STUDY OF DIPHENYLMERCURY REMOVAL FROM SIMULATED CONDENSATES

Mr. Siriwat Taechawattanapanich

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

Case Western Reserve University, The University of Michigan,
The University of Oklahoma, and Institut Français du Pétrole

2004
ISBN 974-9651-14-6

I 21618689

Thesis Title:

Study of Diphenylmercury Removal from Simulated

Condensates

By:

Mr. Siriwat Taechawattanapanich

Program:

Petroleum Technology

Thesis Advisors:

Assoc. Prof. Chintana Saiwan

Dr. Sophie Jullian

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint.
College Director
(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Assoc. Prof. Chintana Saiwan)

(Dr. Sophie Jullian)

(Asst. Prof. Pomthong Malakul)

(Prof. Pramote Chaiyavech)

บทคัดย่อ

ศิริวัฒน์ เตชะวัฒนาพาณิชย์: ศึกษาการกำจัดสาร ใดฟืนิลเมอร์คิวรีออกจากน้ำมันคอน เดนเซทจำลอง (Study of Diphenylmercury Removal from Simulated Condensates) อ. ที่ ปรึกษา: รศ. คร. จินตนา สายวรรณ์ และ คร. โซเฟีย จูเลียน 57 หน้า ISBN 974-9651-14-6

เป็นที่ทราบกันนานกว่าหลายสิบปีแล้วว่าสารปรอทก่อให้เกิดการสึกกร่อนของชิ้นส่วน อปกรณ์ที่ทำจากโลหะทองแดงและโดยเฉพาะโลหะอลูมิเนียมที่ใช้ในกระบวนการผลิตรวมถึงการ เป็นพิษต่อตัวเร่งปฏิกิริยา แต่มีงานวิจัยน้อยมากตีพิมพ์การใช้ตัวคูคซับที่มีประสิทธิภาพเพื่อกำจัด ปรอท ด้วยเหตุดังกล่าว งานวิจัยนี้จึงมุ่งศึกษาการกำจัดสารปรอทในน้ำมันคอนเดนเซทจำลองโดย ใช้สารปรอทตัวแทนชนิคไคฟีนิลเมอร์คิวรีปนเปื้อนในนอร์มอลแฮปเทน และใช้ตัวดูคซับ ซีโอไลท์สามเอ สี่เอ ห้าเอ โซเคียมเอ็กซ์ และโซเคียมวาย และตัวคูคซับแบบถ่านกัมมันต์ โคย ทคลองทั้งในแบบกะและแบบต่อเนื่อง การศึกษาในระบบกะเพื่อดูผลกระทบจากคุณ-ลักษณะเฉพาะของตัวคูคซับเช่น ขนาคโพรงหน้าต่างและไอโซเทิร์มที่มีผลต่อการคูคซับ พบว่า โมเลกูลของไคฟีนิลเมอร์คิวรีสามารถผ่านเข้าไปภายในโพรงของซีโอไลท์โซเคียมเอ็กซ์ โซเคียมวาย แต่ผ่านได้เพียงบางส่วนในซีโอไลท์ห้าเอ และไอโซเทิร์มของการคุคซับสอคคล้องได้ ที่แสดงการดูคซับซึ่งเกิดขึ้นที่พื้นที่ผิวทั้งภายในโพรงและพื้นที่ผิว ดีกับ โมเคล ใบ ใชแลงเมียร์ ภายนอกของตัวดูดซับ ส่วนการดูดซับของซีโอไลท์สามเอและสี่เอ เกิดขึ้นที่พื้นที่ผิวภายนอก เท่านั้น การศึกษาการดูคซับทางด้านจลน์ศาสตร์ที่อุณหภูมิ 25 องศาเซลเซียส ทำให้ทราบว่า ค่าคงที่ของการแพร่ของโมเลกูลมีค่าต่ำมากซึ่งเป็นข้อจำกัดการคูดซับสารใดฟีนิลเมอร์คิวรี ส่วน การศึกษาแบบต่อเนื่องโดยใช้ซีโอไลท์โซเดียมเอ็กซ์และโซเดียมวาย ทำให้ทราบเบื้องต้นว่าการ ดูคซับสารไคฟีนิลเมอร์คิวรีมีกลไกการดูคซับทางเคมีมากกว่าทางกายภาพ

ABSTRACT

4573011063: PETROLEUM TECHNOLOGY

Siriwat Taechawattanapanich: Study of Diphenylmercury removal

from Simulated Condensates

Thesis Advisors: Assoc. Prof. Chintana Saiwan and Dr. Sophie

Jullian, 57 pp. ISBN 974-9651-14-6

Keywords: Organomercury / Diphenylmercury / Mercury Removal /

Condensates / Adsorbents

Although the corrosion of process equipment made of copper and especially aluminum and some poisoning of noble metal catalysts caused by mercury has been known for decades, little research has been published on the feasibility and efficiency of adsorbents in mercury removal. In this regard, the study of mercury removal from a substitute condensate of diphenylmercury contaminated in n-heptane on 3A, 4A, 5A, NaX and NaY zeolites and activated carbon was carried out in batch and continuous operations. In a batch adsorption system, the adsorption characteristics such as pore size effect and adsorption isotherm revealed that the diphenylmercury molecules can penetrate into the supercage of the NaX and NaY zeolites but only partially of the 5A zeolite, and a bi-Langmuir model can fit well with the experimental data. The adsorption of the diphenylmercury occurs only on the external surfaces of the 3A and 4A zeolites. In the kinetic study of the adsorption at 25°C, very low diffusivity constants indicate the limitation of diphenylmercury molecule adsorption. In a continuous adsorption system, the results of diphenylmercury adsorption on NaX and NaY zeolites revealed that the adsorption mechanism is chemisorption rather than physisorption.

ACKNOWLEDGEMENTS

This work would not have been possible without the assistances of the followings.

First of all, I am grateful for the partial scholarship and partial funding of the thesis work provided by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PTT Consortium).

I am deeply indebted to Assoc. Prof. Chintana Saiwan, Dr. Sophie Jullian and Dr. Patrick Briot for providing useful recommendations, creative comments, and encouragement throughout the course of my work.

I would like to extent my special thanks to Prof. Vincent Coupart and Dr. Charles-Phillippe Lienemann of Institut Français du Pètrole, France, for providing useful recommendations while I carried on a part of the research work in France.

I would like to thank Asst. Prof. Pomthong Malakul and Prof. Pramote Chaiyavech who kindly served as the thesis committee.

Furthermore, I would like to take this important opportunity to thank all of my friends for their unforgettable friendship and hospitality, especially Ms.Somlak Ittisanronnachai, Mr.Frederic Capuano, Ms. Julie Ginatta and Mr. Laurent Lemaitre.

Two years in The Petroleum and Petrochemical College, Chulalongkorn University, will be meaningless to me, if there will not be my friends and PPC's staffs who support, encourage and welcome me all the time. Thank you very much to have all of you in this college. I had the most enjoyable time working with all of them.

Finally, I would like to express my whole-hearted gratitude to my parents and family for their love, endless encouragement, and measureless support.

TABLE OF CONTENTS

		PAGE	
	Title Page		
	Abstract (in English)	iii	
	Abstract (in Thai)		
	Acknowledgements		
	Table of Contents	vi	
	List of Tables		
	List of Figures	X	
СНАРТЕ	$\mathbf{E}\mathbf{R}$		
I	INTRODUCTION	1	
II	BACKGROUND AND LITERATURE SURVEY		
	2.1 Properties of Mercury and Mercury Compounds	3 4	
	2.2 Mercury in Hydrocarbons	5	
	2.3 Effects of Mercury on Processing	7	
	2.4 Mercury Removal Systems	8	
	2.5 Background of the Invention	12	
III	EXPERIMENTAL	16	
	3.1 Materials	16	
	3.2 Experimental	16	
	3.2.1 Surface Area Analysis	16	
	3.2.2 X-Ray Diffraction (XRD) Analysis	17	
	3.2.3 Thermo Gravimetric Analysis	17	
	3.2.4 Cold Vapor Atomic Absorption Spectrom	netric	
	Analysis	17	

CHAPTER			PAGE
	3.2.5	Mercury Standard Solutions for Cold Vapor	
		Atomic Absorption Spectrometric Analysis	18
	3.2.6	Preparation of Diphenylmercury in n-Heptane	19
	3.2.7	Preparation of Other Reagents for Cold Vapor	
		Atomic Absorption Spectrometric Analysis	20
	3.2.8	Adsorption of Diphenylmercury in Plastic	
		Containers (HDPE)	20
	3.2.9	Kinetic Studies of Diphenylmercury Removal	20
	3.2.10	0 Effect of Pore Size on Diphenylmercury Adsorption	n 20
	3.2.1	1 Adsorption Isotherms of Diphenylmercury on	
		Adsorbents	21
	3.2.12	2 Pilot Operations	21
IV R	RESULT	S AND DISCUSSION	23
4	.1 Adso	orbents	23
	4.1.1	BET Surface Areas	23
	4.1.2	Chemical Composition	24
	4.1.3	Thermo Gravimetric Analysis	25
4	.2 Adso	orption of Diphenylmercury on Plastics (HDPE)	
	Cont	tainers	25
4	.3 Kine	etic Studies of Diphenylmercury	26
4	.4 Effec	ct of Pore Size on Diphenylmercury Adsorption	30
4	.5 Isoth	nems of Diphenylmercury Adsorption on Adsorbents	31
	4.5.1	Langmuir Model	32
	4.5.2	Bi-Site Langmuir Model	36
4	6 Brea	kthrough Curve Study	38

CHAPTER			PAGE
V	CONCLUSIONS AND RECOMMENDATIONS		
	5.1 Conclusi	ons	41
	5.2 Recomm	endations	42
	REFERENC	ES	43
	BIBLIOGRAPHY		39
	APPENDICE	ES	45
	Appendix A	The quantity of cages based on NaY chara	ecteristic
		calculation	45
	Appendix B	The experimental data	45
	CURRICUL	UM VITAE	57

LIST OF TABLES

ΓABLI	E	PAGE
2.1	Physical properties of elemental mercury	4
2.2	Boiling points of volatile mercury compounds	6
2.3	Solubility of some mercury compounds in hexane	6
2.4	Mercury removal systems for hydrocarbons	9
4.1	Thermo gravimetric analysis results	25
4.2	Calculation of intracrystalline diffusivity constant	29
4.3	Survey of literature for intracrystalline diffusivity constant	29
4.4	Langmuir model coefficients versus types of solids	34
4.5	Bi-site Langmuir model coefficients versus types of solids	36
4.6	Contribution of each kind of sites to the total diphenylmercury	
	adsorption	37

LIST OF FIGURES

FIGUE	RE	PAGE
3.1	Small pilot plant unit number U844, IFP Lyon, France	22
4.1	BET characterization of adsorbents: 3A, 4A, 5A, NaX and NaY	
	zeolites and activated carbon (AC,coconut shell based carbon)	23
4.2	X-Ray diffraction of zeolite adsorbents	24
4.3	Adsorption of diphenylmercury in n-heptane in plastic (HDPE)	26
	containers	
4.4	Kinetics of diphenylmercury adsorption on various adsorbents	27
4.5	Evolution of q/q_{max} ratio versus time	28
4.6	Effect of zeolite pore opening size on diphenylmercury adsorption	30
4.7	Diphenylmercury molecule model	31
4.8	Diphenylmercury adsorption versus equilibrium diphenylmercury	
	concentration (experimental results)	32
4.9	Determination of the one site Langmuir model coefficients	33
4.10	Comparison between experimental results and the one site	
	Langmuir model	34
4.11	Comparison between experimental results and bi-site Langmuir mode	el 37
4.12	Breakthrough curves, plotting the ratio of the effluent concentration	
	of DPM, C, to initial concentration, C ₀ (2100 ppb), versus time for	
	NaX and NaY zeolites in continuous system tested in unit U844	38
4.13	Logarithm of concentration versus time	40