
BACKGROUND AND LITERATURE SURVEY
CHAPTER II

2.1 Overview of Data Reconciliation (DR)

In a modem chemical plant, process measurements are used in a variety of 
activities such as planning, process control, optimization, and performance 
evaluation. The presence of random and nonrandom errors (gross errors) in “raw” 
measurement data, i.e. measurement data collected directly from plant instruments, 
leads to inaccurate process data, which do not even satisfy the steady state material 
and energy balances of the process. Such erroneous process data easily lead to 
deterioration in plant performance. The problem of improving the accuracy of 
process data so that they are consistent with material and energy balances of the 
system is known as data reconciliation. Process data after being treated by data 
reconciliation technique is called reconciled data. Simultaneously, there is also the 
problem of estimating unmeasured process variables, which is known as coaptation.

Data reconciliation is the technique to improve the accuracy of process data 
by making use of process constraints (typically material and energy balances).

2.2 Formulation of Data Reconciliation Problem

The essence of data reconciliation is that given the process measurements y  
from the plant, we want to estimate the process state X, which satisfies the process 
constraints. We denote these estimated (or reconciled).values of process data as X .
In general, at steady state and in the absence of gross errors, the model for the 
measurements can be described as:
y  = X + E (2.1)
Where y  is a vector of ท measurements, X is the corresponding vector of the true 
value of the measured variables and fis  the vector of unknown random errors.

Now we want to obtain jc ะ vector of estimated values of measured variables 
(the estimates). In a probabilistic framework, this problem can be approached with
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the laws of probability and maximum likelihood principle by maximizing the 
probability function of the difference between the measurements y  and the 
estimations X , subject to the constraints. In fact, data reconciliation problem is an 
optimization problem. If random errors are assumed to follow a multivariate normal 
distribution with zero mean and known variance (which is usually the case), then we 
have the conventional weighted least-squares objective function, which is the most 
widely used form of objective function for data reconciliation problem, as follows:
MinO'-*)T‘S''I(>-*) (2 .2 )
Subject to process constraints.
When random errors are assumed to follow a multivariate normal distribution, 
measurements y  also follow multivariate normal distribution with the expected value 
EM =  EM + E[f] = X  and the variance given by matrix ร. ร  is the variance- 
covariance matrix of measurements, and usually is a diagonal matrix: ร  = diag 
0 CC1,CC2 ... a n) with ay. measurement noise standard deviation

Process constraints can be equality constraints G (x) = 0 (typically material 
and energy balances) or both equality and inequality constraints in which inequality 
constraints are usually bounded limitations on values of process variables: lower 
limits < X < higher limits (for example, 0 < molar fraction < 1) or 
physical/thermodynamics limitations such as temperature of hot stream > 
temperature of cold stream (in heat exchangers). The most widely used process 
constraints are simple material balances. The reason is that we want to improve the 
accuracy of process data by making use of process constraints, so every parameter in 
process constraints model should be as accurate as possible since inaccurate 
parameters leads to inaccurate estimates of process variables and that makes the 
problem even worse.

2.3 Redundancy and Observability

Redundancy and observability of a measurement are inherently associated 
with data reconciliation problem since data reconciliation can not be conducted 
without redundancy of measurements. Besides, in process plants, there are hundreds
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of variables and, for technical and economics reasons, it is not possible to measure 
all of them. It is thus important to know for the given process and a set of measured 
variable, which of the unmeasured variable can be estimated. The concept of 
observability deals with this issue.
Definition of observability and redundancy (Narasimhan and Jordache, 2000):

Observability: a variable is said to be observable if it can be estimated by 
using the measurements and steady-state process constraints.

Redundancy: a measured variable is said to be redundant if it is observable 
even when its measurement is removed.

From the above definition of observability, it is obvious that a measured 
variable is observable, since its measurement provides an estimate of the variable. 
However, an unmeasured variable is observable if it can be indirectly estimated by 
exploiting process constraint relationships and measurements in other variables. 
Measured variables are redundant if they can also be estimated indirectly through 
other measurements and constraints even when their measured values are eliminated.

2.4 Data Reconciliation In Linear Steady State System With All Variables 
Measured

Now if the system is linear and in the absence of inequality constraints, the 
process constraints model is:

Where A  is m  X ท matrix containing parameters for process constraints model, 
m : number of process constraint equations. A  is often called the constraint matrix. 
The data reconciliation problem is given by (2.2) and the process constraints are 
given by (2.3). This case is the simplest case which is hardly found in real cases 
because the process constraints model contains only measured variables that are 
present in the objective function. The analytical solution to the above problem can 
be obtained using the method of Lagrange multipliers (Mah, 1990):

A x  =  0 (2.3)

5 = y  -  SAt (A S A t )■ ' Ay

or x  = [ I - S A T{A S A TY xA ]y  = By (2.5)
(2.4)
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Equation 2.4 shows that the estimates are obtained using a linear 
transformation of the measurements. The estimates, therefore, are also normally 
distributed, with expected value and variance-covariance matrix given by 
(Narasimhan and Jordache, 2000):

Equation 2.6 implies that the estimates are unbiased, which is a property of 
maximum likelihood estimates for the linear systems. Equation 2.7 gives a measure 
of the accuracy of the estimates.

2.5 Data Reconciliation In Linear Steady State System With Both Measured 
And Unmeasured Variables

For partially measured system, the reconciliation problem is usually solved 
by decomposing it into two subproblems. In the first one, the redundant measured 
variables are reconciled, followed by the coaptation problem in which the observable 
unmeasured variables are estimated. To reconcile redundant measured variables, we 
need to derive constraints involving only measured variables that are present in the 
objective function. This can be accomplished in two ways. In graph theory, the 
reduced process graph obtained by pairwise aggregation of nodes linked by edges of 
unmeasured streams renders US constraints involving only measured variables (Mah, 
1990). On the other hand, this can be done mathematically by making use of 
projection matrix developed by Crowe (1983). After we have obtained estimates of 
measured variables through data reconciliation, the observable unmeasured variables » 
can then be estimated from measured variables through process constraints.
To handle this problem mathematically, we divide the variables into two sets: the 
vector X  of measured variables and the vector น of unmeasured variables, and the 
process constraints are recast in terms of both the measured and unmeasured 
variables as follows:

Where X  is vector (ท X 1)  of measured variables, น is vector ( p  X 1 ) of unmeasured 
variables, A x and A u are of dimensions m x n  and m  X p ,  respectively.

E[ X  ] = B E {y ) = B x  = X
Cov[ .V ] = E { ( B y ) ( B y f }  =  B S B 1

(2.6)
(2.7)

A x X  + A U U  =  0 (2.8)
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We want to eliminate unmeasured variables from equation 2.8. This is done 
by premultiplying the constraints by a matrix p  called projection matrix. The matrix 
p  should satisfy the property:
PAu =  0 (2.9)
After premultiplying equation 2.8 by matrix p , we get the reduced set of constraints 
involving only measured variables as:
P A xx  =  0 (2.10)
The number of constraints in the reduced set is known as degrees of redundancy.
The data reconciliation problem is also given by (2.2), the process constraints are 
given by (2.10). Similar to equation 2.4, the analytical solution to the above problem 
is given as (the matrix A  being replaced by the reduced matrix P A X): 
x  = y -  S (PAx )r [(PAx )S (P A x )T]- '(P A x )y  (2.11)

Substituting X into equation 2.8, the estimates of unmeasured variables นิ 
are then obtained. If all the unmeasured variables are observable (or the columns of 
A u are linearly independent), then unique estimates for the unmeasured variables น 
exist and are obtained by least-square approximation solution (Narasimhan and 
Jordache, 2000):
นิ = - { A Tu Auy \ A xî )  (2.12)

There are many ways to find the projection matrix p  and the most efficient 
one is the QR factorization of the matrix A u. Properties and construction of 
projection matrix p  were discussed by Narasimhan and Jordache (2000).

2.6 Importance of Gross Error Detection (GED)
%■►

Gross errors are systematic errors that can exist in measurements 
(measurement biases) and process model (process leaks). Measurement bias relates 
to malfunction of instruments caused by miscalibration, improper installation, 
instrument degradation, etc, and is the more prevalent form of gross error. Leaks in 
units (tanks, heat exchangers...) in the process system make material flow 
imbalanced. Even when only one gross error exists, it deteriorates accuracy of all 
measurements in the process system through “ sm earing e ffe c t” of data reconciliation.
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The reason is that a large deviation from true value in one measurement (i.e. gross 
error) will cause a series of small “corrections” made to other measurements through 
data reconciliation treatment. Thus the presence of gross errors can give rise to bad 
data, and invalidate the statistical basis of data reconciliation. Therefore it is crucial 
that gross errors are detected, identified and eliminated.

2.7 Hypothesis Testing For Gross Error Detection

There are various techniques for detecting and identifying gross errors, the 
most common used ones are based on statistical hypothesis testing, some are capable 
of detecting measurement bias only while some are capable of detecting both 
measurement bias and process leaks. The basis idea is to test the measured data 
against alternative hypotheses. They are the n u l l  h y p o t h e s i s  H o ,  i.e. no gross error is 
present, and the a l t e r n a t i v e  h y p o t h e s i s  H i ,  i.e. one or more gross errors are present in 
the measurements. All statistical techniques for choosing between these two 
hypotheses make use of a t e s t  s t a t i s t i c  which is the function of the measurements and 
constraint model. The test statistic is compared with a prespecified threshold value 
and the null hypothesis is rejected or accepted, respectively, depending on weather 
the statistic exceeds the threshold or not. The threshold value is also known as the 
test criterion or the critical value of the test.

The outcome of hypothesis testing is not perfect. A statistical test may 
declare the presence of gross errors, when in fact there is no gross error (Ho is true). 
In this case, the test commits a T y p e  I  e r r o r  or give rise to a false alarm. On the 
other hand, the test may declare the measurements to be free of error, when in fact 
one or more gross error exists (t y p e  I I  e r r o r ) .  The p o w e r  of a statistical test, which is 
the probability of correct detection, is equal to 1 -  Type II error probability. The 
power and Type I error probability of any statistical test are intimately related. By 
allowing a larger Type I error probability, the power of a statistical test can be 
increased (more aggressive way) and vice versa (more conservative way). The test 
criterion can be selected so that the probability of Type I error is less than or equal to 
a specified value a  which is also referred to as the l e v e l  o f  s i g n i f i c a n c e  for the 
statistical test.
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We consider here the cases of steady-state systems and lin e a r constra int 
models. The measurement model, equation 2.1, is modified to allow for the possible 
presence of gross errors:
y = x + £ + S  (2.13)
where 8  is the gross error vector whose elements are the magnitudes of the gross 
errors.
The linear constraint model is given by:
A x  =  c (2.14)
Where A  is the linear constraint matrix and the vector c contains known coefficients 

(typically c is a zero vector).
The first two tests are based on the vector o f  balance residuals, r , which is given by: 
r = A y - c

As random errors £ are assumed to follow normal distribution, the measurements y  
and residuals r  are also normally distributed.
Under Ho, the expected value of r  is given by:
E[r] = E [A y  - c ] =  A E (y ) - c =  A x  - c - 0 .  (2.15)
And the covariance matrix of r is given by:
V =cov[r] = A S A t (2.16)
Where ร  is the variance-covariance matrix of measurements^
It has been shown that if £ is normally distributed; r  follows a t-variate normal 
distribution under Ho where t is the rank of matrix A  (Mah, 1990).

2.7.1 The Global Test
This test is capable of detecting but not identifying gross errors. It . 

uses the test statistic given by:
y = r TV I r  (2.17)
It has been pointed out that the global test statistic is actually the optimal data 
reconciliation objective function (Narasimhan and Jordache, 2000). It follows chi- 
square distribution ( j f - distribution) with t degrees of freedom under Ho- If the test 
criterion is chosen as X 2! -a, t (recall that a  is the level of significance, t is the rank of 
matrix A )  then Ho is rejected and a gross error is detected if y  > 2 ?  1 - a ,  t.
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The ch ief drawback o f  the global test is that the test statistic applies to 
the w hole process flowsheet. Once the presence o f  gross errors is detected, a 
separate procedure is required to identify them.

2.7.2 The Constraint Or Nodal Test 
The test statistics are given by:

i  =  1 ,2 , . .m  (m  is number o f  constraints) (2.18)

They fo llow  a standard normal distribution N (0,1) under Ho
The test statistic proposed by Crowe (1989), which is given by:

* โ*''1'-]/
^ ï i

i =  1 ,2 ,..m (2.19)

is called the maximum power (MP) constraint test since it has the maximum power.
Unlike the global test, the constraint test processes each constraint 

residual separately and gives rise to m  univariate tests. Since multiple tests are 
performed using the same critical value, the probability o f  Type I error is supposed to 
be more than the specified value o f  or. To control the type I error probability, the 
follow ing m odified level o f  significance p  was proposed (Mah and Tamhane, 1982): 
P  =  \ - ( \ - a ) Vm (2.20)
Alternatively, R ollins and Davis (1992) proposed the use o f  a critical value based on 
the Bonferroni confidence interval given by:
p  = ๙ m  (2.21)
The test criterion for all the constraint tests can be chosen as Z\-p/2 .

2.7.3 The M easurement Test
The third test is based on the vector o f  measurement adjustments: 

a  =  y  - X = S A  T(A S A  y  A y  (2.22)
where X are reconciled estim ates o f  the process variables.
Under Ho, measurement adjustments a  follow s a multivariate normal distribution 
N (0, พ  ), where:
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พ ี = cov(a) = S A T( A S A Ty 1A S
The measurement test statistics are given as:

(2.23)

(2.24)

They fo llow  a standard normal distribution N (0,1) under Ho-
The maximum power (M P) measurement test proposed by Mah and 

Tamhane (1982) is obtained by premultiplying a by ร ' 1:
d  =  ร - 1 a (2.25)
Under Ho, d  is also normally distributed with zero mean and a covariance matrix

univariate tests. The type I error probability w ill be less than or equal to a  i f  the test 
criterion is chosen as Z up/2 , where p  is given by equation 2.20 or 2.21 with m  being 
replaced by ท,  the number o f  univariate measurement tests.

Am ong the three tests already shown, the measurement test can directly
identify location o f  the gross error, but measurement bias only. The measurement yj
that corresponds to the test statistic Za,j or Z d j  that exceeds the critical value is
suspected o f  containing bias. However, the measurement test requires data
reconciliation first. Whereas the global test doesjnot require data reconciliation but it *
requires additional identification. The nodal test also does not require data 
reconciliation and identification problem is easier than global test, moreover, it can 
detect both measurement bias and process leak. This is based on the principle: one 
or more measurements involving in the constraint (node) that fails the test should 
contain gross error or there should be leak in that node (unit). But it also has 
problem o f  error cancellations, i.e. gross errors in measurements com pensate for one 
another in such a way that constraint equations are satisfied.

พ  = cov(rf) = A  ไ (A S A  y  A  
The test statistics given as:

(2.26)

(2.27)

have been shown to possess maximum power i f  ร is a nondiagonal matrix.
Similar to the nodal test, the measurement test also involves multiple
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2.7.4 Other Tests
The three tests discussed above basically treat only measurement or 

sensor biases. Overcoming this shortcoming, the two tests presented here can detect 
different types o f  gross errors (i.e. measurement biases and process leaks).

The generalized likelihood ratio (GLR) proposed by Narasimhan and 
Mah (1987) is based on the maximum likelihood ratio principle used in test statistic. 
This test requires a model o f  the process in the presence o f  a gross error, also known 
as gross error model. The GLR approach provides a framework for identifying any 
types o f  gross errors that can be mathematically modeled.

The other test is principal component (PC) test proposed by Tong and 
Crowe (1995). The PC test was claimed to be able to detect more subtle gross errors 
and have greater power to correctly identify the variables in error than the first three 
tests. However, it has been shown that the PC tests do not significantly enhance the 
ability in gross errors identification. Furthermore, the PC tests involve intensive 
computations in calculating eigenvalues and eigenvectors. It w as discussed 
elsewhere by Tong and Crowe (1995) or Jiang e t  a l. (1999).

2.8 Equivalency Theory

This theory was recently presented by Bagajew icz and Jiang (1998). It 
basically states that two sets o f  gross errors are equivalent when they have the same 
effect in data reconciliation, that is, when simulating either one in a compensation 
m odel, leads to the same value o f  objective. Therefore, the equivalent sets o f  gross 
errors are theoretically indistinguishable. In other words, when a set o f  gross errors 
are identified, there exists an equal possibility that the true location o f  gross errors 
are in one o f  its equivalent sets. From the v iew  o f  graph theory, equivalent sets exist 
when candidate streams/leaks form a loop in an augmented graph consisting o f  the 
original graph representing the flow sheet with the additional o f  environment node. 
For the case o f  measurement biases, they proved that i f  a set o f  k  variables forms a 
cycle o f  the process graph, then gross errors in any combination o f  (k-1 ) 
measurements from this set can not be distinguished from any other such



13

combination. B y applying this theory, any proposed set o f  gross errors candidates 
cannot form a loop. Otherwise the size o f  these gross errors is indeterminate.

2.9 Simultaneous Strategies For Data Reconciliation and Gross Error Detection

Hypothesis tests as shown above are useful for detecting and identifying 
single gross error. To identity multiple gross errors, we need tailored strategies to be 
used in com bination with one o f  these tests. Usually these strategies perform data 
reconciliation and gross error detection at the same time. This means that these 
strategies can render US the types, locations and magnitudes o f  gross errors together 
with the reconciled estim ates which are free o f  errors o f  the process variables.

There are three types o f  strategies that make use o f  one o f  hypothesis tests 
in their procedure. They are serial elimination strategy, serial com pensation strategy 
and simultaneous or collective compensation strategies. Another approach for 
simultaneous data reconciliation and gross error detection is a pure mathematical 
approach. Like other techniques (DR, GED) discussed so far, all these strategies are 
based on the assumption that process system  is at steady-state and random errors are 
normally distributed, and are basically developed for linear systems.

2.9.1 Serial E lim ination Strategy
This strategy is useful in identifying gross errors caused by 

measurement biases only, because it replies on eliminating measurements suspected 
o f  containing a bias. At each stage o f  the serial procedure, a gross error is identified 
in one measurement (based on som e criteria) and the corresponding measurement is 
eliminated and treated as unmeasured variable before proceeding to the next stage. 
The major advantage o f  serial elimination is that it does not require any prior 
knowledge about the existence or location o f  gross errors, but it has the drawback o f  
losing redundancy and is not applicable to process leaks.

The M odified Iterative Measurement Test (M IM T) proposed by Serth 
and Heenan (1986) is a popular and effective strategy that belongs to this kind. It 
uses the measurement test to detect and identify gross error and incorporates
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information on bounds o f  variables into criterion to identify measurement suspected 
o f  containing a bias. The sim plified procedure for this strategy is shown below:
Step 1: Perform the initial data reconciliation problem and obtain vectors X , a  and d . 
Step 2 : Compute the measurement test statistic Zdj for all measured variables (set T) 
Step 3 : Find z max = M ax {Z d j} , i f  z max < critical value z c, proceed to step 6. Otherwise, 
select the measurement corresponding to Zmax and temporarily add it to set c.
Step 4: R em ove the measurements contained in set c from the original set o f  
measured variables and treat them as unmeasured variables, perform data 
reconciliation again and obtain new values o f  vectors X , a  and d.
Step 5 : Check whether the estimates X o f  variables are within their bounds. If so, 
store the current solution and return to step 2. Otherwise, delete the last entry in set c  
and, replace it with the measured variable corresponding to the next largest value o f  
Z d j >  z c, and return to step 4. If Z d j < z c for all remaining variables, delete the last 
entry in set c  and proceed to step 6.
Step 6: the measurements belong to set c  are suspected o f  containing gross errors. 
The reconciled values after gross errors have been eliminated are those obtained in 
step 4 o f  the last iteration.

The MIMT was later m odified by Kim e t  a l. (1997) to handle 
nonlinear system s. They called it the m o d if ie d  M I M T  u s in g  N L P  in which data 
reconciliation was performed using nonlinear programming techniques and showed 
that it handles nonlinear systems better than the original one, especially when the 
number o f  gross errors is increased.

2.9 .2  Serial Compensation Strategy (SCS) *
This strategy was proposed by Narasimhan and Mall (1987) in 

conjunction with the use o f  the GLR test. In this strategy, one measurement bias is 
identified at a time, then estimated, and mathematically removed, before attempting 
to identify another bias. This strategy can identify all types o f  gross errors and can 
keep redundancy during the procedure. However, Rollins and Davis (1992) pointed 
out that it has two drawbacks: (1) it can have a large probability o f  making a wrong 
conclusion for measured variables that are unbiased (i.e. high Type I error) when at
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least one variable is biased; and (2) estimates for measurement biases can be 
inaccurate.

2.9.3 Simultaneous Or Collective Compensation Strategies
Compared with the above two strategies, collective compensation 

strategies have som e advantages: they are applicable to all types o f  gross errors, can 
maintain redundancy during the procedure, and provide better estimates thanks to the 
collective estimation (Rollins and Davis, 1992). There are three strategies that are 
considered to be the most efficient ones: UBET, SICC and M SEGE (Bagajewicz,
2000) .

2 .9 .3 .1  U B E T  ( U n b ia s e d  E s t im a tio n  T ec h n iq u e )
This strategy was proposed by Rollins and Davis (1992). It was 

developed based on the follow ing measurement model that takes into account 
measurements biases and process leaks:
y  = M + e (2 -2 8 )
such that: A/J. - M y  (2.29)
where f l  =  X  (vector o f  true values); ร: vector o f  measurements biases, £ไ errors, 
which are assumed to follow  multivariate normal distribution with mean ร  and 
covariance matrix ร : £  ~ Np(<$ ร)-, M  =  where W j is chosen differently
depending on the nature o f  constraints, i f  only total flow  balances are involved, Wj is 
identical to Cj, i.e. unit vector with one in position j  and zero elsewhere. 
y. vector o f  magnitudes o f  process leaks; A :  constraint matrix.
Under Ho'/ir = E[r] =  0,
Under Hi; //r = E[r] =  A E \y ]  =  A ^  +  A E [ e ]  =  M y + A S  (2.30)
Where r  =  A y  =  A n  +  A s  : vector o f  balance residuals.
Partitioning A ,  M , ร, /a n d  rewriting equation 2.30, w e get:
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A 11 A n à , +
m I2 0 7 lBr = น21 1 l \ 0 m 22_ .7 2 .

A 11 0 \0’ + A n M  11' à2 '
Br =

1 M  22 _ ๖ 2 . น22 0 7 t .
Br =  B jd j +  B202

(2.31)

It has been pointed out that the maximum number o f  gross errors 
that can be identified is equal to the number o f  process constraints m . Moreover, 
signature vectors o f  these gross errors are linearly independent (i.e. these gross errors 
do not form a loop) in other that their magnitudes can be uniquely estimated. In the 
UBET method, in order to obtain unbiased estim ations o f  gross errors, two 
assumptions were made. The first one was that initially there are m  gross errors, 
moreover, the types and locations o f  these gross errors are also specified: there are น 
measurements biases (denoted by vector ร i) and V leaks (denoted by vector Yi)- The 
second one was that rank o f  B j  is equal to m , in order words; these candidate gross 
errors do not form a loop. Therefore vector 6\ o f  gross errors is a m  X  1 vector and 
vector & 2 (dim ension ท x l )  is a zero vector. Then equation (2 .31) reduces to:
ftr = B \Q \
B y introducing:
lF = eFB{1

(2.32)

(2.33)
We get:
l / B r  =  e iTB f 1B , 0 1 =  e f e 1 =  e, (=  Si o r  Yi ) (2.34)
Therefore i jr  (i -  1, . . . ,  m)  are unbiased estimators o f  the com ponents o f  ร and Y 
contained in 0 \ ,  there com es the name unbiased estim ation technique (UBET).

t The primary application o f  equation 2.33 is estim ations o f  gross
errors after som e identification procedure has identified the required 6\ (or 
equivalently the required &i). Additionally, it is used to construct a hypothesis test 
called Bonferroni test which can be used to identify the required &1 , or to determine 
i f  estimates for gross errors 0 S  are statistically significant.
The test is given as: reject Ho: F  Hr =  0  in favor o f  Hi : F  Hr * 0 , if:

|/rr|
y f F v i

> z.a/ 2k ( 2 . 3 5 )
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where k equals the number of Bonferroni confidence intervals, V: covariance matrix 
of balance residuals r, given by equation 2.16

equation 2.33, the unbiased reconciled estimates for process variables (that have 
known distribution and satisfy physical constraints) can be determined as described 
by Rollins and Davis (1992). The modified version of this strategy (MUBET) has 
been presented by Bagajewicz et al. (1999) in which they addressed singularities and 
uncertainties of the original method in view of the equivalency theory.

approach called simultaneous estimation of gross errors (SEGE) to pick candidate 
gross errors and use them in a compensation model based on the use of the global 
test. This strategy was developed for systems with all redundant variables. In this 
technique, a statistical test based on the vector of adjustments a (given by equation 
2 .22) is selected to detect the presence of gross errors, which is actually the global 
test statistic: a 7'ร '1a (recall that it is also the optimal data reconciliation objective 
function).
The test is given as: reject Ho: E [a ] = 0 in favor of Hi: E [a ] * 0 ,  if:

where g : rank of constraint matrix A.
In this procedure, equations (process constraints) are added one 

by one to the least-squares estimation problem of the measured variables X. After 
each addition, the objective function (obv = a 7'ร '1a  ) of the least-squares estimation 
technique is calculated and compared with the critical value Tc = g a to detect gross 
errors. For updating the test statistic, the following expressions are applied:

where and z ° 'd represent the covariance matrices of the measurement estimates

After unbiased estimates of gross errors have been found using

2 . 9 . 3 . 2  M S E G E

Sanchez and Romagnoli (1994) proposed a combinational

aTร - ,a > / g1 a (2.36)

(2.37)
(2.38)
(2.39)

X after and before equation addition, and B j stands for the added equation.
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Sanchez et al. (1999) have modified this strategy (called MSEGE) to address 
singularities and uncertainties of the original method in view of the equivalency 
theory, and to handle systems with both measured and unmeasured variables.

2.9.3.3 SICC
The MSEGE strategy has been shown to be highly accurate, 

however, it is still not suitable for large system, because it requires intensive 
calculation. Bagajewicz and Jiang (1998) proposed another strategy called SICC 
which was originally developed for linear dynamic data reconciliation problem. The 
steady-state version of this strategy was later presented by Bagajewicz and Jiang 
(1999). This strategy has been shown to be comparably accurate and requires less 
calculation. It relies on the measurement test for gross error detection. It uses the 
MT to make a list of suspected gross errors and identifies from the list one gross 
error using a compensation model. This error is put in a list of confirmed gross 
errors. Next a new list of suspected gross errors is constructed, and the 
compensation model is run using the confirmed gross errors and a candidate gross 
error (from the new list) at a time to determine which should be added to the 
confirmed gross errors list. The procedure is repeated until no gross errors are 
detected. Leaks are identified using the equivalency theory.

2.9.4 Mathematical Approach
Tjoa and Biegler (1991) proposed a method in which they used an 

objective function which was constructed using maximum likelihood principles on a 
combined distribution function. The function takes into account contributions from 
random and gross errors known as contaminated Gaussian distribution. The tailored 
hybrid SQP algorithm was developed to solve the contaminated Normal (Gaussian) 
objective function. Soderstrom et at. (2001) combined the gross error detection and 
identification problem with the data reconciliation within a mixed integer 
optimization framework. The advantage of these two mathematical approaches is 
that they do not require iterative procedure. However, they are significantly more 
computationally intensive.



19

2.10 Concept of Software Accuracy

Accuracy of measurements (hardware accuracy) has been defined as the 
sum of precision (standard deviation) and bias. Unfortunately, this definition is of 
little use unless bias is independently assessed. This leads to a new definition of 
more practical use. Bagajewicz (2004a) has introduced the concept of software 
accuracy (to distinguish it with the existing definition of hardware accuracy), which 
is based on the notion that data reconciliation with some test statistics is used to 
detect biases. In other words, report on accuracy should be made in relation to the 
ability of a gross error detection technique to detect and eliminate gross errors and 
contingent on the number of gross errors present in the measurements.

2.10.1 Induced Bias
From equation 2.13 and equation 2.4, the expected value of the 

vector of estimators can be derived as follows:
E[ i ]  = x  + S -  S A t( A S A t) ' iA S  (2.40)
Note that E[ X ] = X only when 8 - 0 .
The difference between E[ X ] when gross errors are present and the true value X is 
defined as induced bias:
Ô = [I-S W ]Ô  (2.41)
where พ  = A T( A S A T) ' !A  (variance-covariance matrix of d  -  ร '1 a )
Various hypothesis tests can be used to detect bias of a size that is above a certain 
threshold. Below such threshold, the bias goes undetected and smears all the 
estimators, including those of the variables for which the corresponding instruments 
have no bias, called induced bias. Causing induced biases, an undetected bias in one 
measurement will corrupt accuracy of all measurements in the system through 
smearing effect of data reconciliation. Note that induced bias Ô is always smaller 
than the actual measurement bias ร. Therefore, the (software) accuracy of an 
estimator is defined as the sum of precision (standard deviation) of the estimator plus 
the maximum possible undetected induced bias in that variable due to sensor biases 
anywhere in the system, including the instrument measuring the variable itself:
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à ,= â ,+ ร ;  (2.42)
where à j.è j, ô’ are the accuracy, precision (square root of variance รน ) and the 
maximum undetected induced bias of the estimator, respectively.

2.11 Economic Value of Precision In The Monitoring of Linear Systems

Performing a statistical analysis, Bagajewicz et al. (2003) were able to 
obtain expressions for assessing the economic value of precision. A formula was 
developed for such value based on the downside expected loss that occurs when an 
operator adjusts the throughput of a plant when the measurements or estimators 
obtained through data reconciliation suggest that the targeted production is met or 
surpassed. However, there is a finite probability that the measurement or estimator is 
above the target when in fact the real flow is below it, hence the expected financial 
loss calculation. The calculation procedure to obtain the formula is briefly described 
as follows:

Bagajewicz et al. (2003) argued that a typical refinery consists of several 
tank units that receive the crude, several processing units, and several tanks where 
products are stored, summarized in three blocks as in figure 2 .

m i ทไท
Hsi T)

Figure 2.1 Material balance in a refinery 
•-

In figure 2.1, H represents hold ups and m flowrates.
They argued that the probability of not meeting the targeted production is 

Jp|//5 (r)<//*J, which in turn can be rewritten asp{mp(t)<mp), that is, it is equal to
the probability of the true value of mp being smaller than the targeted value mp. Let 
mp be the estimate one has of the true value of mp and consider that production is 
adjusted to meet the targeted value, based on the estimate. In other words, if 
mp <m p, production is increased and vice versa, if  mp > mp, production is
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decreased. They assumed that, when Aท > mp, that is, the measurement indicates
that the target has been met, the operator would not do any correction to the set 
points. They argued that the probability of being wrong is given by the conditional 
probability p {เทp <m'p\mp >m'p} ,  that is, the probability of having missed the target
given that the estimator is larger than the target. Because these are independent, the 
above probability is equal to p{mp < rnp}V {m p >๓*}. A statistical analysis was
performed to derive the following expression:

[mp <m p\mp >m p} = £ 0' jj[. gM(Ç,mp,â p)d ^  gp(mp,mp,CTp)dmp (2.43)
where gp(mp;mp,crp) and gM(Ç;mp,âp) are probability distributions of the process 
values trip around the mean (targeted value) ๓* with variance Up and of the 
estimators mp around the true value mp with variance âp , respectively.
For both distributions being normal, we obtain:
P{mp <m*p \m p >rnp } = Q.5P{mp >rnp } = ̂  + Y j = \ e r f c ( z < j p l ô p ) e ~ 2 d z  (2-44)

The downside expected financial loss (loss incurred for not meeting the production 
target) was derived as follows:
DEFL{&P,(JP)= j ^ g p(เพp,พ *,ctp) \ksT j^ ( /M *  -m p)gM(mp,mp,âp)dm^dmp (2.45)

where K s is the value of the products sold and T  is the period of time under 
consideration.
When both distributions are normal, the downside expected financial loss (DEFL) is 
given by:

D E F L (â p,a p) = r K sT â p (2.46)

Where y=  0.19947.
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The probability given by equation 2.43 is viewed as the confidence with 
which the expected loss given by equation 2.45 is known. Under simplified 
assumptions of negligible process variations (i.e., cp lâ p «  1) and normal
distributions, we have: P{np> พ'p \mp< พ* } - > 0.25 and D E F L (ô p,Gp )  —» yKsT<rp,
in other words, under almost no process variations, there is a 25% chance that the 
downside expected financial loss of yKsT Gp is achieved.

2.12 Economic Value of Accuracy In Linear Systems

While precision is important, most instruments present biases and therefore 
the theory of economic value of precision needs to be extended to include them. 
This gives rise to the theory of economic value of accuracy which was presented by 
Bagajewicz (2004b). This theory is briefly described as follows:

Consider the same problem (material balance in a refinery) as shown above. 
When there is a bias, induced or not, it could go undetected, which means it has an
absolute value size smaller than Sp’m£ T , which is the maximum induced bias that
goes undetected by the Maximum Power Measurement test when there are riT gross 
errors. As we know, this value is a function of the existing instrumentation. We 
therefore concentrate in redefining gM(Ç; mp,ôp) to include the possibility of biases.
Assuming one gross error ( 5 j )  in variable i and none in the others, we have:
8  m  ~  8 m  บ >m p  ’ *% ,/)>  w | th  |<5p I >  ร p  mKX ( 2  4 7 )

S u  = g k t & m P + à p ’ ê p ) ’ w i t h SP',11ax
where Gp 1 is the residual precision left after the measurement of variable i has been
eliminated, s'p = s'p(ร, ) is the induced bias in the estimator of mp.

Let us assume that, when an instrument fails, which happens according to a 
certain probability f t (/■ ) (a function of time), the size of the bias follows a certain
distribution h,(6 ] ร ิ1, p, )with mean ร  1 and variance p  12. Note that depending on the 
value of the measurement in the range of the instrument, the mean could be nonzero.
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F o r  s im p l ic i ty ,  w e  a s s u m e  h e r e  th a t  ร, =  0 .  W e  a re  a ls o  a s s u m in g  h e r e  th a t  th e  g ro s s

error size distribution is independent of time. Thus, we now need to integrate over 
all possible values of the gross error and multiply by the probability of such bias to 
develop. Therefore, if  we assume that one instrument fails at a time, then, the 
probability of instrument / failing and the others not is given by: 
o | = f . (t)]“J [l - fs(t)]. Thus, the probability of the estimate to be higher than the

ร* 1
targeted value (with the underlying assumption of the true value to be lower than the 
targeted value), given a bias in measurement is given by:
p  {ริ1 m'p I '] = ® \ZaP {" 'r> m'p\6 )hร ิ0Â>Pi)d e

= ®J 1 E f  | j ^•gu{4>mp,â % )d Ç ^ g p{mp,rnp,a p)dm 

+° ' J E f  { £ •

+° '  I  E f  {  r  gM^ m p,â Rp 1)d A  g p(mp,mp,crp)dm 
+ h  L I p J

h,(6,ริ,, p ,)dd

h,{6, ริ,, p ,1) de  

h,{6,ร ิ,,p ,)de

(2.48)

where P{mp >m*|/| indicates the probability being conditional to the presence of one
gross error in stream / and 8jP = 5p max. The first and third term correspond to the
detection of the gross error (when gross error magnitude is larger than the critical 
value), the second term corresponds to the presence of undetected gross error.
Since all the events are assumed independent, the probability of the estimate to be 
higher than the targeted value conditional to the presence of one gross error is:

(2.49)

The same procedure is applied to derive expressions for the cases of two and more 
gross errors. However, the set of critical values (limits of detectability) for a 
particular set of multiple gross errors is not unique. We therefore define the 
following function:

/ I \ _ [ l  if the MP test flag positive for ร,,1,.. .SjG \ d a ,...dip\dn ,...dmb J =  < (2.50)
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One important assumption is made at this point: we assume consistency in gross 
error detection, i.e. it points to the correct locations of gross errors so that the right 
measurements are eliminated. This means that the set {รแ,... ร,p) is a subset of 
{ร ,! ,... รเทb}, that is, some errors are too small to be detected, but those detected are 
in fact true biases.
When two gross errors are present in the system, the following expression is derived:

p ( m p > m 'p \ท , i 2 }  =  t f i a  £J ๙ ("V -  m 'p \9 \ ’ d i y ' ร 9 ô ,x, p r, ) h , 2 { e 2 \ ô , 2 , p , 2 ) d d xd d 2 a n d  

p[mp ร: = 2j = y  p[mp ^ พ;!/',*) since all the events are assumed independent

where:

p [ " p * m P h  >^)= £ p

G (๙1,๙21 ๙1, ๙2) £ . gf,((if,พ/,,àp1,,: 1 ,2)๙f  +

[1 - G(๙1, ๙21๙1,๙2) ]{ใ  ( £ « 1,+ ๙;'-'2(๙1,๙2),๙,,.,)</f

+G(๙1!๙1,๙2) เไ  f t ,  ( £ « 1, + ๙;;,(๙2),à£11)๙f  

+G (๙21 ๙1,๙2) £1 f t ,  (£  พ /,+๙;',m (๙1 ), ๙;,,2

’gp{mp,inp ,a p )dmp (2.52)

The first term inside the bracket in equation 2.52 corresponds to the 
detection of both gross errors, the second term: none of gross errors is detected, the 
third term & fourth term: detection of gross error in measurement il and in 
measurement i2, respectively. If detected, gross errors are eliminated by treating the 
corresponding measurements as unmeasured variables. Therefore when there is 
detection of gross errors, precision is replaced by the corresponding residual 
precision. When there are undetected gross errors, the estimate of the variable 
distributes around its true value plus the induced bias caused by the undetected gross 
errors {ทIp + S' (6 ) ) instead of its true value (mp) only. Note that we have the
condition G (๙1,๙2 [๙1,6*2) + G(๙1 |<9j,๙2) + G{6 2 1๙1 ,๙2) < 1 holding naturally, that is, either
the two gross errors flag, or only one of them flags, or none flags.

Expression for the probability of the estimate to be higher than the targeted
value conditional to the presence of n r  gross errors p [ n i p >  m*p nT-j is derived
similarly:
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p [m  1, > เพ* |/1,...เพ4) = ®"{ P [>” p *  m 'p\9 \ > - A n,  )fyi(^i;‘ริ/! >Ai) - K ,  (.6,ทb '’ริ:ท, ’p ,ท, )dO \-dO m,
an d p [ m p > r ท'1’ เพ7-) = Y  p[rh p > m p \ท ,il,...in b  ̂ (2.53)

where P{mp > tnp เ̂ 1,.., &1ทเ} is the probability of the estimate being larger than the 
target in the presence of a set of particular nT gross errors and is determined at the 
same fashion as in equation 2.52 by making use of the function G^Sn,...รjp\ร 11,...รmhy,

0 ”r 2 -  (0  ท [ 1- / ร (0 ] *s tbe probability of these gross errors being
ร*i\,...ร*inb

present.
Finally, since all events are mutually excusive, the probability of the estimator being 
larger than the target is the sum of all the possible cases:
p(mp>ท,;) = T^p{mp>ท;p\r) (2 .54)
p(mp>mp) = <x>° 4+i j er/C ("V i d m p > m 1,

The first term is the result obtained by Bagajewicz and Markowski (2003) for linear 
systems in the absence of biases.

2.12.1 Downside Expected Financial Loss
When there is one gross error present, incorporating equation 2.47 

into equation 2.45, we obtain expression for downside expected financial loss as 
follows:

h,(6, s „ 1P,)d0DEFL' \i = £ 0̂ £ 9' \ k sT £ ' (พ* - รุ,)gu (ร ุ,mp,âp i)dร ุI gp(m 1,,mp,o p)dmp

+ f p  [ c  K*T{ c  (m'p ~^ Sm (ร ิ’ mp+ K (û‘ )’âp)dç \sp (mp’m'p’Gpïdmp hi W 'Â ' p,)de

+ £ r [ n { K'T m p ( m p,mp,<Tp)dmp hl(d-,5l,pl)d6 (2.55)

The meaning of the terms in equation 2.55 is same as in equation 2.48 
When two gross errors are present, the financial loss is given by:
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DEFL <

£  c(0„๙2!๙1,*2) £ ' ( « ; - Ç ) g M ( Ç , m p , a RP' , ) d Ç

Al (A ’Al > Al )A2 (^ 2  > A 2 » A 2 ) d 0 \ d 0 2+c rr
[1 -  G(#1,#2 1#1 ,# 2  )lAi (A;Aï’ Ai )A'2(̂ 2 -,ร ท , p i2 ) d d \ d d 2

+JT rr I ?  ■K  -  ̂  ■" V +s p,m ( * 2  ), ̂ ,,. M f
G (a IA, # 2  ) A1 (A ; Al > Al )A'2 (A2 ; ร a , P 12 ) d d \ d 0 2

+JT rr J? { m 'p -  t ) 8 “  m p + ê น ( A  ) ’ ๕  p j i  พ

G (#21A > ̂ 2 ) Al ( A ’ Aï > A l ) A 2 (̂ 2 ’ รท ’ pท MA d d  1

g p(mp,)“p,G p)d"‘ P (2.56)

The meaning of the terms inside the bracket in equation 2.56 is same as in equation 
2.52. Downside expected financial loss for more than two gross errors present can 
be derived at the same fashion. Detail expressions for the financial loss and the 
associated probability when more than two gross errors are present in the system 
were given by Bagajewicz (2004b). He was also able to derive analytical form for 
the expressions in the presence of one bias, but did not provide analytical forms for 
the expressions for the presence of more than one bias because the integrals involved 
require integrating a discontinuous function that changes form in different regions. 
Finally, we write:
D E F L  = v °  D E F L 0 + Y ,  T ,1 D E F Û  |j + ]T 2.DEF l } \ i \ , i 2  +.... (2.57)

เ il, ท
where VF° are the average fraction of time the system is in the state without biases,
T,' the average fraction of time the system has only one undetected bias only in

•-
stream etc. These values are in fact equal to the probabilities of each state.

2.12.2 Trade Off Between Value And Cost
In the case of buying a data reconciliation package, we have:

NPV= dn {Change in D EFL  } -  Cost o f  license (2.58)
where dท is the sum of discount factors for ท years; NPV: net present value. The 
change in DEFL is the economical benefit of this investment.
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And in the case of adding a new instrumentation, similarly we have:
N PV=  dn {Change in DEFL }-C o s t o f  new instrum enta tion  (2.59)

2.13 Problem Statement

Financial loss calculation help engineers determine economical benefit 
of instrumentation upgrade investments such as buying a data reconciliation 
package or adding a new instrumentation by using (2.58) or (2.59). Knowing 
economical benefit of the investments, they can decide whether to implement 
the instrumentation upgrade investments or not. Moreover, because financial 
loss associated to the accuracy of measurement is the function of plant 
instrumentation, the financial loss calculation can be used in the problem of 
sensor network design or retrofit subjected to economical objectives such as 
minimizing financial loss or maximizing economical profit (net present value). 
However, as mentioned above, analytical forms for the expressions for the 
financial loss in the presence of more than one bias do not exist. This work 
aims at developing methods to calculate the financial loss and the associated 
probability when multiple gross errors are present in the system.

2.14 Literature Survey

The problem of data reconciliation was first introduced in 1961 and during 
the past four decades more than 200 research publications in the two areas of data 
reconciliation and gross error detection have appear. Steady-state data 
reconciliation and gross error detection are well-established techniques and many 
applications in chemical and mining industry have been reported, especially since the 
late 1980s when powerful computers were available. Currently, most integrated 
systems for process simulation, optimization and control include a data reconciliation 
(in couple with gross error detection) system, which precedes all applications that 
make uses of process data. The simplest industrial applications are for 
reconciliation of data around single units, especially for distillation or separation 
columns. In these applications, the flows and compositions of feed and products
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streams are reconciled using overall material balances around the column. 
Applications of data reconciliation to chemical reactors have also been reported and 
were mentioned in the book of Narasimhan & Jordache (2000). When data 
reconciliation is used to process data for on-line optimization application, it is more 
appropriate to perform data reconciliation for a set of interconnected process units 
constituting a subsystem, for example, a subsystem comprising the crude distillation 
tower together with the crude preheat train of exchangers in a refinery. Pierucci et 
a l (1996) and Chiari et at. (1997) reported implementation of online reconciliation 
and optimization (ORO) package in olefin plants and in hydrogen & sulfur plants of 
Italian refineries. Christiansen et al. (1997) apply data reconciliation to evaluate 
performance of catalytic processes. Data reconciliation has also been applied in a 
vinyl acetate plant and a ketene plant (Dempf & List, 1998), an industrial utility plant 
(Lee et a l ,  1998), a beverage alcohol distillation plant (Meyer et a l ,  1993), to name 
a few of its successful implementations.

The problem of sensor network design has been explored by several authors 
with different approach based on different criteria: optimal parameter estimation, 
minimum cost, maximum overall precision, desired level of observability & 
monitoring, reliability, error detectablity, error robustness, or multicriteria. Many 
methods for designing sensor network are described by Narasimhan and Jordache 
(2000). The problem of upgrading instrumentation draws less attraction. Alhéritière 
et al. (1998) described a refinery case study of a method that can quantify 
contribution of process data to estimation of key variables and use this result to 
optimize the economic trade-off between enhanced parameter accuracy and increased 
measurement costs on the refinery but they offered few details. This method can 
help make a decision on upgrading/investment in instrumentation. Bagajewicz and 
Sânchez (2000) presented models to perform the upgrading of instrumentation at 
minimum cost to achieve maximum precision of selected parameters.

Data reconciliation undoubtedly helps improve performance of chemical 
plants. However, the problem of assessing quantitatively economical benefit of 
data reconciliation wasn’t touched. This problem has been first tackled recently by 
Bagajewicz when he introduced the concept of software accuracy and the theory of 
economic value of precision and the theory of economic value of accuracy
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(Bagajewicz, 2003, Bagajewicz et a l,  2004 and Bagajewicz, 2004b). These research 
works are the only works dealing with this problem that have appeared so far.

We notice that the integral expressions (for assessing the DEFL and the 
associated probability) involve probability distribution integrand functions. 
Therefore, these integral expressions can be readily evaluated using the Monte Carlo 
numerical integration method. The Monte Carlo numerical integration method was 
discussed by Evans and Swartz (2000). Some examples of the application of Monte 
Carlo numerical integration method for evaluating this kind of integrals were given 
by Mori and Kato, 2003 and Lu and Zhang, 2003.
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