes a linear chain of 
molecular weight Mi or the arm molecular weight for a star polymer. In 
Equation (1.17), Pi*(sj,t) is the survival probability of a tube segment occupied 
by a chain o f type i as a function of time t and contour distance Si, where Sj 
ranges from 0 at the center of a linear polymer chain or the branch point of a 
star to 1/2 at the chain end of a linear, or to 1 at the chain end o f a star. Dj, the 
curvilinear diffusion coefficient, can be calculated by

(1 .1 8 )

where Li is the average contour length of the tube and Td j is the reptation time 
constant. Lj equals Njb2/a, where a is the tube diameter, b is the effective 
polymer statistical segment length, and Nj is the number of monomers 
composing a chain of type i. The relationship between a and b is given by 
b = a(M0/Me)1/2, and Ni can be written as M /M 0, where M0 is the monomer 
molecular weight and Me is the molecular weight between two entanglements.



16

xd,i is given by Td,i = (ÇNj3b4)/(7i:2kbTa2) where where Ç is the monomeric 
friction coefficient, kb is the Boltzmann constant and T is the absolute 
temperature.

The second term represents contour-length fluctuations. 
The relaxation time for contour-length fluctuations, Xç,j , which is the time 
constant for contour length fluctuations in the presence of constraint release 
for shallow (leariy.i) and deep (x*jate-j) fluctuations which can be expressed by

I225 3 พ  / M v
v .r ly ,, (ร 1) =  - T 2 0 - C s J

Z j  o  c

and

N cn,
V c  J

(1 .1 9 )

T*late,i(si , t ) = ^ e x p ( u ; si)) (1 -2 0 )

where c is a prefactor which equals 2 for linear polymers (linear polymer has 
two fluctuating chain ends), and 1 for star polymers. Nenj is the number of  
entanglements per chain, which equals M j/M e. M j is the weight-average 
molecular weight of chain i. XR1i is the longest Rouse stress relaxation time of 
chain i defined by xRij = ÇNi2b 2/67i:2kbT, which is smaller than the rotational 
relaxation time xr from Doi and Edwards by a factor o f two, so 
■̂ R.i — บ ./(bNen.i).

บ*(Sj) is the activation energy for chain retraction given by

บ■ (ร■1)=  (1 .2 1 )

The quick fluctuation mode of chain ends (Sj close to 1 ) is controlled by xearly i 
and gradually changes to the normal activation mode x*iated toward the center 
(Sj close to 0 ) .  Therefore, x \ j  in Equation ( 1 .1 7 )  equals Teariyj for large Si and X* 

131ei for small Sj. It was proposed (Pattamaprom et al., 2000) here a simple
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crossover function that splices these two functions together with a transition 
zone over which a geometric average of the two is used. The crossover 
function from T e a r iy  j to T  la t e  i along the chain follows the solid line in Figure
1.8, which is given by

T*ç,, = Teariy,i when ( 1 -  S i  )  < c* 1
T * ç , i  = T e a r i y  j * T * | a t e . i  when C * 1  < ( 1 -  Sj ) < c *2 ( 1.22 )
T * ç , i  = T * i a t e , i  when ( 1 -  S i  ) < c *2

where C*| is the first crossover position of T e a r i y  i and T * i a t e , i  close to the chain 
end, and c *2 is the second crossover point deeper inside the tube. Close to the 
chain end where ( 1 - S i )  < C*|, T * ç . j  takes the value of T e a r i y j  and deep inside the 
tube where ( 1 - S i )  >  c *2 5 T * ç . i  is controlled by x ’ l a t e j .  For the tube segments 
between C*1 and c *2 ,  T * ç . j  is taken to be the geometric average of the two 
functions o f S i -

Figure 1.8 The crossover function (solid line) from T e a r i y  (dotted line) to 
( T * i a t e , i )  (dashed line) with no constraint release (<j)* = 1) for a linear polymer 
with 30 entanglements per chain or for a star with 15 entanglements per arm. 
The crossover points are indicated by C*| and c*2- The x-axis (1 - ร) is the
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d is ta n c e  fro m  th e  c h a in  en d  (1 -  ร =  0 ) to w a rd  th e  b ran ch  p o in t  o f  th e  star or th e  
ce n te r  o f  th e  lin ea r  c h a in  (1 -  s =  1).

T h e  o v e r a ll su rv iv a l p r o b a b ility  I|/*j(t) o f  a tu b e  o c c u p ie d  b y  
c h a in  i  can  th en  b e  c a lc u la te d  fro m  p*j(Sj,t) b y

=  Jpi(Si,t)ds, (1.23)

an d  th e  a v e r a g e  tu b e  su r v iv a l p ro b a b ility  i / j ( t )  o f  a ll c h a in s  is

v * ( t ) = z w ,v :( t )  0 -2 4 )
w h e r e  Wj is  th e  w e ig h t  fra c tio n  o f  th e  c h a in s  o f  le n g th  Lj. I | / ( t )  ca n  b e  o b ta in ed  
n u m e r ic a lly  b y  s o lv in g  for  p*j(Sj,t) u s in g  th e  C r a n k -N ic o lso n  m e th o d , an d  th en  
c o n v e r t in g  to  V |/(t) an d  V |/(t) b y  m e a n s  o f  E q u a tio n  ( 1 .2 3 )  an d  ( 1 .2 4 ) ,  
r e s p e c t iv e ly . v / ( t )  is  c a lc u la te d  w h e n  co n stra in t r e le a se  is  n o t p resen t.

T h e  a p p ro x im a te  co n stra in t r e le a se  R o u s e  p r o c e s s  is  th en  

a c tiv a te d  w h e n  I | / ( t )  d e c r e a se s  fa ster  than  a R o u se  r e la x a tio n  p r o c e s s  w o u ld  
p erm it. T h e  co n stra in t r e le a se  R o u s e  r e la x a tio n  p erm its  r e la x a t io n  n o  fa ster  
w ith  t im e  th a n

f  t v 1/2
v to y

v |/R ( t ) - \ | / * ( t  0 )  

w h e r e  to is  th e  t im e  w h e n  I | / ( t )  starts to  d rop  fa ster  th an  t ' ,/2.

( 1-25)

A t t im e  n ear z ero , w h e n  th e  m a jo r ity  o f  th e  e n ta n g le m e n t  

c o n stra in ts  s t i l l  e x is t ,  th e  a v e r a g e  su rv iv a l p r o b a b ility  o f  th e  c h a in s  <j)*(t) e q u a ls  

an d  r e m a in s  so  u n til s o m e  t im e  t =  t0, at w h ic h  <j) (t) s w itc h e s  to  vgR(t). at 
s o m e  later t im e  t, i f  Vj/R(t) d ro p s b e lo w  q> (1), (j) (t) th en  s w itc h e s  b a c k  to  \\I (t). 
w h e n e v e r  i } / ( t )  d ro p s fa ster  th an  f 1/2 a g a in , th e  co n stra in t r e le a se  R o u se
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process will be activated and \\Jm  from Equation (1.25) with a new to will be 
used for (j)*(t). the expression for cf)*(t) can therefore be written as

= V|/(t) when V|/(t) > vpR(t) ( 1 26 )

<l>*(t) = y R(t) when V|/(t) < V|/R(t)

The average survival probability of the chains (j)*(t) will be 
used as the dilution factor in the fluctuation term in the next part.

b) Reptation and fluctuation with constraint release
In general, constraint release manifests itself both in a local 

relaxation o f an entanglement constraint and in a global loosening o f the 
entanglement network. These modes of constraint release are called “tube 
reorganization” and “tube dilution”, respectively (Viovy et a l, 1991). While 
the local relaxation o f entanglement constraints will be combined later in the 
final relaxation modulus, the time-dependent loosening of the entanglement 
network or tube widening, known as “dynamic dilution” (Ball and McLeish, 
1989), is included in the activated fluctuation term.

Dynamic dilution takes into account the large differences in 
time-scales between fast and slow relaxation processes by allowing the 
accumulation of constraint release events to reduce the activation energy for 
deep-chain fluctuations. This reduction results in faster relaxation o f the test 
chain. The dynamic dilution mechanism is incorporated into the dual 
constraint model by using the reduced activation energy, Ueff<Si,t), instead of 
บ*( S j ) ,  to calculate T i a t e . i -  While this makes X i a t e . i  time dependent, X e a r i y . i  remains 
the same as in part a) the expression for X e a r i y . i  and X i a t e . i  with dynamic dilution 
can be written as

พ , (ร ,)= | f f " 3^ ( i - c s , y N ( 1.27)
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and

Ti..e.i(s i . ' ) = ^ - e x p ( u eff (ร1, t)) ( 1 .2 8 )
where Ueft{Si,t) is obtained by multiplying บ* by the dilution factor (j)*(t) 
calculated from Equation (1.26) giving

Ueff(s,.t) = Y ^ f f ( t X l - c Si)2 (1-29)
As shown in Figure 1.9, although Tg behaves similarly to that in part a), the 
crossover locations, Cl and c 2, are now changing with time due to the time 
dependence of Tiate.i- Hence, T g  along the tube position Si is described by 
Equation (1.22) with T*iate,i replaced by Tiate.j.

จ;,i = Nearly,! when ( 1 -Sj ) < c  1
จ;,i =  Nearly,เจ ate,i)1/2 w h e n  C , < ( l - S i ) < C 2 ( 1 . 3 0 )
T g  =  Tiate.i w h e n  ( 1 - S|) <  c 2

where C] and c 2 are the crossover points.
This new expression for T g  is now incorporated into the 

diffusion equation as follows:

dPi(sj.t) = D i d2Pi(si,t) Pi(sj,t) (1 .3 1 )
at = dsf T g ( S j )

where P i(S i,t) and T g  are the tube segment survival probability and the time 
constant for contour length fluctuation, respectively, in the presence of 
constraint release by dynamic dilution (Equation 1.30).
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Figure 1.9 The crossover function from Tear|y to Tiate with constraint release 
(<t»*(t) = 1.0, 0.7, and 0.4) for the polymer of Figure 1.8. The crossover points 
Cl and c 2 change with (j)*(t), which decreases with time.

The overall survival probability 4>i(t) of a tube occupied by 
chain i can then be calculated from P i(Sj,t) by

4>i (t) = f p i ( s i>t)d s i ( L 32)

and the average survival probability of all tube is

♦ ( t ) = 5 > i 4 » . ( t )  ( 1 3 3 )

4)(t) can be obtain numerically by solving for P i(S i,t) using the Crank-Nicolson 
method, (using logarithmic time) then converting to (j)j(t) and <t>(t) by means of 
Equations (1.32) and (1.33), respectively.

So far, it has only accounted for “global” constraint release 
effects that accelerate contour length fluctuations via the dilution factor (j)*(t), 
which is used in the fluctuation potential Ugff. It can describe local constraint 
release events using the double-diffusion mechanism, developed as an
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extension o f double reptation (des Cloizeaux, 1988). This theory considers the 
survival probability of a binary topological interaction o f a test chain with a 
surrounding chain. This mechanism accounts for the effect o f the surrounding 
chains on the overall relaxation process by multiplying the average survival 
probability o f the test chain by that of the constraints surrounding the chain. 
Without the constraint release Rouse process, the multiplication would be <j>2 
(t). however, after including constraint release Rouse processes, the fraction of 
constraints (j)’(t) that block motion of a test chain at time t can differ from the 
fraction of tube segment (f>(t) that are still occupied at time t. Thus

(j)’(t) = <t>(t) when <j)(t) > <t>R(t)
(|)’(t) = <t>R(t) when <|>(t) < <j)R(t)

where <j)R(t) = 4>(t0)(t/t0)"1/2, to is the time when <t>(t) begins to drop faster then 
f l/2, and (j)(t0) is the average survival probability at t0. The activation of 
constraint release Rouse processes for the fraction of local constraint <t>’(t) in 
Equation (1.34) is identical to that for the dilution term <j)’(t) in Equation 
(1.26). That is, at time near zero, (j)’(t) equals (j)(t). After that, at each time t, 
(j)’(t)is assigned the greater of the values o f <j)(t) and 4>R(t).

Thus, the overall survival probability of the binary 
interactions between the test chains and the surrounding chains becomes

<t (t) = (1.35)

The relaxation modulus G(t) from the contributions of reptation, contour 
length fluctuations, and constraint release can be obtained by multiplying ®(t) 
by the plateau modulus GN°:
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G(t) = G °® (t)  = G°<Kt)<K(t) (1 .3 6 )
The final relaxation mechanism is high frequency Rouse relaxation within the 
tube. High frequency Rouse relaxation includes stress relaxations of segments 
of the test chain at time-scales both shorter than Te, the time at which the chain 
segments first feel the constraint imposed by the conceptual tube, and longer 
than Te, during which only the longitudinal Rouse modes along the tube are 
available. The “equilibrium time” xe is the Rouse relaxation time for an 
entanglement segment of a chain and is independent of chain length, i.e., the 
molecular weight of the polymer. Te is related to Trj by Te = 2tr j/N2eilij which 
implies that Te is related to Td,i as Te= Td,i/3N3end. The division o f spatial scales 
separating Rouse processes with time-scales less than Te from those with time- 
scales greater than Te has been represented by Milner and McLeish (1998) 
using an approximate “fragmented Rouse” spectrum to calculate the Rouse 
relaxation modulus of chain / (GRd):

G RJ(t) = G°N2'expf-k2t] + G°n £  exp
( , 2 ไ - k2t

l  LR.i J l  l R.i )k=l k=N,1,,
( 1.37)

Here, the first term accounts for the slow longitudinal modes which are 
confined by the tube to one dimension rather than three as in the ordinary 
Rouse theory, so their magnitude is reduced by a factor of three. The second 
term represents fast three-dimensional relaxation of portions of the chain 
within a single tube segment.

Finally, the full stress-relaxation modulus (Gtotai) combines 
G(t) from Equation (1.36) with the contribution from Rouse processes giving

Gtotal(t) = G(t) + X WiGR’i(t) ( L 3 8 )1
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The stress-relaxation modulus can then be converted to the 
storage modulus (G’) and the loss modulus (G”) by

G '(co) = CO J g  ,0131 (t)s in (co t)d t

and ( 1 . 39)

G"(co) = CO J g ,0, 81 (t)cos(G>t)dt
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