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APPENDIX A

STANDARD TEST METHOD

1. Colorimetric method

1.1 Principle

This method was used to measure only hexavalent chromium (Cr 6+). The 
hexavalent chromium is determined via the reaction with diphenylcarbazide in acidic 
condition. Complex of unknown composition produces a red-violet color. The reaction is 
very sensitive which is measured at 540 nm.

1.2 Apparatus

The following are required:
1.2.1 Spectrophotometer, for use at 540 nm, with a light path of 1 cm or 

longer.
1.2.2 Acid-washed glassware: new and unscratched glassware will adsorb 

chromium on glass surfaces during the procedure. Thoroughly, other 
used glassware and new glassware will be cleaned with nitric or 
hydrochloric acid to remove chromium traces.

1.3 Reagents

1.3.1 Stock chromium solution. Dissolve 141.4 mg K.2Cr2C>7 in distilled 
water and dilute to 100 ml; 1 ml = 500 pg Cr.

1.3.2 Standard chromium solution: Dilute 10 ml stock chromium solution 
to 100 ml; 1 ml = 50 pg Cr.
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1.3.3 Nitric acid, HNO3, cone.
1.3.4 Sulfuric acid, H2SO4, 0.2 N: Dilute 17 ml 6 N H2SO4 to 500 ml with 

distilled water.
1.3.5 Phosphoric acid, H3PO4, cone.
1.3.6 Diphenylcarbazide solution: Dissolve 250 mg 1,5-diphenylcarbazide 

(1,5-diphenylcarbohydrazide) in 50 ml acetone. Store in a brown 
bottle. Discard when solution becomes discolored.

1.4 Procedures

1.4.1 Preparation of calibration curve

• Pipet measured volumes of standard chromium solution (50 pg/ml) 
ranging from 1 to 100 ml, to provide standards for 0.5 to 50 pg Cr, into 
100-ml volumetric flasks,

• Add H3PO4 0.25 ml,
• Adjust pH to 1 by 0.2 N H2SO4,

• Dilute with distilled water into volumetric flasks 100 ml,
• Add diphenylcarbazide 2 ml into volumetric flasks,
• Wait 5 minutes to get a complete color,
• Trasfer an appropriate portion to a 1 cm absorption cell and measure the 

absorbance at 540 nm, using the distilled water as a reference,
• Measure the absorbance by a UV-Visible spectrophotometer,
• Correct absorbance reading by subtracting absorbance of a blank carrier 

through the method,
• Make a calibration curve by plotting corrected absorbance against 

micrograms of chromium.
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• Take the sample 5 ml,
• Add H3PO4 0.25 ml,
• Adjust pH to 1 by 0.2 N H2SO4,

• Dilute with distilled water into volumetric flasks 100 ml,
• Add diphenylcarbazide 2 ml into volumetric flasks,
• Wait 5 minutes to get a complete color,
• Trasfer an appropriate portion to a 1 cm absorption cell and measure the 

absorbance at 540 nra, using the distilled water as a reference,
• Measure the absorbance by a UY-Visible spectrophotometer,
• Correct absorbance reading by subtracting absorbance of a blank carrier 

through the method.

1.4.2 Sample measurement



APPENDIX B

CALCULATION OF CRYSTALLITE SIZE

Calculation of crystallite size by Debye-Scherrer equation

The size of anatase crystallite in this study was calculated from the half maximum 
height width of the 101 diffraction peak of anatase using the Debye-Scherrer equation. 
The value of the shape factor, K was taken to be 0.89.

The Debye-Scherrer equation was shown as below:

L = A/. / / /  cos 0

Where;
L the crystalline size (nm)
K the Debye-Scherrer constant (usually taken as 0.89)
X the wavelength of the x-ray radiation (Cu Ka = 0.15418)
(3 the line width at half-maximum height of the broadened peak
0 the half diffraction angle of the centroid of the peak (degree)

For instance, the calculation of the crystallite size of anatase TiC>2 phase was
dedicated as follows:

From;
p = 
e =

0.00733 radian 
12.65°

X 0.15418 nm
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So;
L = (0.89X0.15418)/(0.00733 XCos 12.65)

= 19.19 nm



APPENDIX c

SPECIAL EQUIPMENT

1. Scanning Electron Microscope (SEM)

The Scanning Electron Microscope, or SEM, is an incredible tool for seeing the 
unseen worlds of microspace. Electron microscopy takes advantage of the wave nature of 
rapidly moving electrons. Where visible light has wavelengths from 4,000 to 7,000 
Angstroms, electrons accelerated to 10,000 KeV have a wavelength of 0.12 Angstroms. 
Optical microscopes have their resolution limited by the diffraction of light to about 1000 
diameters magnification. Electron microscopes, so far, are limited to magnifications of 
around 1,000,000 diameters, primarily because of spherical and chromatic aberrations. 
Scanning electron microscope resolutions are currently limited to around 25 Angstroms, 
though, for a variety of reasons.

1.1 The principle of SEM

A scanning electron microscope creates high resolution, three dimensional images 
of a sample’s surface. The sample, often gold-coated for electroconductivity, is 
bombarded with a focused beam of electrons which liberates secondary electrons from 
the sample’s surface. A detector in the microscope systematically “counts” these 
electrons, recording data on their origin and emission intensity which can then be 
assembled into a high contrast, high resolution image.

The scanning electron microscope generates a beam of electrons in a vacuum. That 
beam is collimated by electromagnetic condenser lenses, focused by an objective lens, 
and scanned across the surface of the sample by electromagnetic deflection coils. The 
primary imaging method is by collecting secondary electrons that are released by the 
sample. The secondary electrons are detected by a scintillation material that produces
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By correlating the sample scan position with the resulting signal, an image can be 
formed that is strikingly similar to what would be seen through an optical microscope. 
The illumination and shadow show a quite natural looking surface topography.

There are other imaging modes available in the SEM. Specimen current imaging 
using the intensity of the electrical current induced in the specimen by the illuminating 
electron beam to produce an image. It can often be used to show subsurface defects. 
Backscatter imaging uses high energy electrons that emerge nearly 180 degrees from the 
illuminating beam direction. The backscatter electron yield is a function of the average 
atomic number of each point on the sample, and thus can give compositional information.

flashes of light from the electrons. The light flashes are then detected and amplified by a
photomultiplier tube.

Figure C-l Schematic drawing of a scanning electron microscope with 
secondary electrons forming the images on the TV screen.

(http://acept.la.asu.edu/PiN/rdg/elmicr/elmicr.shtml: Available on Mar 4, 2006)

http://acept.la.asu.edu/PiN/rdg/elmicr/elmicr.shtml
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1.2 Sample preparation

Samples have to be prepared carefully to withstand the vacuum inside the 
microscope. Surface topology, such as in ffactography, may require no sample 
preparation if the specimen can withstand the low chamber pressure and electron beam 
bombardment of the SEM. The microstructure may be greatly enhanced, however, by 
such methods as polishing and selective etching of the surface. Most SEMs have sample 
chambers with limited dimensions, and the specimen must be affixed to a stage holder for 
orientation and manipulation within the chamber. Conductive adhesives with low vapor 
pressure or mechanical devices are used to mount the specimen. Special chambers and 
stages are available to suit most needs.

The most common form of sample preparation for the SEM is the deposition of a 
metal thin film onto the specimen surface. Vacuum evaporation and ion sputtering of 
metals are common methods of depositing these thin films (Goldstein et al., 1992). The 
metal thin film provides electrical conductivity, enhances the signal (if a higher-Z metal 
is used), and may add strength to the specimen.

2. Field Emission Scanning Electron Microscopy (FE-SEM)

Resolution of 1 nm is now achievable from an SEM with a field emission (FE) 
electron gun. Magnification is a function of the scanning system rather than the lenses, 
and therefore a surface in focus can be imaged at a wide range of magnifications from 3x 
up to 150,000x.

FE-SEM is the abbreviation of the word Field Emission Scanning Electron 
Microscope. Scanning and electron transmission microscopes (SEM and TEM) use as a 
source for image formation electrons (particles with a negative charge), in contrast to 
light microscopes (LM). These electrons are produced by a Field emission source ๒ a 
FE-SEM. The sample (object) is scanned in a kind of zig-zag pattern by an electron 
beam.
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Modem SEMs with field emission electron guns (FE-SEMs) are capable of 
resolutions near 1 nm on appropriate samples using the SE signal. Tungsten filament 
instruments can routinely obtain resolutions of 3 to 4 nm on appropriate specimens. 
Samples that require special conditions, such as low voltage or low dosage, and samples 
that are inherently poor signal generators due to their composition may fall far short of 
this resolution. The signal from these specimens can often be enhanced by depositing a 
thin film of metal such as chromium or gold onto the surface. This increases contrast in 
the SE signal and allows for higher resolution imaging. Operating conditions that favor 
one signal, for instance, the high beam currents and energies used for x-ray analysis, can 
also reduce image resolution. High-resolution BSE images can be obtained by selecting 
only high-energy BSEs (low-energy-loss BSEs), since these have undergone few 
interactions with the sample and are thus from a smaller sampling volume.

The FE-SEM deserves special mention due to its enormous impact on the field. The 
field emission (FE) electron gun allows for the creation of an exceptionally bright (small 
with high-current-density) electron beam. This in itself has made scanning electron 
microscopy competitive with transmission electron microscopy for materials 
characterization in the nanometer range. The FE source is often coupled with a special 
lens design such that the specimen is in the field of the lens and the detector is within the 
column rather than the sample chamber. The FESEM also has the ability to produce a 
small probe diameter at low voltage, opening the way to many applications that were 
difficult with thermionic electron guns (Greenhut and Friel, 1997). Low-voltage scanning 
electron microscopy has the advantage of revealing more details of the surface since there 
is less penetration of the beam into the specimen and is less damaging to the material. 
The SE yield from the specimen is a function of voltage, and at lower beam voltages the 
specimen reaches a point at which emission of secondary and backscattered electrons 
equals the beam current. This is a unique voltage for each material at which there is no 
specimen charging, and the surface can be imaged without a conductive coating. This 
phenomenon has also been used as a voltage contrast mechanism in materials such as 
copolymers and ceramic composites that were traditionally difficult to observe with the 
SEM.
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3. X-Ray Diffraction (XRD)

X-ray Diffraction (XRD) is a powerful non-destructive technique for characterizing 
crystalline materials. It provides information on structures, phases, preferred crystal 
orientations (texture) and other structural parameters such as average grain size, 
crystallinity, strain and crystal defects. X-ray diffraction peaks are produced by 
constructive interference of monochromatic beam scattered from each set of lattice planes 
at specific angles. The peak intensities are determined by the atomic decoration within 
the lattice planes. Consequently, the X-ray diffraction pattern is the fingerprint of 
periodic atomic arrangements in a given material. An on-line search of a standard 
database for X-ray powder diffraction pattern enables quick phase identification for a 
large variety of crystalline samples.

3.1 Main Applications

• Determination of phase contents of reaction products.
• Measurement of average crystallite size, strain or micro-strain effects in bulk and 

thin-film samples.
• Quantification of preferred orientation (texture) in thin films and multi-layers.
• Refinement of lattice parameters.
• Measurement of residue stress in blank film stacks and patterned wafers.
• Determination of thickness, interface roughness and density for thin films and 

multi-layers.

3.2 The principle of X-ray diffraction

3.2.1 Diffraction and Bragg equation

X-ray diffraction analysis uses the property of crystal lattices to diffract 
monochromatic X-ray light. This involves the occurrence of interferences of the waves 
scattered at the successive planes, which are described by Bragg's equation:
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Figure C-2 The principle of X-ray diffraction
(http://www.mastest.com/xrdxrr.htm: Available on Mar 4, 2006)

W.L. Bragg (early 1900’ร) studied that the diffracted x-rays act as if they were 
“reflected” from a family of planes within crystals. Bragg’s planes are the rows of atoms 
that make the crystal structure. These “reflections” were indicated to only occur under 
certain conditions, which satisfy the equation:

nk = 2d Sin 0  (Bragg’s equation)

Where;
ท = an integer (1, 2, 3,...., ท)
X = the wavelength in Angstroms (1.54 A° for Cu)
d = the distance between atomic planes
0 = the angle of incidence of the x-ray beam and

the atomic planes.

3.2.2 X-ray spectra

X-rays are a small part of the electromagnetic spectrum with ranging wavelengths 
from 0.02 A° to 100 A° (A° = Angstroms = 10‘8 m). The crystal is studied to find the X on 
the order from 1 to 2 A°, i.e. Copper Ka = 1.5418 A°. In the visible region, it is given the

http://www.mastest.com/xrdxrr.htm
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larger À. (4000 -  7200 A°); however, x-ray make such energy, it can penetrate deeper into 
a material. The Einstein’s equation can be explained this circumstance easily, E = hu = 
he A.; E is the energy, น is the frequency, c is the speed of light which is constant for an 
electromagnetic radiation, A, is the wavelength and h is the Plank’s constant.

Thin films deposited by various methods show varying degrees of anisotropy. This 
information relating preferred crystallite orientation (or texture) can be quantified and 
evaluated by XRD methods. With certain thin film devices, the direction and degree of 
preferred orientation of the film in relation to the substrate can influence the functionality 
of the device.

3.2.3 XRD technique in thin film analysis

I(q)
Perfect Crystal

q (=2k sin 0)

Figure C-3 The example of XRD spectra
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4. Ultraviolet and Visible Spectroscopy

Many molecules absorb ultraviolet or visible light. The absorbance of a solution 
increases as attenuation of the beam increases. Absorbance is directly proportional to the 
path length, b, and the concentration, c, of the absorbing species.

Beer's Law states that A = ebc, where £ is a constant of proportionality, called the 
absorbtivity. Different molecules absorb radiation of different wavelengths. An 
absorption spectrum will show a number of absorption bands corresponding to structural 
groups within the molecule. For example, the absorption that is observed in the u v  
region for the carbonyl group in acetone is of the same wavelength as the absorption from 
the carbonyl group in diethyl ketone.

4.1 The principle of UV-Visible spectroscopy

When either light, visible or ultraviolet, is absorbed by valence (outer) electrons 
these electrons are promoted from their normal (ground) states to higher energy (excited) 
states (Figure C-4). The energies of the orbitals involved in electronic transitions have 
fixed values. Because energy is quantised, it seems safe to assume that absorption peaks 
in a UV/visible spectrum will be sharp peaks. Flowever, this is rarely, if ever, observed. 
Instead the spectrum has broad peaks. This is because there are also vibrational and 
rotational energy levels available to absorbing materials (Figure C-4).

Because light absorption can occur over a wide range, light from 190 nm to 900 nm 
is usually used. Valence electrons are found in three types of electron orbitals. Single, or 
o, bonding orbitals; double or triple (7t bonding orbitals); and non-bonding orbitals (lone 
pair electrons). Sigma (a) bonding orbitals tend to be lower in energy than 71 bonding 
orbitals, which in turn are lower in energy than non-bonding orbitals. When 
electromagnetic radiation of the correct frequency is absorbed a transition occurs from 
one of these orbitals to an empty orbital, usually an antibonding orbital -  a* or 71*  -  

(Figure C-5). Most of the transitions from bonding orbitals are too high a frequency (too
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short a wavelength to measure easily), so most of the absorptions involve only ท-^ท*, 
ท-—>a* and ท—>71* transitions.

Figure C-4 The scheme of the energy promoted the electrons 
with different motion

irV
LU

๙

?โ*

ก
K

0

► Antibonding

a-■ *๙ h ' ^ ' tก - *  0* 1 ก - i n *  1

Bonding

Energy levels Transitions

Figure C-5 The diagram of the energy levels
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4.2 Measuring techniques

There are two types of analysis which are qualitative analysis and quantitative 
analysis using in this technique. All samples can be determined when the molecular 
absorption conducts. A couple of techniques would be demonstrated as follow:

4.2.1 Qualitative analysis

All analysts may be identified by comparing the absorption spectra of the unknown 
substance with the graphs of the known spectra. Moreover, it can be used to specify two 
or more analysts at the same time.

4.2.2 Quantitative analysis

A known analyst can be determined by measuring the absorbance at one or more 
than one wavelengths and taking the molar absorption coefficient to calculate its 
concentration. However, the concentration can definitely be found from an analytical 
calibration curve that is contained by plotting the measured absorbance of various 
reference solutions according to their exact concentrations. A graph of absorbance against 
concentration is a straight line passing through the origin if the Beer-Lambert law is 
applied.



APPENDIX D

EXPERIMENTAL DATA

Table D-l The absorbance of residual Cr (VI) in the photocatalytic reduction using thin film TiC>2 prepared with and without Acetyl acetone.

Absorbance of residual Cr (VI) (mg/L)
Irradiation H o without Acetyl acetone TiC>2 with Acetyl acetone
time (min) 1 st 2 nd average C/Co 1 st 2 nd average C/Co

0 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00
15 22.20 21.92 21.01 0.88 19.51 20.54 20.03 0.80
25 20.77 21.24 18.62 0.84 18.06 19.51 18.79 0.75
35 17.48 19.76 17.29 0.74 13.90 17.86 15.88 0.63
45 16.44 18.15 16.26 0.69 12.58 15.59 14.08 0.56
60 15.45 17.06 14.01 0.65 9.49 11.60 10.55 0.42
75 13.23 14.80 10.35 0.56 6.28 7.77 7.03 0.28
105 9.17 11.54 6.62 0.41 1.78 3.26 2.52 0.10
135 5.21 8.02 3.04 0.26 0.00 0.00 0.00 0.00
165 1.23 4.84 0.00 0.12 0.00 0.00 0.00 0.00
195 0.00 1.41 0.00 0.00 0.00 0.00 0.00 0.00



Table D-2 The absorbance of residual Cr (VI) in the photocatalytic reduction using thin film TiC>2 calcined at various temperatures.

Irradiation Absorbance of residual C r (VI) (mg/L)
time 300 °c 400 °c 450 °c 500 °c
(min) 1  St 2 nd av C/Co 1st 2 nd av C/Co 1  St 2 nd av C/Co 1 st 2 nd av C/Co

0 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00
15 20.11 21.98 21.04 0.84 18.85 21.90 20.37 0.81 18.72 21.00 09.86 0.79 19.51 20.54 20.03 0.80
25 18.19 20.87 19.53 0.78 17.26 19.04 18.15 0.73 18.34 19.97 19.16 0.77 18.07 19.51 18.79 0.75
35 15.72 19.90 17.82 0.71 15.26 18.09 16.68 0.67 16.08 18.54 17.31 0.69 13.90 17.86 15.88 0.64
45 13.33 18.87 16.10 0.64 13.42 15.72 14.57 0.58 13.89 15.69 14.79 0.59 12.58 15.59 14.08 0.56
60 11.52 16.37 13.94 0.56 10.64 14.24 12.44 0.50 10.68 12.76 11.72 0.47 9.49 11.60 10.55 0.42
75 7.90 14.89 11.40 0.46 8.15 12.07 10.11 0.40 7.61 9.73 8.70 0.35 6.28 7.77 7.03 0.28
105 3.37 11.13 7.25 0.29 3.85 10.27 7.06 0.28 2.14 4.78 3.46 0.14 1.78 3.26 2.52 0.10
135 0.00 7.78 0.00 6.94 0.00 2.63 0.00 0.00
165 0.00 4.09 0.00 3.25 0.00 0.00 0.00 0.00
195 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00

©On



Table D-3 The absorbance of residual Cr (VI) in the photocatalytic reduction using thin film ÜO 2 derived with different coating cycles.

Irradiation Absorbance of residual Cr (VI) (mg/L)
time 1 cycle 2 cycles 3 cycles
(min) 1 st 2 nd av C/Co 1 st 2 nd av C/Co 1 st 2 nd av C/Co

0 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00
15 21.90 21.94 21.92 0.88 21.99 22.33 22.16 0.89 19.51 20.54 20.03 0.80
25 19.32 20.29 19.81 0.79 20.67 19.63 20.15 0.81 18.07 19.51 18.79 0.75
35 18.84 18.54 18.69 0.75 19.24 17.38 18.31 0.73 13.90 17.86 15.88 0.64
45 16.88 17.24 17.06 0.68 16.79 15.57 16.18 0.65 12.58 15.59 14.08 0.56
60 14.63 14.85 14.74 0.59 13.81 12.25 13.03 0.52 9.49 11.60 10.55 0.42
75 12.18 12.69 12.44 0.50 11.35 9.21 10.28 0.41 6.28 7.77 7.02 0.28
105 7.46 8.04 7.75 0.31 6.08 5.00 5.54 0.22 1.78 3.26 2.52 0.10
135 3.46 3.84 3.65 0.15 2.32 3.43 2.87 0.11 0.00 0.00
165 0.25 0.33 0.29 0.01 0.00 0.00 0.00 0.00
195 0.00 0.00 0.00 0.00 0.00 0.00 0.00

©



Irradiation Absorbance of residual Cr (VI) (mg/L)
time 4 cycles 5 cycles
(min) 1 s* 2 "d av C/Co 1 st 2 nd av C/Co

0 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00
15 20.12 21.66 20.89 0.84 21.21 20.94 21.08 0.84
25 17.80 19.57 18.68 0.75 19.51 18.99 19.25 0.77
35 15.78 17.66 16.72 0.67 17.66 17.49 17.58 0.70
45 13.76 15.47 14.62 0.58 16.42 16.64 16.53 0.66
60 11.27 12.71 11.99 0.48 14.27 15.49 14.88 0.60
75 9.09 10.58 9.83 0.39 11.98 13.48 12.73 0.51
105 5.49 6.00 5.74 0.23 8.01 9.84 8.93 0.36
135 2.35 1.90 2.13 0.09 4.28 6.23 5.25 0.21
165 0.00 0.00 0.00 0.00 1.75 2.00 1.87 0.07
195 0.00 0.00 0.00 0.00 0.00 0.00

O
00



Table D-4 The absorbance of residual Cr (VI) in the photocatalytic reduction with different illumination wavelengths.

Irradiation Absorbance of residual Cr (VI) (mg/L)
time 254 nm 380 nm 420 nm
(min) 1 st 2 nd av C/Co 1 st 2 nd av C/Co 1 st 2 nd av C/Co

0 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00 25.00 25.00 25.00 1.00
15 21.70 22.09 21.90 0.88 19.51 20.54 20.03 0.80 23.42 22.15 22.78 0.91
25 18.88 19.05 18.97 0.76 18.07 19.51 18.79 0.75 21.94 21.63 21.78 0.87
35 17.30 16.66 16.98 0.68 13.90 17.86 15.88 0.64 20.77 19.65 20.21 0.81
45 14.62 14.30 14.46 0.58 12.58 15.59 14.08 0.56 19.80 19.41 19.60 0.78
60 12.26 11.06 11.66 0.47 9.49 11.60 10.55 0.42 17.27 18.67 17.97 0.72
75 8.36 8.76 8.56 0.34 6.28 7.77 7.02 0.28 17.11 16.80 16.96 0.68
105 4.09 4.32 4.21 0.17 1.78 3.26 2.52 0.10 15.06 14.45 14.76 0.59
135 0.00 0.00 0.00 0.00 0.00 12.20 11.92 12.06 0.48
165 0.00 0.00 0.00 0.00 0.00 9.79 9.45 9.62 0.38
195 0.00 0.00 0.00 0.00 0.00 6.83 5.99 6.41 0.26

oVO
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