การศึกษาคุณสมบัติการเป็นสารช่วยแตกกระจายตัวในยาเม็ดของสารสกัดจากเปลือกทุเรียน

นางสาว ฤดีกร เกียรติมั่นคง

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต ภาควิชา เภสัชอุตสาหกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2532 ลิขสิทชิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ISBN 974-576-315-2

15583

117457403

THE STUDY OF TABLET DISINTEGRATING PROPERTIES OF DURIAN RIND EXTRACTS.

Miss Ruedeegorn Kiatmonkong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Manufacturing Pharmacy

Graduate School

Chulalongkorn University

1989

Copyright of the Graduate School ISBN 974-576-315-2

Thesis	The Study of Tablet Disintegrating Properties of
	Durian Rind Extracts.
Ву	Miss Ruedeegorn Kiatmonkong
Department	Manufacturing Pharmacy
Thesis Advisor	Dr. Kaisri Umprayn
Accepted	by the Graduate School, Chulalongkorn University
in Partial Ful	fillment of the Requirements for the Master's
Degree.	
	cor Thavorn Vajrabhaya, Ph.D.)
Thesis Committee	
	Preeya Atmyanagairman
(Associa	ate Professor Preeya Atmiyanan, Docteur en Pharmacie)
Kan	icx; (hyprayn Member
(Lecture	er Kaisri Umprayn, Ph.D.)
. So	mal Pangamed Member
(Associa	ate Professor Sumanta Pongsamart, Ph.D.)
Aia	ngchl. Panomun - Member
(Associa	ate Professor Duangchit Panomvana Na Ayudhya, Ph.D.)
Par	une Thanomkiat Member
(Associa	ate Professor Parunee Thanomkiat)

พิมพ์ตั้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

ฤดีกร เกียรติมั่นคง : การศึกษาคุณสมบัติการเป็นสารช่วยแตกกระจายตัวในยาเม็คของสาร สกัดจากเปลือกทุเรียน (THE STUDY OF TABLET DISINTEGRATING PROPERTIES OF DURIAN RIND EXTRACTS) อ. ที่ปรึกษา : คร. ไกรสีท์ อัมพรายน์, 163 หน้า

การศึกษาคุณสมบัติในการช่วยแตกกระจายตัวของสารสกัดจากเปลือกพุเรียนที่ได้จากการสกัด ค้วยแอลกอฮอล์ (D₁) และกรค-แอลกอฮอล์ (D₂) โดยเปรียบเทียบกับสารช่วยแตกกระจายตัวที่ใช้ กันอย่างแพร่หลาย ได้แก่ Ac-di-Sol^(R), corn starch, Explotab^(R), Kollidon CL^(R), Nymcel^(R) และ Starch 1500^(R)

การประเมินค่าคุณสมบัติทางกายภาพของสารช่วยแตกกระจายตัว เช่น ความสามารถในการ อุ้มน้ำ (hydration capacity), การพองตัว (swelling), สภาพการให้น้ำแหรกขึ้ม (water penetration) ผลของสารต่อเวลาในการแตกกระจายตัว (disintegration time) ของยาเม็คที่ประกอบค้วยสารเพิ่มปริมาณชนิคละลายน้ำ (a - lactose monohydrate) และ ชนิคไม่ละลายน้ำ (dibasic calcium phosphate dihydrate) ที่ ตอกค้วยแรงตอก 3 ระคับ (500, 1000 และ 1500 กิโลกรัม) นอกจากนี้ยังวัดความสามารถในการ เพิ่มอัตราละลายของไฮโครคลอโรไธเอไซค์และไพริคอกซื้นไฮโครคลอไรค์ในสารเพิ่มปริมาณชนิคไม่ ละลายน้ำด้วย

จากผลการทคลองแสดงอย่างชัดเจนว่า สารสกัดจากเปลือกทุเรียนทั้ง 2 รูปแบบเป็นสารช่วยแตกกระจายตัวที่มีประสิทธิภาพในยาเม็ดตอกโดยวิธีตรงที่ประกอบด้วยสารเพิ่มปริมาณทั้ง 2 ชนิด และแสดงคุณสมบัติในการช่วยแตกกระจายตัวที่ดีกว่า corn starch และ Starch 1500 (R) ที่ระดับความเข้มข้นต่ำ อย่างไรก็ตาม คุณสมบัติเหล่านี้ยังด้อยกว่าพวกสารช่วยแตกกระจายตัวยิ่งยวด (superdisintegrants) เช่น Ac-di-Sol (R), Explotab (R), Kollidon CL (R) และ Nymcel

ภาควิชา	เภสัชอุตสาหกรรม	ลายมือชื่อนิสิต	กลักร เกียรกิจนั้นคอ	
สาขาวิชา	_			
ปีการศึกษา	2531	ลายมือชื่ออาจารย์ที่	ปรึกษา เรื่องสน ออเทบา ย) •••

พิมพ์ตั้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

RUEDEEGORN KIATMONKONG: THE STUDY OF TABLET DISINTEGRATING PROPERTIES OF DURIAN RIND EXTRACTS. THESIS ADVISOR: LECTURER KAISRI UMPRAYN, Ph.D., $163~\rm pp$.

Durian rind extract from alcohol (D₁) and acid-alcohol extraction (D₂) were studied for their disintegration properties in comparison with commonly used disintegrants like Ac-di-Sol^(R), corn starch, Explotab^(R), Kollidon CL^(R), Nymcel^(R) and Starch 1500^(R).

Physical properties of disintegrants such as hydration capacity, swelling, water penetration, action on the disintegration time of tablets containing water soluble (α -lactose monohydrate) and water insoluble (dibasic calcium phosphate dihydrate) diluents compressed at three different compressional forces (500, 1000 and 1500 kg) were evaluated. In addition, the abilities to improve the dissolution rate of hydrochlorothiazide and pyridoxine hydrochloride in water insoluble diluent were also determined.

The results clearly showed that both forms of durian rind extract appeared to be an effective disintegrating agent in directly compressed tablets made with either diluent and exhibited superior disintegrating properties than corn starch and Starch $1500^{(R)}$ at quite low concentration. However, these properties were inferior than those superdisintegrants such as $Ac-di-Sol^{(R)}$, Explotab^(R), Kollidon CL^(R), and Nymcel^(R).

ภาควิชา	เภสัชอุตสาหกรรม	ลายมือชื่อนิสิต	กดีกร	ก็พรดำมานคว
สาขาวิชา	_		1	1 +
ปีการศึกษา	2531	ลายมือชื่ออาจารย์เ	กี่ปรึกษา 🏒	2001 ODMOTO

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my advisor, Dr. Kaisri Umprayn, for his helpful advices, guidance and encouragement which enable me to carry out my thesis successfully.

I wish to express my deepest sincere and gratitude to Associate Professor Sunanta Pongsamart, Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for supplying durian rind extracts for this research study.

My gratitude is extended to the Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, for allowed to use the instrumented-Tablet machine.

Sincere thanks and appreciate are expressed to Mr. Worawit Lerdbussarakarm, Electrical Engineer of Jalaprathan Cement Co., for his helpful in particle size measurement.

I am indebted to Rachadapiseksompoach Research Funds for giving a support for this investigation and Prince of Songkhla University foundation for supporting in part in this Master degree's study.

Finally, I gratefully acknowledge to all instructors and personnels in the Department of Manufacturing Pharmacy for their assistance.

CONTENTS

	Page
THAI ABSTRACT	IV
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	VI
LIST OF TABLES	VII
LIST OF FIGURES	ΙX
CHAPTER	
I INTRODUCTION	1
RATIONALE	1
LITERATURE REVIEW	2
PURPOSE OF STUDY	19
II MATERIALS AND METHODS	20
MATERIALS	20
EQUIPMENTS	21
METHODS	22
PHYSICAL PROPERTIES OF DISINTEGRANTS	22
CALIBRATION OF THE INSTRUMENTATION FOR	
THE TABLETTING MACHINE	24
PREPARATION OF TABLETS	24
TABLET EVALUATION	29
III RESULTS	37
PHYSICAL PROPERTIES OF DURIAN RIND EXTRACT	
(D, D) AND VARIOUS DISINTEGRANTS	37
TABLET EVALUATION	56
THE EVALUATION OF HYDROCHLOROTHAIZIDE TABLETS	130
THE EVALUATION OF PYRIDOXINE HYDROCHLORIDE	
TABLETS	139
IV DISCUSSION AND CONCLUSION	145
REFERENCES	156
VITAG	162

LIST OF TABLES

Table		Page
1	Commonly used modern disintegrants	5
2	The calibration data between strain and applied	
	forces obtained from the upper punch	26
3	Tablet compositions for evaluation of disintegrant	
	efficacy	28
4	Tablet compositions with active ingredient	
	for evaluation of disintegrant efficacy	3Ø
5	The comparison of average particle size and	
	specific surface area between $\mathbf{D_1}$, $\mathbf{D_2}$ and other	
	disintegrants	51
6	Bulk density, tapped density, percent	
	compressibility and flow rate of various	
	disintegrants	53
7	Moisture content of various disintegrants	54
8	Hydration capacity of durian rind extract	
	compared with other disintegrants	55
9	Swelling index of durian rind extract in water	
	and in 0.1 N HCl compared with other	
	disintegrants	57
10	Physical properties of dibasic calcium phosphate .	
	dihydrate tablets containing various concentrations	
	of D ₁ at different compression pressures	59
11	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of $D_{_{\mathbf{Z}}}$ at different compression pressures	60
12	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of Ac-di-Sol ^(R) at different compression	•
	pressures	61

		Page
13	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of corn starch at different compression pressures	62
14	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of Explotab at different compression pressures	63
15	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of Kollidon CL ^(R) at different compression pressures	64
16	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of Nymcel ^(R) at different compression pressures	65
17	Physical properties of dibasic calcium phosphate	
	dihydrate tablets containing various concentrations	
	of Starch 1500 (R) at different compression pressures	66
18	Physical properties of α-lactose monohydrate	
	tablets containing various concentrations of D_{i}	
	at different compression pressures	67
19	Physical properties of α -lactose monohydrate	
	tablets containing various concentrations of \mathbb{D}_2	
	at different compression pressures	68
20	Physical properties of α -lactose monohydrate	
	tablets containing various concentrations of	
	Ac-di-Sol ^(R) at different compression pressures	69
21	Physical properties of α-lactose monohydrate	
	tablets containing various concentrations of	
	corn starch at different compression pressures	70
22	Physical properties of α-lactose monohydrate	
	tablets containing various concentrations of	
	Explotab ^(R) at different compression pressures	71

		Page
23	Physical properties of α -lactose monohydrate	
	tablets containing various concentrations of	
	Kollidon CL ^(R) at different compression pressures	72
24	Physical properties of α -lactose monohydrate	
	tablets containing various concentrations of	
	Nymcel at different compression pressures	73
25	Physical properties of α -lactose monohydrate	
	tablets containing various concentrations of	
	Starch 1500'? at different compression pressures	74
26	The efficiency of various disintegrants in	
	dibasic calcium phosphate dihydrate tablets at	
	different concentrations and compressional	
	forces on the initial rate of water penetration	96
27	The efficiency of various disintegrants in	
	α-lactose monohydrate tablets at different	
	concentrations and compressional forces on the	
	initial rate of water penetration	97
28	Physical properties of Hydrochlorothiazide in	
	dibasic calcium phosphate dihydrate containing	
	D_{i} , D_{2} , corn starch and Explotab at 1 and 2%	
	as disintegrants	136
29	Content uniformity and percent labelled amount	
	of Hydrochlorothiazide tablets containing D_{i} ,	
	$\mathrm{D_2}$, corn starch and Explotab $^{(\mathrm{R})}$ at 1 and 2% as	
	disintegrants	137
30	Physical properties of Pyridoxine hydrochloride in	
	dibasic calcium phosphate dihydrate containing	
	D_1 , D_2 , corn starch and Explotab at 1 and 2%	
	as disintegrants	140

		Page
31	Content uniformity and percent labelled amount	
	of Pyridoxine hydrochlororide tablets containing	
	D_{i} , D_{2} , corn starch and Explotab at 1 and 2%	
	as disintegrants	142

LIST OF FIGURES

Figure		Page
1	Evaluation of swelling index of monodispersed	
	materials	25
2	The Calibration curve of the upper punch	27
3	Apparatus for determination of water	
	penetration into tablets	32
4a	Standard curve for hydrochlorothiazide in 0.1	
	N hydrochloric acid at 272 nm	34
4b	Standard curve for hydrochlorothiazide in	
	ethanol at 269 nm	34
5	Standard curve for pyridoxine hydrochloride	
	in dilute hydrochloric acid (1 in 100) at	
	290 nm	35
6	Photomicrographs of durian rind extract, D_{i} ,	
	at various magnifications	38
7	Photomicrographs of durian rind extract, D_2 ,	
	at various magnifications	39
8	Photomicrographs of corn starch	40
9	Photomicrographs of sodium starch glycolate	
	(Explotab ^(R))	40
10	Photomicrographs of pregelatinized starch	
	(Starch 1500 ^(R))	41
11	Photomicrographs of cross-linked polyvinylpyrrolid	one
	(Kollidon CL'®)	41
12	Photomicrographs of cross-linked carboxymethyl-	
	cellulose (Ac-di-Sol ^(R))	42
13	Photomicrographs of cross-linked carboxymethyl-	
	11 (At1 (R))	40

		Page
14	Histogram for the particle size distribution	
	and cumulative percent undersize of durian	
	rind extract, D_1	43
15	Histogram for the particle size distribution	
	and cumulative percent undersize of durian	
	rind extract, D_2	44
16	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	Ac-di-Sol ^(R)	45
17	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	corn starch	46
18	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	Explotab""	47
19	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	Kollidon CL ^(R)	48
20	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	Nymce1 (R)	49
21	Histogram for the particle size distribution	
	and cumulative percent undersize of	
	Starch 1500 ^(R)	50
22	The relationship between swelling index and	
	hydration capacity of various disintegrants	58
23	Disintegration time of various disintegrants	
	as a function of concentration in dibasic	
	calcium phosphate dihydrate tablets, at	
	compressional force of 500 kg	77

		Page
24	Disintegration time of various disintegrants	
	as a function of concentration in dibasic	
	calcium phosphate dihydrate tablets, at	
	compressional force of 1000 kg	77
25	Disintegration time of various disintegrants	
	as a function of concentration in dibasic	
	calcium phosphate dihydrate tablets, at	
	compressional force of 1500 kg	78
26	Disintegration time of various disintegrants	
	as a function of concentration in α -lactose	
	monohydrate tablets, at compressional force	
	of 500 kg	79
27	Disintegration time of various disintegrants	
	as a function of concentration in α -lactose	
	monohydrate tablets, at compressional force	
	of 1000 kg	79
28	Disintegration time of various disintegrants	
	as a function of concentration in α -lactose	
	monohydrate tablets, at compressional force	
	of 1500 kg	8Ø
29	Water penetration curves of various	
	disintegrants at $\emptyset.5\%$ concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 500 kg	84
30	Water penetration curves of various	
	disintegrants at 1% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 500 kg	84
31	Water penetration curves of various	
	disintegrants at 2% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 500 kg	85

		Page
32	Water penetration curves of various	
	disintegrants at 5% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 500 kg	85
33	Water penetration curves of various	
	disintegrants at 0.5% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1000 kg	86
34	Water penetration curves of various	
	disintegrants at 1% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1000 kg	86
35	Water penetration curves of various	
	disintegrants at 2% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1000 kg	87
36	Water penetration curves of various	
	disintegrants at 5% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1000 kg	87
37	Water penetration curves of various	
	disintegrants at 0.5% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1500 kg	88
38	Water penetration curves of various	
	disintegrants at 1% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1500 kg	88
39	Water penetration curves of various	
	disintegrants at 2% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1500 kg	89

		Page
40	Water penetration curves of various	
	disintegrants at 5% concentration in	
	dibasic calcium phosphate dihydrate tablets,	
	compressed at 1500 kg	89
41	Water penetration curves of various	
	disintegrants at 0.5% concentration in	
	c-lactose monohydrate tablets, compressed at	
	500 kg	90
42	Water penetration curves of various	
	disintegrants at 1% concentration in	
	lpha-lactose monohydrate tablets, compressed at	
	500 kg	90
43	Water penetration curves of various	
	disintegrants at 2% concentration in	
	lpha-lactose monohydrate tablets, compressed at	
	500 kg	91
44	Water penetration curves of various	
	disintegrants at 5% concentration in	
	α -lactose monohydrate tablets, compressed at	
	.500 kg	91
45	Water penetration curves of various	
	disintegrants at $\emptyset.5\%$ concentration in	
	α -lactose monohydrate tablets, compressed at	
	1000 kg	92
46	Water penetration curves of various	
	disintegrants at 1% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1000 kg	92
47	Water penetration curves of various	
	disintegrants at 2% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1000 kg	93

		Page
48	Water penetration curves of various	
	disintegrants at 5% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1000 kg	93
49	Water penetration curves of various	
	disintegrants at 0.5% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1500 kg	41
50	Water penetration curves of various	
	disintegrants at 1% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1500 kg	94
51	Water penetration curves of various	
	disintegrants at 2% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1500 kg	95
52	Water penetration curves of various	
	disintegrants at 5% concentration in	
	α -lactose monohydrate tablets, compressed at	
	1500 kg	95
53	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing D_{i} at 1%	
	concentration as a function of time	98
54	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing D_{i} at 2%	
	concentration as a function of time	98
55	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	1
	dihydrate tablets containing D_{i} at 5%	
	concentration as a function of time	99

		Pag
56	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing D_i at $\emptyset.5\%$ concentration	
	as a function of time	101
57	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing D $_{i}$ at 1% concentration	
	as a function of time	101
58	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing D, at 2 % concentration	
	as a function of time	102
59	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing D_{i} at 5% concentration	
	as a function of time	102
60	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing $\mathrm{D_2}$ at 0.5%	
	concentration as a function of time	103
61	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing $\mathbb{D}_{_{2}}$ at 1%	
	concentration as a function of time	103
62	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing ${ m D_2}$ at 2%	
	concentration as a function of time	104
63	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing D ₂ at 5%	
	concentration as a function of time	104

		Page
64	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing $\mathrm{D_2}$ at 0.5% concentration	
	as a function of time	105
65	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing $\mathbf{D_2}$ at 1% concentration	
	as a function of time	1Ø5
66	Effect of compressional forces on water	
	penetration into α - lactose monohydrate	
	tablets containing $\mathbf{D_2}$ at 2 % concentration	
	as a function of time	106
67	Effect of compressional forces on water	
	penetration into $lpha$ - lactose monohydrate	
	tablets containing $\mathbf{D_2}$ at 5 % concentration	
	as a function of time	106
68	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing Ac-di-Sol(R) at	
	0.5 % concentration as a function of time.	1Ø8
69	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing Ac-di-Sol'® at	
	1 % concentration as a function of time.	1Ø8
7Ø	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing Ac-di-Sol ^(R)	
	at 2 % concentration as a function of time.	109
71	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing Ac-di-Sol(%)	
	at 5% concentration as a function of time.	109

		Page
72	Effect of compressional forces on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing Ac-di-Sol (R) at 0.5%	
	concentration as a function of time	110
73	Effect of compressional forces on water	
	penetration into $lpha-$ lactose monohydrate	
	tablets containing Ac-di-Sol (8) at 1%	
	concentration as a function of time	110
74	Effect of compressional forces on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing Ac-di-Sol (R) at 2 %	
	concentration as a function of time	111
75	Effect of compressional forces on water	
	penetration into $^{lpha-}$ lactose monohydrate	
	tablets containing Ac-di-Sol (R) at 5 %	
	concentration as a function of time	111
76	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing corn starch at	
	2% concentration as a function of time.	113
77	Effect of compressional forces on water	
	penetration into dibasic calcium phosphate	
	dihydrate tablets containing corn starch at	
	5% concentration as a function of time.	113
78	Effect of compressional forces on water	
	penetration into $lpha-$ lactose monohydrate	
	tablets containing corn starch at 0.5%	
	concentration as a function of time	114
79	Effect of compressional forces on water	
	penetration into α- lactose monohydrate	
	tablets containing corn starch at 1 %	
	concentration as a function of time	114

		Page
8Ø	Effect of compressional forces on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing corn starch at 2 %	
	concentration as a function of time	115
81	Effect of compressional forces on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing corn starch at 5 %	
	concentration as a function of time	115
82	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Explotab at	
	0.5% concentration as a function of time	116
83	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Explotab at	
	1 % concentration as a function of time	116
84	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Explotab(R) at	
	2 % concentration as a function of time	117
85	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Explotabeat	
	5 % concentration as a function of time	117
86	Effect of compressional force on water	
	penetration into α - lactose monohydrate	
	tablets containing Explotab at 0.5%	
	concentration as a function of time	119
87	Effect of compressional force on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing Explotab at 1 %	
	concentration as a function of time	119

		Page
9 8	Effect of compressional force on water	
	penetration into $lpha-$ lactose monohydrate	
	tablets containing Explotab at 2 %	
	concentration as a function of time	120
89	Effect of compressional force on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing Explotab at 5 %	
	concentration as a function of time	120
90	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Kollidon CL ^(R)	
	at $\emptyset.5$ % concentration as a function of time.	121
91	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Kollidon CL ^(R)	
	at 1 % concentration as a function of time.	121
92	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Kollidon CL(R)	
	at 2 % concentration as a function of time.	122
93	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Kollidon CL ^(R)	
	at 5 % concentration as a function of time.	122
94	Effect of compressional force on water	
	penetration into $\alpha-$ lactose monohydrate	
	tablets containing Kollidon CL(R) at 0.5%	
	concentration as a function of time	124
95	Effect of compressional force on water	
	penetration into $lpha-$ lactose monohydrate	
	tablets containing Kollidon CL'R' at 1 %	
	concentration as a function of time	124

		Page
96	Effect of compressional force on water	
	penetration into α - lactose monohydrate	
	tablets containing Kollidon CL cr at 2 %	
	concentration as a function of time	125
97	Effect of compressional force on water	
	penetration into α - lactose monohydrate	
	tablets containing Kollidon CL ^(R) at 5 %	
	concentration as a function of time	125
98	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Nymcel (R)	
	at $\emptyset.5$ % concentration as a function of time.	126
99	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Nymcel	
	at 1 % concentration as a function of time.	126
100	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Nymcel (R)	
	at 2 % concentration as a function of time.	127
101	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Nymcel (*)	
	at 5 % concentration as a function of time.	127
102	Effect of compressional force on water	
	penetration into lpha - lactose monohydrate	
	tablets containing Nymcel at 0.5%	
	concentration as a function of time	128
103	Effect of compressional force on water	
	penetration into α - lactose γ monohydrate	
	tablets containing Nymcel at 1 %	
	concentration as a function of time	128

		Pag
104	Effect of compressional force on water	
	penetration into α - lactose monohydrate	
	tablets containing Nymcel at 2 %	
	concentration as a function of time	129
1Ø5	Effect of compressional force on water	
	penetration into α - lactose monohydrate	
	tablets containing Nymcel ^(R) at 5 %	
	concentration as a function of time	129
106	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Starch1500'? at	
	0.5% concentration as a function of time	131
107	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Starch1500 ^(R) at	
	1 % concentration as a function of time	131
1Ø8	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Starch1500 at	
	2 % concentration as a function of time	131
109	Effect of compressional force on water	
	penetration into Dibasic calcium phosphate	
	dihydrate tablets containing Starch1500 at	
	5 % concentration as a function of time	132
110	Effect of compressional force on water	
	penetration in to $lpha$ -lactose monohydrate	
	tablets containing Starch 1500 (R) at 0.5 %	
	concentration as a function of time	133
111	Effect of compressional force on water	
	penetration in to α -lactose monohydrate	
	tablets containing Starch 1500 (R) at 1 %	
	concentration as a function of time	133

		Page
112	Effect of compressional force on water	
	penetration in to α -lactose monohydrate	
	tablets containing Starch 1500°° at 2 %	
	concentration as a function of time	134
113	Effect of compressional force on water	
	penetration in to α -lactose monohydrate	
	tablets containing Starch 1500°° at 5 %	
	concentration as a function of time	134
114	Dissolution Profiles of hydrochlorothiazide	
	tablets containing 1% of disintegrants	138
115	Dissolution Profiles of hydrochlorothiazide	
	tablets containing 2% of disintegrants	138
116	Standard curve for pyridoxine hydrochloride	
	in dilute hydrochloric acid (1 in 100) at	
	290 nm	143
117	Dissolution Profiles of pyridoxine	
	hydrochloride tablets containing 1% of	
	disintegrants	143