CRYSTALLIZATION BEHAVIOR OF PET, PTT, PBT, AND THEIR BLENDS

Ms. Nujalee Dangseeyun

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003 ISBN 974-17-2336-9

I 21094664

~

Thesis Title :	Crystallization Behavior of PET, PTT, PBT and their blends
By:	Nujalee Dangseeyun
Program:	Polymer Science
Thesis Advisor:	Asst. Prof. Pitt Supaphol
	Dr. Manit Nithitanakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

PCycyter

(Asst. Prof. Pitt Supaphol)

Q(Dr. Manit Nithitanakul)

(Assoc. Prof. Anuvat Sirivat)

Ratome Dispersmot

(Asst. Prof. Ratana Rujiravanit)

ABSTRACT

4472016063 : POLYMER SCIENCE PROGRAM
Nujalee Dangseeyun : Crystallization Behavior of PET, PTT, PBT, and their blends.
Thesis Advisors : Asst. Prof. Pitt Supaphol, Dr. Manit
Nithitanakul, 153 pp. ISBN 974-17-2336-9
Keywords : Poly(ethylene terephthalate)/Poly(trimethylene terephthalate)/
Poly(buthylene terephthalate)/Crystallization Kinetics/Polymer
Blending

Isothermal crystallization and subsequent melting behavior for three different types of linear aromatic polyester, namely poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(buthylene terephthalate) (PBT), which are different in their number of methylene groups (i.e., 2, 3, and 4 for PET, PTT, and PBT, respectively), were investigated using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) technique. The kinetics of the crystallization process was assessed by directly fitting the experimental data to the Avrami, Tobin, Malkin and Urbanovici-Segal macrokinetic models. In case of non-isothermal crystallization, the experiment was carried out on PET, PTT, and PBT and the data was analyzed based on the Avrami, Tobin, Ozawa, and Ziabicki models. Moreover, the miscibility and crystallization behavior of PTT/PET and PTT/PBT blends were also studied. A single composition-dependent glass transition temperature (T_g) was observed in both systems, implying that these blends are fully miscible in amorphous phase. The presence of the characteristic Xray peaks for pure polymers in the blends without the presence of a new peak in the diffraction pattern revealed that each component forms its own crystal phase and there was no co-crystallite in the blends under our experimental condition. The steady rate sweep test showed that these blends behaved as a shear thinning fluid within shear rates studied.

iii

บทคัดย่อ

นุจลีย์ แคงสีขุน : การศึกษาพฤติกรรมการตกผลึกของ พอลิเอทิลีนเทเรฟทาเลท พอลิ ใตรเมทิลีนเทเรฟทาเลท พอลิบิวทิลีนเทเรฟทาเลท และพอลิเมอร์ผสมของพอลิเมอร์เหล่านี้ (Crystallization Behavior of PET, PTT, PBT, and their blends) อ. ที่ปรึกษา: ผศ.คร.พิชญ์ ศุภผล และ คร.มานิตย์ นิธิธนากุล 153 หน้า ISBN 974-17-2336-9

การศึกษาการตกผลึกแบบอุณหภูมิคงที่ และพฤติกรรมการหลอมเหลวของอะ โรมาติก พอลิเอสเตอร์เชิงเส้นที่แตกต่างกันสามชนิคได้แก่ พอลิเอทิลีนเทเรฟทาเลท พอลิไตรเมทิลีน-เทเรฟทาเลท และ พอลิบิวทิลีนเทเรฟทาเลท ซึ่งแตกต่างกันเพียงแต่งำนวนของหมู่เมทิลีนที่อยู่ ระหว่างหมู่เอสเตอร์ถูกติคตามโดยใช้เทคนิค DSC และ WAXD งลศาสตร์ของกระบวนการตก ้ผลึกถกประเมินโดยการเปรียบเทียบค่าที่ได้จากการทดลองกับค่าที่ได้จากแบบจำลองของ Avrami Tobin Malkin และ Urbanovici-Segal ในกรณีของการศึกษาการตกผลึกแบบอุณหภูมิไม่คงที่ ้ตัวอย่างที่ใช้ได้แก่ พอลิเอสเตอร์ทั้งสามชนิด และพอลิเมอร์ผสมของพอลิไตรเมทิลีนเทเรฟทาเลท และ พอลิบิวทิลีนเทเรฟทาเลท ข้อมูลที่ได้จากการทคลองจะถูกนำมาเปรียบเทียบกับแบบจำลอง ของ Avrami Tobin Ozawa และ Ziabicki นอกจากนี้ การศึกษาความเข้าเป็นเนื้อเคียวกันและ พถติกรรมการตกผลึกของพอลิเมอร์ผสมของพอลิไตรเมทิลีนเทเรฟทาเลท/พอลิเอทิลีนเทเรฟทา เลท และพอลิไตรเมทิลีนเทเรฟทาเลท/พอลิบิวทิลีนเทเรฟทาเลท พบว่าพอลิเมอร์ผสมแต่ละระบบ แสดงอุณหภูมิเปลี่ยนสถานะคล้ายแก้วค่าเคียว และอุณหภูมินี้งะเปลี่ยนแปลงเมื่ออัตราส่วนของ พอลิเมอร์ผสมเปลี่ยนแปลง แสคงให้เห็นว่าพอลิเมอร์ผสมเหล่านี้สามารถผสมเข้ากันได้ใน สถานะอสัณฐาณ จากการศึกษาการปรากฎของลักษณะเฉพาะของตำแหน่งของจุดยอดของ พอลิเมอร์บริสุทธิ์แต่ละชนิดใน diffraction pattern แสดงให้เห็นว่า ในการทดลองนี้พอลิเมอร์ แต่ละชนิดในพอลิเมอร์ผสมมีรปแบบของการตกผลึกของตนเองและ ไม่มีการตกผลึกร่วมกัน จาก การศึกษาการใหลของพอลิเมอร์โดยเปลี่ยนแปลงอัตราการเฉือน พบว่า ความหนืดของพอลิเมอร์ ผสมเหล่านี้ลดลงเมื่อเปลี่ยนแปลงอัตราการเฉือน

ACKNOWLEDGEMENTS

The author is grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Eduation and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium). The author would like to express the grateful appreciation to the author advisors, Asst. Prof. Pitt Supaphol and Dr.Manit Nithitanakul for their intensive suggestion, invaluable guidance and vital help throughout this research work.

The authors wish to thank Dr. Hoe H. Chuah and his co-workers of Shell Chemical Company (USA) Ltd. for supply of PTT and for their kind assistance on molecular weight measurements on all of the polyester resins received, Dr. Gi-Dae Choi and Soo-Min Lee of LG Chem (Korea) Ltd. for supply of PBT, and Indo PET (Thailand) Ltd. for supply of PET.

The author would like to give special thanks to Assoc. Prof. Anuvat Sirivat for providing technical knowledge and helpful suggestion and Ms.Ladawan Ruangchuay for providing program calculated degree of crystallinity. The author would like to sincerely thank all the staff of the Petroleum and Petrochemical College, Chulalongkorn University for their assistance and in helping the author to use the research facilities.

Ultimately, extreme appreciation is to the author family for their love, understanding, and encouragement during the author studies and thesis work.

TABLE OF CONTENTS

			PAGE
Titl	e Page		i
Ab	stract (in Eng	glish)	iii
Ab	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures PTER 1 INTRODUCTION II LITERATURE SURVEY 2.1 Isothermal and Nonisothermal Crystallization 2.2 Polyester Blending III EXPERIMENTAL 3.1 Materials 3.2 Experimental Procedure 3.2.1 Polymer Blend Preparation 3.2.2 Specimens Preparation 3.2.3 Characterization 3.2.3 Characterization 3.2.3.1 Thermal Analysis 3.2.3.2 Thermogravimetric Analysis 3.3.3.3 Crystal structure and Crystallinity 3.2.4 Tensile Properties 3.2.5 Rheological measurement	iv	
Acl	cnowledgem	ents	v
Tab	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables List of Figures PTER I INTRODUCTION II LITERATURE SURVEY 2.1 Isothermal and Nonisothermal Crystallization 2.2 Polyester Blending III EXPERIMENTAL 3.1 Materials 3.2 Experimental Procedure 3.2.1 Polymer Blend Preparation 3.2.2 Specimens Preparation 3.2.3 Characterization 3.2.3.1 Thermal Analysis 3.2.3.2 Thermogravimetric Analysis 3.3.3 Crystal structure and Crystallinity 3.2.4 Tensile Properties		vi
Lis	t of Tables		х
Lis	t of Figures		xii
CHAPTI	ER		
Ι	INTROD	UCTION	1
п		TUDE SUDVEV	
11		TURE SURVET	2
	2.1 Isothe		3
	2.2 Polye	ester Blending	6
III	EXPERI	MENTAL	
	3.1 Mater	rials	10
	3.2 Expen	rimental Procedure	10
	3.2.1	Polymer Blend Preparation	10
	3.2.2	Specimens Preparation	11
	3.2.3	Characterization	11
		3.2.3.1 Thermal Analysis	11
		3.2.3.2 Thermogravimetric Analysis	13
		3.3.3.3 Crystal structure and Crystallinity	13
	3.2.4	Tensile Properties	14
	3.2.5	Rheological measurement	14

IV	ISOTHERMAL MELT CRYSTALLIZATION AND	
	MELTING BEHAVIOR OF THREE DIFFERENT	
	LINEAR AROMATIC POLYESTERS	
	Abstract	15
	Introduction	16
	Theoretical Background	17
	Experimental	19
	Results and Discussion	21
	Conclusions	34
	Acknowledgements	36
	References	37
	Captions of Tables	39

V NONISOTHERMAL MELT CRYSTALLIZATION KINETICS OF THREE DIFFERENT LINEAR AROMATIC POLYESTERS

Captions of Figures

Abstract	57
Introduction	58
Theoretical Background	58
Experimental	63
Results and Discussion	64
Conclusions	71
Acknowledgements	72
References	73
Captions of Tables	75
Captions of Figures	76

40

VI	THERMAL, CRYSTALLIZATION, MECHANICAL,	
	AND RHEOLOGICAL CHARACTERISTICS OF	
	POLY(TRIMETHYLENE TEREPHTHALATE)/	
	POLY(ETHYLENE TEREPHTHALATE) BLENDS	
	Abstract	89
	Introduction	90
	Experimental	91
	Results and Discussion	94
	Conclusions	99
	Acknowledgements	100
	References	101
	Captions of Figures	102

VII THERMAL, CRYSTALLIZATION, AND RHEOLOGICAL CHARACTERISTICS OF POLY(TRIMETHYLENE TEREPH THALATE) /POLY(BUTHYLENE

	Abstract	116
	Introduction	117
	Experimental	118
	Results and Discussion	120
	Conclusions	126
	Acknowledgements	126
	References	128
	Captions of Figures	129
VIII	CONCLUSIONS	140

REFERENCES 144

PAGE

CHAPTER

APPENDICES		147
Appendix A	Thermal properties of blends	147
Appendix B	Mechanical property	148
Appendix C	Steady shear behavior	149
Appendix D	Dynamic shear behavior	151

153

LIST OF TABLES

TABLE

PAGE

CHAPTER III

3.1	The characteristics of PET, PTT, and PBT	10
3.2	Processing condition of twin screw extruder	11

CHAPTER IV

1	Overall crytsallization kinetics data for three polyesters	
	samples based on the Avrami model	41
2	Overall crytsallization kinetics data for three polyesters	
	samples based on the Tobin model	42
3	Overall crytsallization kinetics data for three polyesters	
	samples based on the Malkin model	43
4	Overall crytsallization kinetics data for three polyesters	
	samples based on the Urbanovici-Segal model	44
5	Fitting parameters for the best possible fits of the respective	
	rate parameters of three polyesters	45
6	Estimated equilibrium melting temperatures for PET, PTT,	
	and PBT according to linear and non-linear Hoffman-Week	
	extrapolations, along with other fitting parameters	46

CHAPTER V

1	Characteristic data from non-isothermal crystallization	
	exotherms for PET, PTT, and PBT	76
2	Nonisothermal crystallization kinetics of PET, PTT, and	
	PBT based on Avrami analysis.	77
3	Nonisothermal crystallization kinetics of PET, PTT, and	
	PBT based on Tobin analysis.	78

TABLE

PAGE

4	Nonisothermal crystallization kinetics of PET, PTT, and	
	PBT based on Ozawa analysis	79
5	Ziabicki's kinetic crystallizability parameters for PET, PTT,	
	and PBT samples calculated from the data of nonisothermal	
	crystallization	80
6	Effective energy barrier ΔE describing the overall	
	crystallization process of PET, PTT, and PBT samples	81

CHAPTER VI

1	Characteristic X-ray peaks and the total degree of	
	crystallinity of PTT, PET, and blends	103

CHAPTER VII

1	Characteristic X-ray peaks and the total degree of	
	crystallinity of PTT, PBT, and blends	130

APPENDICES

Al	Thermal properties of PTT/PET blends	147
A2	Thermal properties of PTT/PBT blends	147
B1	Tensile strength data of PTT/PET blends	148
C1	Shear viscosity vs shear rate of PTT/PET blends at 260°C	149
C2	Shear viscosity vs shear rate of PTT/PBT blends at 260°C	150
Dl	Complex viscosity vs frequency of PTT/PET blends at 260°C	151
D2	Complex viscosity vs frequency of PTT/PBT blends at 260°C	152

LIST OF FIGURES

FIGURE

PAGE

CHAPTER IV

1	Relative crystallinity as a function of time of PTT for two	
	crystallization temperatures	47
2	Half-time of crystallization, $t_{0.5}$, of PET, PTT and PBT as a	
	function of degree of undercooling	48
3	Reciprocal value of crystallization half-time, $t_{0.5}^{-1}$, of PET,	
	PTT and PBT as a function of degree of undercooling	49
4	Respective exponent of time specific to the Avrami, Tobin,	
	Malkin, and Urbanovici-Segal mocrokinetic models,	
	including the Urbanovici-Segal r parameter, as a function	
	of crystallization temperature	50
5	Respective kinetic rate of crystallization specific to the	
	Avrami, Tobin, Malkin, and Urbanovici-Segal mocrokinetic	
	models as a function of crystallization temperature.	51
6	Wide-angle X-ray diffractograms for PTT samples isothermally	
	crystallized from the melt state at different crystallization	
	temperatures	52
7	Apparent degree of crystallinity for PTT samples (analyzed	
	from the WAXD patterns) as a function of crystallization	
	temperature	53
8	Subsequent melting endotherms (recorded at 10° C·min ⁻¹) for	
	PTT samples isothermally crystallized from the melt state at	
	different crystallization temperatures. Peaks I, II, and III	
	denotes the low-, middle-, and high-temperature melting	
	endotherm, respectively	54

FIGURE

9 Observed melting temperature of the primary crystallites as
a function of crystallization temperature for PTT, shown
along with the linear Hoffman-Weeks extrapolation (solid line)
and the non-linear Hoffman-Weeks extrapolation (dotted line,
calculated using β^m=1.00 and a = 1.02)
10 Plots of the scaled observed melting temperature M = T_m^o/(T_m^o - T_m)

against the scaled crystallization temperature $X = T_{\rm m}^{\rm o}/(T_{\rm m}^{\rm o} - T_{\rm c})$ for various choice of the seeded equilibrium melting temperature $T_{\rm m}^{\rm o}$ for the observed $T_{\rm m}$ - $T_{\rm c}$ data of PTT 56

CHAPTER V

1	Nonisothermal melt crystallization exotherms for PTT	
	recorded at seven different cooling rates	82
2	Subsequent melting endotherms for PTT (recorded at a	
	heating rate of 10°C min ⁻¹) after nonisothermal crystallization	
	in DSC at seven different cooling rates	83
3	Relative crystallinity as a function of temperature for PTT	
	at seven different cooling rates	84
4	Relative crystallinity as a function of time for PTT at seven	
	different cooling rates	85
5	Relative crystallinity as a function of time of (a) PET,	
	(b) PTT, and (c) PBT for various cooling rates. Model	
	prediction based on Avrami and Tobin equations are	
	shown ass solid and dashed lines, respectively	86
6	Typical Ozawa analysis based on the nonisothermal	
	crystallization data for PTT	88

PAGE

PAGE

xiv

CHAPTER VI

1	The plots of the 10% weight loss temperature (T_{onset}) and	
	the 50% weight loss temperature (T_{50}) of PTT/PET blends	
	as a function of PTT content	104
2	(a) DSC cold crystallization and melting thermograms for	
	quenched PTT, PET, and PTT/PET blend samples recorded	
	during heating at 10° C·min ⁻¹ , and (b) DSC melt crystallization	
	exotherms for PTT, PET, and PTT/PET blend samples	
	recorded during subsequent cooling at 10°C·min ⁻¹	105
3	Observed glass transition temperature T_g for quenched PTT,	
	PET, and PTT/PET blend samples as a function of blend	
	composition	106
4	Cold-crystallization (peak) temperatures (T_{cc}) for quenched	
	PTT, PET, and PTT/PET blend samples as a function of	
	blend composition	107
5	Melt crystallization (peak) temperatures (T_c) for quenched	
	PTT, PET, and PTT/PET blend samples as a function of	
	blend composition	108
6	Melting (peak) temperature T_m characterizing the melting	
	of PTT and PET crystallites (after cold crystallization	
	process) for quenched PTT, PET, and PTT/PET blend	
	samples as a function of blend composition	109
7	Wide-angle X-ray diffractograms for PTT, PET, and PTT/PET	
	blend samples after non-isothermally crystallized from the	
	molten state in DSC cell at a cooling rate of 10°C-min ⁻¹	110
8	Apparent degree of crystallinity for PTT and PET component	
	for both pure and blend samples as a function of blend	
	composition	111
9	Tensile strength of PTT, PET, and blends as a function of	
	blend composition	112

FIGURE

PAGE

10	The steady shear viscosity (η) measured at 260°C for PTT,	
	PET, and PTT/PET blend samples as a function of shear rate	113
11	The zero shear viscosity values of PTT, PET and blends	
	as a function of PTT content	114
12	The plot of complex viscosity (η^*) at constant frequency	
	as a function of PTT content	115

CHAPTER VII

1	(a) DSC cold crystallization and melting thermograms for	
	quenched PTT, PBT, and PTT/PBT blend samples recorded	
	during heating at 10° C·min ⁻¹ , and (b) DSC melt crystallization	
	exotherms for PTT, PBT, and PTT/PBT blend samples	
	recorded during subsequent cooling at 10°C·min ⁻¹	131
2	Observed glass transition temperature T_{g} for quenched PTT,	
	PBT, and PTT/PBT blend samples as a function of blend	
	composition	132
3	Cold-crystallization (peak) temperatures (T_{cc}) for quenched	
	PTT, PBT, and PTT/PBT blend samples as a function of	
	blend composition	133
4	Melt crystallization (peak) temperatures (T_c) for quenched	
	PTT, PBT, and PTT/PBT blend samples as a function of	
	blend composition	134
5	Melting (peak) temperature T_m characterizing the melting	
	of PTT and/or PBT crystallites (after cold crystallization	
	process) for quenched PTT, PBT, and PTT/PBT blend	
	samples as a function of blend composition	135
6	Wide-angle X-ray diffractograms for PTT, PBT, and PTT/PBT	
	blend samples after non-isothermally crystallized from the	
	molten state in DSC cell at a cooling rate of 10°C min ⁻¹	136

1	Apparent degree of crystaninity for PTT and PBT component	
	for both pure and blend samples as a function of blend	
	composition	137
8	The steady shear viscosity (η) measured at 260°C for PTT,	
	PBT, and PTT/PBT blend samples as a function of shear rate	138
9	The dynamic complex viscosity (η^*) measured at 260°C for	
	PTT, PBT and PTT/PBT blend samples as a function of	
	frequency	139