DISSOLUTION OF ANALCIME: THE NATURE OF ACID ATTACK AND THE REACTION KINETICS

Ms. Tilya Jitapunkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2003

> -ISBN 974-17-2310-5

> > I2109598x

.

Thesis Title:	Dissolution of Analcime: The Nature of Acid Attack and the	
	Reaction Kinetics	
By:	Ms. Tilya Jitapunkul	
Program:	Petrochemical Technology	
Thesis Advisors:	Asst. Prof. Pomthong Malakul	
	Prof. H. Scott Fogler	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyalint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Mile

(Asst. Prof. Pomthong Malakul)

Al Scatt -or

(Prof. H. Scott Fogler)

(Assoc. Prof. Chintana Saiwan)

Kitipart Siemanard

(Dr. Kitipat Siemanond)

บทคัดย่อ

ติลยา จิตะพันธ์กุล : ปฏิกิริยาการละลายของอะนาซึม: การศึกษาธรรมชาติของการทำ ปฏิกิริยาของกรดและการศึกษาจลนศาสตร์ของปฏิกิริยา (Dissolution of Analcime: The Nature of Acid Attack and the Reaction Kinetics) อ. ที่ปรึกษา : ผศ. คร. ปมทอง มาลา กุล ณ อยุธยา และ ศ. คร. เอช สกอด ฟอกเลอร์ 70 หน้า ISBN 974-17-2310-5

เมทริกซ์อะซิไดซ์เซชั่น (Matrix acidization) เป็นวิธีการกระดุ้นการผลิดน้ำมันวิธีหนึ่ง ที่มีการใช้กันอย่างกว้างขวางในอุดสาหกรรม อย่างไรก็ตาม การใช้วิธีนี้ในบางครั้งได้ประสบ ปัญหา เนื่องจากการตกตะกอนของแร่ธาตุบางชนิด งานวิจัยนี้ศึกษาธรรมชาติในการทำปฏิกิริยา ของกรคกับอะนาซีม (Analcime) ซึ่งเป็นซีโอไลท์ชนิดหนึ่งที่พบในแหล่งน้ำมันโดยทำการ ทดลองในไวอัล ภายใต้สภาวะต่างๆ จากผลการทดลองพบว่า อนุภาคอะนาซีมแตกออกภายหลัง ทำปฏิกิริยากับกรด ซึ่งไม่เป็นไปตามชริงกิ้งกอร์โมเดล (Shrinking core model) แต่กลับ สนับสนุนสมมติฐานที่ว่ากรดแพร่เข้าไปทำปฏิกิริยาภายในโครงสร้างของอะนาซีม นอกจากนี้ยัง พบว่า ขนาดของอนุภาคอะนาซีมและความเข้มข้นของกรดมีผลกระทบต่อการแตกของอนุภาคใน ขณะที่ชนิดของกรดมีผลกระทบเพียงเล็กน้อย นอกจากนี้ยังได้มีการศึกษาจลนศาสตร์ของปฏิกิริยา การละลายของอะนาซีมในกรดซีตริก (Citric acid) จากการทดลองพบว่า อัตราการเกิดปฏิกิริยา ฟื้นที่ผิวภายนอกของอนุภาค แสดงให้เห็นว่าการเกิดปฏิกิริยาการละลายของอะนาซีมไม่ได้เพียง เกิดขึ้นจากปฏิกิริยาบนผิวภายนอกของอนุภาคเท่านั้น แต่ยังเกิดจากปฏิกิริยาที่เกิดขึ้นภายในโครง สร้างของอนุภาคอะนาซีม นอกจากนี้ยังพบว่า อัตราการละลายของอะนาซีมไม่ได้เพียง และ ซิลิคอน ออกจากโครงสร้างของอะนาซีมยังมีความแตกต่างกันอีกด้วย

ABSTRACT

4471034063	: PETROCHEMICAL TECHNOLOGY PROGRAM
	Tilya Jitapunkul: Dissolution of Analcime: The Nature of
	Acid Attack and the Reaction Kinetics
	Thesis Advisors: Asst. Prof. Pomthong Malakul, Prof. H.
	Scott Fogler, 70 pp., ISBN 974-17-2310-5
Keywords	: Acidizing/ Analcime/ Dissolution

Matrix acidization is one of oil stimulation methods frequently used in oil production industry. However, unforeseen problems sometime arise with the application of this technique due to mineral precipitation which leads to the need in developing a better understanding of the dissolution reaction. In this research, the nature of acid attack was studied by performing batch reaction in vials under various conditions. The results obtained from the breaking patterns of analcime particles did not support the shrinking core hypothesis but rather suggested that acid diffuses into analcime internal structure and dissolves it simultaneously with the external surface. This phenomenon appeared to be affected by the initial size of the particles and acid concentration whereas the acid type had shown to have little effect. In addition, we examined the reaction kinetics of the dissolution of analcime with citric acid in a batch reactor. It was found that the dissolution rate changed with the change in particle size and the dissolution rates normalized by specific surface area clearly confirmed the contribution of the internal diffusion to the dissolution of analcime. In this part of study, differences in the dissolution rates of Si, Al and Na were also observed.

ACKNOWLEDGEMENTS

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

It could not have been completed without all invaluable helps of the following individuals and organizations.

First of all, I would like to express my sincere gratitude to Professor H. Scott Fogler, my US advisor, Assistant Professor Pomthong Malakul, my Thai advisor, for their invaluable guidance, understanding, and constant encouragement throughout the course of the research and the great opportunity to perform my research at the University of Michigan, Ann Arbor, US. Their positive attitude significantly contributed to inspiring and maintaining my enthusiasm in the field.

I would like to express my special thanks to Assoc. Prof. Chintana Saiwan and Dr. Kitipat Siemanond for serving on my thesis committees. Their sincere suggestions are definitely imperative for accomplishing my thesis.

My gratitude is absolutely extended to all of the US Professors and all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all necessary knowledge and their kind assistance and cooperation. I am always very proud to be their student.

My thankfulness is also offered to my colleagues, Ryan Hartman and Adivaraha Jayshankar for their help and valuable comments.

My gratefulness is conveyed to all members of the Porous Media Group and Thai Ph.D. students at the University of Michigan, especially Veerapat Tantayakom, Piyarat Wattana, and Duc Anh Nguyen for generously providing me great welcome and warm-heartedness during ten months of my stay there.

Furthermore, I would like to take this important opportunity to thank all of my graduate friends for their unforgettable friendship and hospitality.

Finally, my deepest appreciation and whole-hearted gratitude are everlastingly dedicated to my beloved family whose endless love, support, motivation, and understanding play the greatest role in my success.

TABLE OF CONTENTS

	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xi
]]	R	
	INTRODUCTION	1
	LITERATURE REVIEW	3
	2.1. Oil Production and Related Problems	3

PAGE

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Oil Production and Related Problems	3
	2.1.1 Formation Damage	3
	2.1.2 Oil Well Stimulation	4
	2.2 Matrix Acidizing	5
	2.2.1 Acid Selection	6
	2.2.2 Problems in Matrix Acidizing	6
	2.3 Zeolite: Analcime	9
	2.4 Citric acid	10
	2.5 Reaction Mechanisms	12
	2.6 Reaction Kinetics	13
	2.7 The Shrinking Core Model	14
	2.8 Basic Principle of Diffusion	17
	2.9 Crystal Dissolution	18
III	EXPERIMENTAL	19
	3.1 Materials	19

3.2 Pretreatment of Analcime 20

	3.3 Char	racterization of Analcime	20
	3.4 The	Study on the Nature of Acid Attack	21
	3.5 The	Study on the Reaction Kinetics	22
IV	RESULT	FS AND DISCUSSION	24
	4.1 The	Study of the Nature of Acid Attack	24
	4.1.1	Effect of Water and Filtration to Analcime	
		Particles	26
	4.1.2	The Effect of the Particle Size on the Breaking	
		of Particles	29
	4.1.3	The Effect of Acid Type on the Breaking of	
		Particles	31
	4.1.4	The Effect of Acid Concentration on the	
		Breaking of Particles	32
	4.1.5	The Effect of Surface Composition on	
		the Breaking of Particles	32
	4.1.6	The Change in Surface Composition	33
	4.1.7	Reaction Order of the Dissolution Reaction	34
	4.2 Stud	y of the Dissolution Kinetics	35
	4.2.1	Effect of Initial Analcime Particle Size on the	
		Dissolution Rate	36
	4.2.2	Effect of External Diffusion on the	
		Contribution of Dissolution	38
V	CONCL	USIONS AND RECOMMENDATIONS	39
	5.1 Con	clusions	39
	5.2 Reco	ommendations	40
	REFERI	ENCES	41

APPENDICES		44
Appendix A	Calculation of Facial Surface Area	
	Equivalent Diameter and Specific	
	Surface Area	44
Apendix B	Kinetics Analysis of Analcime	
	Dissolution in Batch Experiments	46
Apendix C	Calculation Method for Deprotonation	
	Curve of Citric Acid	49
Apendix D	Experimental Data	56

CURRICULUM VITAE

70

LIST OF TABLES

TABLE		PAGE
2.1	2.1 Reactions with Injected Fluids	
3.1	Properties of analcime	19
3.2	Analcime elemental analysis	20
4.1	Initial rate per external surface area	38
B.1	Informatin of Al element in sample solution from	
	dissolution experiment in slurry reactor (analcime	
	initial particle size of 0.212-0.300 mm, 0.1M Citric acid,	
	250 rpm, 25°C)	47
D.1	The initial rates of Si, Al and Na for each experiment	56
D.2	The size distribution of analcime (0.045-0.075 mm) before	
	the reaction	57
D.3	The size distribution of analcime (0.045-0.075 mm) after	
	the dissolution reaction in 3M citric acid (series 1)	57
D.4	The size distribution of analcime (0.045-0.075 mm) after	
	the dissolution reaction in 3M citric acid (series 2)	58
D.5	The size distribution of analcime (0.045-0.075 mm) after	
	the dissolution reaction in 0.1M HCl (series 1)	58
D.6	The size distribution of analcime (0.045-0.075 mm) after	
	the dissolution reaction in 0.1M HCl (series 2)	59
D.7	The size distribution of analcime (0.71-1.18 mm) before	
	the reaction	59
D.8	The size distribution of analcime (0.71-1.18 mm) after	
	the dissolution reaction in 3M citric acid (series 1)	60
D.9	The size distribution of analcime (0.71-1.18 mm) after	
	the dissolution reaction in 3M citric acid (series 2)	61
D.10	The size distribution of analcime (0.71-1.18 mm) after	
	The dissolution reaction in 0.1M HCl (series 1)	61
D.11	The size distribution of analcime (0.71-1.18 mm) after	
	The dissolution reaction in 0.1M HCl (series 2)	62

D.12	The size distribution of analcime (0.71-1.18 mm) after	
	The dissolution reaction in 0.2M HCl (series 1)	63
D.13	The size distribution of analcime (0.71-1.18 mm) after	
	The dissolution reaction in 0.2M HCl (series 2)	64
D.14	Mass balance for the experiment of analcime	
	(0.045-0.075 mm) with 3M citric acid	65
D.15	Mass balance for the experiment of analcime	
	(0.045-0.075 mm) with 0.047M HCl	66
D.16	Mass balance for the experiment of analcime	
	(0.045-0.075 mm) with 0.1M HCl	66
D.17	Mass balance for the experiment of analcime	
	(0.71-1.18 mm) with 3M citric acid	67
D.18	Mass balance for the experiment of analcime	
	(0.71-1.18 mm) with 0.047M HCl	67
D.19	Mass balance for the experiment of analcime	
	(0.71-1.18 mm) with 0.1M HCl	68
D.20	Mass balance for the experiment of analcime	
	(0.71-1.18 mm) with 0.2M HCl	69

LIST OF FIGURES

FIGURE		PAGE
2.1	Framework structure of analcime	9
2.2	Deprotonation of citric acid	11
2.3	The shrinking core model for the dissolution reaction of	
	analcime in acid	15
3.1	Experimental procedures for the study of the nature of acid	
	attack	22
3.2	Slurry reactor for dissolution reaction study	23
4.1	Analcime in the sieve size of 0.71-1.18 mm before and after	
	reacting with 0.2M HCl	24
4.2	The change of size distribution as a function of time	
	(sieve size 0.71-1.18 mm, 0.2M HCl, 25°C)	25
4.3	The diagram shows the hypothesis of the mechanism of	
	breaking of analcime particles	26
4.4	The difference in size distribution between dry analcime	
	and analcime left in deionized water for 0 hr and 24 hr	
	(sieve size 0.71-1.18 mm)	27
4.5	The difference in size distribution between dry analcime	
	and analcime left in deionized water for 0 hr and 24 hr	
	(sieve size 0.045-0.075 mm)	27
4.6	The surface of analcime particles before and after mixing	
	with deionized water and the filtration	
	(sieve size 0.045-0.075 mm)	28
4.7	The change in particle size analcime	
	(sieve size 0.71-1.18 mm, 0.1M HCl, 25°C)	29
4.8	The change in particle size analcime	
	(sieve size 0.045-0.075 mm, 0.1M HCl, 25°C)	30
4.9	The change in size distribution as the time pass	
	(sieve size 0.71-1.18 mm, 3M citric acid, 25°C)	31

4.10	The change in size distribution as the time pass	
	(sieve size 0.71-1.18 mm, 0.2M HCl, 25°C)	31
4.11	Different surface of analcime particles (sieve size	
	0.71-1.18 mm) before and after reacting with 0.2M	
	hydrochloric acid for 24 hr at 25°C	33
4.12	Initial rate of dissolution reaction as a function of acid	
	concentration (sieve size 0.71-1.18 mm, 25°C)	34
4.13	Concentration of Al, Si and Na per initial weight of	
	analcime as a function of time	
	(sieve size 0.71-1.18 mm, 0.1M citric acid, 25°C)	35
4.14	Al concentration per initial weight of analcime as a	
	function of time for different initial sizes of analcime	
	particles (0.1M citric acid, 250 rpm, 25°C)	36
4.15	Al concentration per specific surface area of analcime as a	
	function of time for different initial sizes of analcime	
	particles (0.1M citric acid, 250 rpm, 25 °C)	37
A.l	Analcime particles in the size of 0.212-0.300 mm	44
B.1	Calibration curve of Al	46
B.2	Al concentration per g of initial analcime as a function of	
	time	48
B.3	Al concentration per external surface area of initial	
	analcime as a function of time	48