SELECTIVE CO OXIDATION IN THE PRESENCE OF HYDROGEN FOR FUEL CELL APPLICATIONS: Au/MnO_x AND Au/FeO_x CATALYSTS

Ms. Dao Thi Kim Thoa

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Parnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2003
ISBN 974-17-2278-8

Thesis Title:	Selective CO Oxidation in the Presence of Hydrogen for Fuel		
	Cell Applications: Au/MnO _x and Au/FeO _x Catalysts		
By:	Ms. Dao Thi Kim Thoa		
Program:	Petrochemical Technology		
Thesis Advisors:	Prof. Somchai Osuwan		
	Dr. Apanee Luengnaruemitchai		
	Prof. Erdogan Gulari		
Accep	Accepted by the Petroleum and Petrochemical College, Chulalongkorn		
University, in part	tial fulfilment of the requirements for the Degree of Master of		
Science.			
	K. Bunyaliat- College Director		
	(Assoc. Prof. Kunchana Bunyakiat)		
Thesis Committee	A-b-		
	(Prof. Somchai Osuwan)		
	(Dr. Apanee Luengnaruemitchai)		
	(Dr. Apanee Luengnaruemitchai)		
	(Prof. Erdogan Gulari)		

270.11/10

(Assoc. Prof. Sumaeth Chavadej)

(Assoc. Prof. Thirasak Rirsomboon)

ABSTRACT

4471007063 : PETROCHEMICAL TECHNOLOGY PROGRAM

Dao Thi Kim Thoa: Selective CO Oxidation in the Presence of Hydrogen for Fuel Cell Applications: Au/MnO_x and Au/FeO_x

Catalysts.

Thesis advisors: Prof. Somchai Osuwan, Dr. Apanee Luengnaruemitchai, and Prof. Erdogan Gulari, 70 pp ISBN 974-17-

2278-8

Keywords : Fuel cells/ CO oxidation/ Gold/ Manganese oxide/ Ferrous oxide.

Gold itself exhibits poor activity but becomes more active for CO oxidation when deposited onto an appropriate support. Manganese and ferrous oxides were found to be good supports for gold in selective CO oxidation for fuel cell applications. Catalysts were prepared by co-precipitation method and subjected to several pretreatment conditions before being tested for CO oxidation activity. The activity was tested using a gas mixture of 1% CO, 1% O₂, 2% CO₂, 2.6% H₂O, and 40% H₂ balanced in He in the temperature range 50-190°C. Au/MnO_x preferred He pretreatment and 300°C calcination temperature while Au/FeO_x preferred O₂ pretreatment and 400°C calcination temperature. Atomic ratio of 1/30 gold to base metal was the optimum Au loading for both catalysts. High concentration of CO₂ in the feed gas was also investigated in order to observe the adverse effect due to the reverse water gas shift equilibrium. Interestingly, both catalysts could resist to H₂O concentration in the reactant feed up to the level of 10%. Au/MnO_x gave 93% conversion and 58% selectivity at 130°C and Au/FeO_x gave 98% conversion and 53% selectivity at 50°C during a 48 h stability test without any activity drop at all.

บทคัดย่อ

Dao Thi Kim Thoa: การเลือกเกิดปฏิกิริยาออกซิเคชันของก๊าซคาร์บอนมอนอกไซค์ ในบรรยากาศก๊าซไฮโครเจนสำหรับประยุกต์ใช้ในเซลล์เชื้อเพลิงโดยตัวเร่งปฏิกิริยา Au/MnO_x และ Au/FeO_x (Selective CO Oxidation in the Presence of Hydrogen for Fuel Cell Applications: Au/MnO_x and Au/FeO_x Catalysts) อ. ที่ปรึกษา: ศ.คร. เออ โคแกน กูลารี่ ศ.คร.สมชาย โอสุวรรณ และ อาจารย์อาภาณี เหลืองนฤมิตชัย 70 หน้า ISBN 974-17-2278-8

ตัวโลหะทองแสดงความว่องไวต่อปฏิกิริยาต่ำ แต่กลับแสดงความว่องไวสูงต่อปฏิกิริยา ออกซิเคชันของก๊าซคาร์บอนมอนอกไซค์เมื่อรองรับค้วยตัวรองรับที่เหมาะสม โคยที่แมงกานีส และเฟอรัสออกไซค์เป็นตัวรองรับที่คีสำหรับโลหะทองในการเลือกเกิดปฏิกิริยาออกซิเดชันของ ก๊าซคาร์บอนมอนอกไซค์ในบรรยากาศก๊าซไฮโครเจนสำหรับประยุกต์ใช้ในเซลล์เชื้อเพลิง ตัวเร่ง ปฏิกิริยาเตรียมขึ้นค้วยวิธีการเตรียมแบบตกตะกอนร่วมและได้ปรับสภาพที่สภาวะต่าง ๆ ก่อนการ ศึกษาความว่องไวของตัวเร่งปฏิกิริยา โคยส่วนประกอบของก๊าซตั้งค้นคือก๊าซ คาร์บอนมอนอกไซค์ร้อยละ 1, ก๊าซออกซิเจนร้อยละ 1, ก๊าซคาร์บอนไคออกไซค์ร้อยละ 2, ไอ น้ำร้อยละ 2.6, และก๊าซไฮโครเจนร้อยละ 40 ปรับสมคุลค้วยก๊าซฮีเลียมที่ช่วงอุณหภูมิ 50-190 องศาเซลเซียส AuMnO_{x} ชอบการปรับสภาพด้วยก๊าซฮีเลียมและเผาอุณภูมิสูงที่ 300 องศา เซลเซียส ในขณะที่ Au/FeOx ชอบการปรับสภาพด้วยก๊าซออกซิเจนและเผาอุณภูมิสูงที่ 400 องศา เซลเซียส อัตราส่วนอะตอม 1/30 ของโลหะทองเหมาะสมต่อตัวเร่งปฏิกิริยาทั้งคู่ ความเข้มข้นสูง ของก๊าซคาร์บอนไคออกไซค์ในส่วนประกอบของก๊าซตั้งค้นไค้ถูกศึกษาโคยส่งผลเป็นลบเนื่อง จากความสมคุลปฏิกิริยาผันกลับได้ของ water gas shift เป็นที่น่าสนใจที่ตัวเร่งปฏิกิริยาทั้งคู่ สามารถทนต่อความเข้มข้นของไอน้ำระคับ 10% ตัวเร่งปฏิกิริยา Au/MnOx ให้ค่าความเปลี่ยน แปลงถึง 93% และค่าการเลือกเกิดปฏิกิริยาถึง 58% ที่อุณหภูมิ 130 องศาเซลเซียส และ $\mathrm{Au}\mathrm{FeO}_{\mathrm{x}}$ ให้ค่าความเปลี่ยนแปลงถึง 98% และค่าการเลือกเกิดปฏิกิริยาถึง 53% ที่อุณหภูมิ 50 องศาเซลเซียส โดยความว่องไวของตัวเร่งปฏิกิริยาไม่มีการลดต่ำลงในช่วงเวลา 48 ชั่วโมง

ACKNOWLEDGEMENTS

With the help and support from various organizations and people, I could complete my study. Thus, I would like to express my appreciation and grateful thanks to the followings:

The Chulalongkorn University Postgraduate Scholarship Program for Neighboring Countries for giving me the chance to have the scholarship for studying in Chulalongkorn University. Especial thanks go to Mr. Noi Intarawatana, the Director of the Office of International Affairs, Ms. Prapaipis Mongkolratana, the Senior Director of the Office of Academic Affairs, and Ms. Ponarin, official of the Office of Academic Affairs, for their enthusiasm and all what they have done for me during the time I have studied in Thailand.

The Petroleum and Petrochemical College, Chulalongkorn University for providing me the scholarship and giving me invaluable knowledge in the field of Petrochemical Technology. I am very grateful to Assoc. Prof. Kunchana Bunyakiat, the Director of the College, Assoc. Prof. Nantaya Yanumet, for their kind help and invaluable encouragement during the time I have been in Thailand.

I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

I would like to extend my sincerest gratitude to all professors of the M. Sc. Program in Petroleum and Petrochemical College, for their guides and help during the time I have studied in Chulalongkorn University. My special thanks go to Prof. Somchai Osuwan, Dr. Apanee Luengnaruemitchai, and Prof. Erdogan Gulari for providing me invaluable comments and academic suggestions on my research work.

I would also like to thank all members of the Program's staff, for their invaluable and tireless assistance to my study. I am indebted to them all.

My appreciation goes to my classmates for their enthusiasm and all what they have done for me during my study in Thailand.

The last but not least, my special thanks go to all members of my family for what they have done for me when I have studied far from home. Without their help I could not be able to complete my study.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	x
СНАРТЕ	CR CR	
I	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Research Objectives	4
II	LITERATURE REVIEW	5
	2.1 Background	5
	2.2 Literature Review	8
III	EXPERMENTAL	12
	3.1 Materials	12
	3.1.1 Gases	12
	3.1.2 Chemicals	12
	3.2 Equipment	13
	3.2.1 Gas Blending System	13
	3.2.2 Catalytic Reactor	13
	3.2.3 Analytical Instrumentation	13
	3.3 Catalyst Preparation Procedure	15
	3.4 Catalyst Characterization	15
	3.4.1 BET Surface Area Measurement	15
	3.4.2 X-Ray Diffraction	17

	3.4.3 Atomic Absorption Spectroscopy	18
	3.4.4 Transmission Electron Microscopy	18
	3.4.5 Thermal Gravity Analysis	19
	3.5 Activity Measurement	19
	3.5.1 Effect of Catalyst Pretreatment	20
	3.5.2 Effect of Calcination Temperature	20
	3.5.3 Effect of Au loading	20
	3.5.4 Effect of CO ₂ Concentration in the Feed Gas	20
	3.5.5 Effect of H ₂ O Concentration in the Feed Gas	21
	3.5.6 Deactivation Test	21
	3.6 Calculation	21
	3.7 Experimental Plan	22
	3.7.1 Effect of Catalyst Pretreatment	24
	3.7.2 Effect of Calcination Temperature	24
	3.7.3 Effect of Au Loading	24
	3.7.4 Effect of CO ₂ Concentration in the Feed Gas	25
	3.7.5 Effect of H ₂ O Concentration in the Feed Gas	25
	3.7.6 Deactivation Test	25
IV	SELECTIVE CO OXIDATION IN HYDROGEN RICH	STREAM
	OVER Au/MnOx AND Au/FeOx CATALYSTS	26
	Abstract	26
	Introduction	26
	Experimental	28
	Results and Discussion	30
	Conclusions	37
	Acknowledgements	37
	References	38
V	CONCLUSIONS AND RECOMMENDATIONS	65
	5.1 Conclusions	65
	5.2 Recommendations	65

		viii
REFERENCES	1	67
CURRICULUM VITAE		70

LIST OF TABLES

TABLE	
CHAPTER II	
2.1 Fuel cell types distinguished by the electrolyte	5
2.2 Typical electrochemical reactions in fuel cells	6
2.3 Preferred electrocatalysts for the main fuel cells	6
CHAPTER III	
3.1 Values of the geometric factor (g), such as $d = gD_b$	18
3.2 Experimental plan	23
3.3 Experimental plan for effect of catalyst pretreatment	24
3.4 Experimental plan for effect of calcination temperature	24
3.5 Experimental plan for effect of Au loading	24
3.6 Experimental plan for effect of CO ₂ in the feed gas	25
3.7 Experimental plan for effect of H ₂ O in the feed gas	25
3.8 Experimental plan for deactivation test	25
CHAPTER IV	
1 Surface area, pore and crystallite sizes of prepared catalysts	41
2 Actual Au loading on prepared catalysts	42
3 Result summarization	43

LIST OF FIGURES

FIGU	RE	PAGE
	CHAPTER I	
1.1	Schematic drawing of a Proton Exchange Membrane (PEM) fuel cell.	2
	CHAPTER II	
2.1	Fuel cells poisoning by CO (PEM Fuel Cell performance).	7
	CHAPTER III	
3.1	The schematic flow diagram of experimental equipment.	14
	CHAPTER IV	
1	X-ray diffraction patterns for Au/MnO _x catalyst calcined at different	
	temperatures.	44
2	Size distribution of Au crystallite for Au/MnO _x catalyst with different	
	Au/Mn atomic ratios.	45
3	X-ray diffraction patterns for Au/FeO _x catalyst calcined at different	
	temperatures.	46
4	TEM image for Au/MnO _x catalyst calcined at 300°C, atomic ratio	
	of 1/30.	47
5	TEM image for Au/FeO _x catalyst calcined at 400°C, atomic ratio	
	of 1/30.	48
6	TGA result for Au/MnO _x catalyst.	49
7	TGA result of Au/FeO _x catalyst.	50
8	Effect of pretreatment condition on Au/MnO _x catalyst calcined	
	at 200°C, atomic ratio of 1/120.	51
9	Effect of pretreatment condition on Au/FeO _x catalyst calcined	
	at 400°C, atomic ratio of 1/60.	52
10	Effect of calcination temperature on Au/MnO _x catalyst,	
	He pretreatment, atomic ratio of 1/120.	53

11	Effect of calcination temperature on Au/FeO _x catalyst,	
	O ₂ pretreatment, atomic ratio of 1/30.	54
12	Effect of Au loading on Au/MnO _x catalyst calcined at 300°C,	
	He pretreatment.	55
13	Effect of Au loading on Au/FeOx catalyst calcined at 400°C,	
	O ₂ pretreatment.	56
14	Effect of CO ₂ on Au/MnO _x catalyst, calcined at 300°C,	
	He pretreatment, atomic ratio of 1/30.	57
15	Effect of CO ₂ on Au/FeO _x catalyst, calcined at 400°C,	
	O ₂ pretreatment, atomic ratio of 1/30.	58
16	Effect of H ₂ O on Au/MnO _x catalysts, calcined at 300°C,	
	He pretreatment, atomic ratio of 1/30.	59
17	Effect of H ₂ O on Au/FeO _x catalysts, calcined at 400°C,	
	O ₂ pretreatment, atomic ratio of 1/30.	60
18	Deactivation test of Au/MnO _x catalyst, calcined at 300°C,	
	He pretreatment, atomic ratio of 1/30.	61
19	Deactivation test of Au/FeO _x catalyst, calcined at 400°C,	
	O ₂ pretreatment, atomic ratio of 1/30.	62
20	A comparative study of Au/MnO _x catalyst.	63
21	A comparative study of Au/FeO _x catalyst.	64